
Neuroevolution Strategies for Word Embedding
Adaptation in Text Adventure Games

Vivan Raaj Rajalingam
School of Computer Science

and Electrical Engineering
University of Essex

Colchester, Essex, UK
Email: vivraaj@gmail.com

Spyridon Samothrakis
Institute of Analytics and Data Science

University of Essex
Colchester, Essex, UK

Email: ssamot@essex.ac.uk

Abstract—Word embeddings have gained popularity in many
Natural Language Processing (NLP) tasks. They can encode
general semantic relationship between words, and hence provide
benefits in many downstream tasks when used as a knowledge
base. However, they still suffer from morphological ambiguity
as the trained vectors do not share representations at the sub-
word level. In this report, we propose a new architecture that
uses neuroevolution to fine-tune pre-trained word embeddings
for the challenging task of playing text-based games. We fit
this architecture into an existing game agent and evaluate
its performance on six text-based games. Experimental results
show that the proposed fine-tuning architecture may significantly
mitigate the effect of morphological ambiguity to enable our game
agent to reduce the total number of steps required to generate
valid actions and perform well in these games.

Index Terms—neuroevolution, word embedding, reinforcement
learning

I. INTRODUCTION

Recently, word embeddings have been explored as a lan-
guage model to learn word representations. One particularly
famous embedding is word2vec which was introduced in [1].
When trained over a large text corpus, word2vec has been
proven to reveal certain aspects of similarity using distributed
representations. This feature enables it to be successfully
adopted in different domains for various NLP tasks such as
name entity recognition, sentiment analysis, and word analogy
detection.

In this paper, we will focus on the aspect of natural
language understanding in the domain of text-based games.
Text-based games use natural language to describe the state
of the world, accept actions from the player and to generate
new states based on the validity of the player’s action. In the
nomenclature of Reinforcement Learning (RL), this results in
the large potentially infinite space for action commands which
represents a challenge to existing optimization algorithms such
as reinforcement learning. Beyond that, the other properties of
the game such as partial observability, stochastic environment,
sparse rewards etc. make the games unpredictable and chal-
lenging for a game agent.

Word embeddings have been used to build RL agents. For
example, in the IEEE The Text-Based Adventure AI 2016

Competition, Fulda et al. [2] built a game playing agent that
leveraged word2vec as a common sense knowledge base to
guide its agent’s exploration on a suite of text-based games.
They pre-trained the word2vec model using Wikipedia dataset
and found that it was able to encode common sense knowledge
within the dataset. This unique feature enabled their agent
to effectively use affordance extraction methods to query the
embedding to generate valid action commands.

In the same paper, Fulda et al. [2] found that the pre-
trained word embeddings suffered from several limitations
such as polysemy, neologisms, and semantic extensions. This
limitation may have been caused by the biased training corpus
which contains imbalance occurrences of individual words. As
a result, the embeddings were not able to detect contextual
information between these rare words and other words in the
corpus. This limitation affected the quality of the affordance
extraction which resulted in Fulda et al. [2]’s agent taking
many irrelevant or inferior actions that prolong the agent’s
learning curve.

In this report, we propose a new game agent which is
referred to as Neuroagent that is built upon Fulda et al. [2]’s
work but introduces a new component which uses neuroevolu-
tion to fine-tune the pre-trained word embeddings. Neuroevo-
lution refers to the generation of a function approximator (their
weights and/or topology) using an evolutionary algorithm [3].
It can receive inputs of any form and evolve the function
approximator’s architecture to optimize for any goal. The fine-
tuning process functions concurrently by interaction with the
game. This concept is also referred to as interaction-based
language learning [4]. We will investigate if the addition of
the fine-tuning component would recover better word repre-
sentations in the embeddings that results in more efficient
affordance extraction. Then, we will evaluate the performance
of our game agent on a suite of text-based games.

The rest of the paper is organized as follows: we first give
a overview of related work in Section II and background
theory in Section III. In Section IV, we describe the final
agent architecture. Section V lists the experimental set-up and
the results, and we discuss the findings of the experiments
in Section VI. Finally, we list our conclusion and findings in
Section VII.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

II. RELATED WORK

In this section, we will describe the related work in the
development of artificial intelligence agents that can play
text-based games, application of neuroevolution techniques
in games and development of knowledge base using word
embeddings to handle affordances.

Text-Based Games - In text-based games, the game agent
needs to understand the game’s state description so that it
can generate logical responses while learning how to play the
game. As the current state of the art in language understanding
is still not able to match human-level performance, other
researchers have navigated past this limitation by developing
new architectures. For example, Branavan et al.[6] used the
game manual to map instructions to these sequences of actions
and applied reinforcement learning to learn the game’s optimal
control policy. The results which were obtained demonstrated
that agents with prior knowledge of language representations
could navigate a game better compared to agents without this
prior knowledge.

In 2015, He et al. [7] introduced the Deep Reinforcement
Relevance Network (DRRN) architecture to play two choice-
based text-based games. He et al. [7] feed all the words that
appear in the game into a bag of words (BOW) model which is
passed as an input to a neural network [8]. Even-Dar et al. [9]
designed a separate embedding for states and actions which are
then combined with Deep Q-Network (DQN) to approximate
the Q-function. Finally, He et al. [7] chooses the action with
the highest Q-value. Narasimhan et al. [10] developed the
LSTM-DQN architecture which is a combination of LSTM
and DQN and evaluated its performance on parser-based text-
based games. Narasimhan et al. [10] used the LSTM layer
to encode the game agent’s observation as a sequence of
words. The resulting state observation is then used by two
subnetworks to predict the Q-values for all verbs and object
words independently. The Q-values for the composed actions
are then obtained from the mean of both resulting values.

In contrast to the other works which introduced different
architectures to learn the control policies of the game, Fulda et
al. [2] focused on using affordances as the action elimination
method. Fulda et al. [2] used pre-trained word embeddings
which are trained using word2vec on Wikipedia dataset to
act as a knowledge base. Then, Fulda et al. [2] presented a
method for affordance extraction via the inner product of the
knowledge base for action selection. This method proved to
be successful as it achieved the highest score in the IEEE The
Text-Based Adventure AI 2016 Competition.

Neuroevolution - is the combination of neural networks and
evolution strategies. Fogel et al. [5] evaluated the performance
of evolutionary algorithms on checkers which is a strategy
based game by first letting it play games against itself. The
algorithm learnt to associate the specific sections of the chess-
board over long periods of training resulting in it achieving
good performance.

Word Embeddings - Gao et al. [11] most recently proposed
to use an autoencoder together with word embeddings to

handle the low representation of the syntactic properties and
linguistic regularities in the word embedding vectors. The low
representation is caused by sparsity which occurs as words
in English have different meanings thus, these words can
be widely spread over the embedding’s vector space. The
resulting training showed that the compressed word embedding
in the hidden layer of the autoencoder was able to recover the
synonym relation between similar word pairs. Their results
highlighted the potential of deep neural networks in adjusting
word vectors in word embedding’s and further inspires our
work.

III. BACKGROUND

This section will describe the background theory of the
techniques and tools which was applied in our game agent.

A. Text-Based Games
Text-based games are the type of games that use text

characters instead of graphics [12]. The player must type
commands in free-form english text to control the game,
and the resulting game state is generated via text output.
Text-based games offer a perfect environment for artificial
intelligence research due to its unique properties such as:

Partial Observability - In text-based games, the states
which are generated by the game engines are partially ob-
servable. A state may give incomplete information about the
current state of the game. Fig. 1 shows an example of a
scenario of partial observability in the game ‘detective’. The
state descriptions in the left box describe the state of the game
which is shown to the player while the game engine does not
show the hidden state to the player. If the agent inputs an
appropriate action command such as ‘get all’, the game will
transition to a different state that describes the effect of the
taken action [13].

Infinite Action Spaces - The biggest challenge in text-based
games is the huge action space. As the action has to consist of
natural language descriptions, there are many combinations of
words that can be trialled as an action. For example, given a
state description of ‘There is a door in front of you. What do
you do now?’, the right action would be to ‘open the door’.
However, the game agent has no common-sense knowledge of
a word meaning in a given context and thus may try actions
such as ‘eat door’ or ‘run door’ which do not make sense. By
constantly trying a different combination of words, the agent
will spend much time being stuck in a particular game state
until it may or may not reach the desired action command.

Intrinsic Motivation and Memory - A game agent must
not only aim to complete the challenges as it must also explore
the game’s map to search for paths that will lead to higher
game rewards. This problem in RL is known as the balance of
exploration and exploitation [14]. The game agent will need to
have high ‘curiosity’ so that it can explore the game efficiently.

B. Word Embeddings
The Skip-Gram model [15] is a neural network architecture

that is built upon the word embedding’s structure to predict
the word in the window from the current word.

Fig. 1. Example of partial observability in the game ’detective’

Word2vec Analogy Function - Mikolov et al. [15]’s tech-
nique for solving word analogies is illustrated in equation 1.
Given two words, w1 and w2, the similarity measure is given
by the angular distance of both words which is calculated
by the cosine angle of their respective vectors. Thus, the
relationship between both words can be discovered as the
offset of their vector embedding [16]. This method results
in higher similarity if the angle between the word vectors
decreases and lower similarity if the angle increases.

sim(w1, w2) = cos(w1, w2) =
(w1.w2)

||w1||||w2||
(1)

This method was also successful in assessing whether there
is a linguistic relation between the base and gerund form of
verbs such as ‘debug’ and ‘debugging’ [17] which indicated
that these examples of base-to-gerund types are encoded as a
particular linear offset in the embedding.

C. Separable Natural Evolution Strategies

Neuroevolution is a combination of a function approximator
such as neural networks and natural evolution algorithms.
Text-based games can be perceived as a black-box problem
due to their partial observability properties. A black-box
problem refers to an environment where there is no additional
information on the objective function to be optimized besides
evaluating the fitness performance at certain points in the pa-
rameter space. Thus, the optimization problem is too complex
to be modelled directly.

However, natural evolution strategies have been shown to
solve these problems with good results [18]. Natural evolution
strategies (NES) are a black-box optimization framework
that uses search gradients to update the parameters of the
search distribution. The shortcomings of NES are its limited
applicability to high dimensional search spaces [19].

To overcome this shortcoming, Schaul et al. [20] introduced
the Separable Natural Evolution Strategies (SNES). This mod-
ified algorithm is structured to compensate for some invariance
properties of the NES algorithm and to limit the search to
diagonal covariance matrices. It functions by restricting the
class of search distributions to Gaussians with diagonal covari-
ance matrix which corresponds to restricting a general class
of multi-variate search distributions to separable distributions
as described in equation 2 where p̃ is a family of densities

on the reals and the parameters of all these distributions are
given by θ = (θ1,θd).

p(x|θ) =

d∏
k=1

p̃(xk|θk) (2)

These parameters amount to θk = (µk, σk) where µk ∈ R
is a position and σk ∈ R+is a scale parameter such that
zk = µk + σk.sk ∼ p̃(.|µk, σk) for sk ∼ p̃(.|0, 1). The
modified functions enable the strategy update step to take only
linear time, O(d) which makes it computationally efficient
and reduced number of parameters in the covariance matrix.
Furthermore, the algorithm is able to maintain a reasonable
amount of flexibility in the search distributions and faster
adaption of its parameters.

D. Neural Networks

The goal of a neural network is to approximate some
function, g. In the context of a classifier, y = g(x) maps an
input x to a category y and the network defines the mapping
y = g(x|θ) and learns the value of the parameters θ that results
in the best function approximation.

Fig. 2 illustrates a basic structure of Multilayer Perceptron
(MLP) which is a neural network with hidden layers. In the
leftmost layer, the network takes in a set of inputs, xm where
m is the number of inputs. These set of inputs are then mapped
to hidden nodes in the next layer. Each input is mapped to
every nodes in the hidden layer. The connection between the
individual input nodes, hidden nodes and output nodes are
termed as weights and these weight values are not fixed but
changeable.

All the inputs are multiplied by the weights and summed
for each hidden node. Next, the same process repeats for the
connections from the hidden layer to the output layer. An
activation function controls the amplitude of the output.

IV. METHODOLOGY

A. Partially Observable Markov Decision Process

We formulate the objective of learning the control policy of
the game as a Partially Observable Markov Decision Process
(POMDP) problem. Formally, POMDP is defined by a 7-tuple
< S, T,A,Ω, R,O, γ > with the additional parameters; Ω
that represents the set of observation, O which represents the
set of conditional observation probabilities and γ which is
the discount factor. These addition of new information related
to past observations now enables the agent to make optimal
decisions while playing the game.

Reward Function (R) : Each game has its unique scoring
mechanism which enables the agents to obtain points based on
their progress in the game. For each action that it takes, the
agent receives a reward, rt = R(st, at) from the game engine.
However, in most text-based games, there are rare instances
when the player receives points as they are usually stuck in

a particular state due to invalid action commands. Thus, this
score is not useful to our game agent as it will not be able to
assess its progress in the game.

Fig. 2. Structure of a Multilayer Perceptron

Instead of just using the game’s scoring mechanism, we
introduce a new reward factor called agent reward, rgt. The
agent’s reward is calculated based of the game’s reward, rt and
predefined values which are determined depending if there are
changes in the current state text description compared to the
previous state text description. This reward is only visible to
the game agent to help improve its decision-making process
and thus the overall goal of the agent is to now maximize
the discounted sum of rewards received which is given by
E[

∑
t γ

trg,t].

B. Neuroagent Architecture

Fig. 3 shows the architecture of our game agent which is
referred to as Neuroagent. Neuroagent will generate action
commands based on the state text description and reward
which are generated by the game engine. We have narrowed
down the agent’s architecture to three main components as
follows.

Learning Algorithm - A game agent must be able to
learn the game’s control policy by using the rewards which
are obtained through continuous interaction. As the game
environment is unknown to the agent, the agent does not
know how the environment will change in response to its
action which is denoted as T and its corresponding reward,
R. This type of learning problem is categorized as Model-Free
Learning.

Our agent uses Q-learning [21], which is an off-policy
algorithm that directly estimates the optimal Q-values of each
action in each state based on equation 3 where α is the learning
rate, γ is the discount factor and s′ is the new state based on
action, a.

4Q(s, a) = Q(s, a)+α(R(s, a)+γ(maxaQ(s′, a)−Q(s, a)))
(3)

This algorithm allows the policy to be updated at every
state and the optimal policy, π∗ be derived by choosing the
action with the highest Q-value in the current state as shown
in equation 4.

π∗(s) = argmaxaQ
∗(s, a) (4)

[2] As most of the games are generally deterministic with
a high percentage of consumable rewards, we set α to 1 to

Fig. 3. Neuroagent architecture

limit the Q-value updates so now the Q-learning algorithm is
modified as shown in equation 5.

Q
′
(s, a) = max(Q(s, a), Q(s, a)4Q(s, a)) (5)

Word Embeddings - Our approach is based on Fulda et
al. [2]’s work which used pre-trained word embedding as a
knowledge base. Fulda et al. [2] used the English Wikipedia
dataset dump as a knowledge base. The reader is referred to [2]
for further information on the method of which the knowledge
base is designed and action template for action selection.
These words that are considered relevant are stored into an
object list. The agent will utilize each word in the object list
and generate an action based on the action template which
is described in equation 6. The actions are a combination of
verb/object pairs where V is the set of all English-language
verbs and O is the set of English-language nouns.

a = v + ” ” + o, v ∈ V, o ∈ O (6)

Fulda et al. [2] utilizes word2vec’s built-in analogy method
to fully leverage the semantic structure which is encoded
in the knowledge base to find appropriate verb for a given
noun. Fulda et al. [2] defined a set of canonical vectors
which illustrates the relationships that are intended to be
extracted from the knowledge base. As an example, she
used a combination of vector[′wear′] − vector[′coat′] and
vector[′attack′]−vector[′enemy′] as exemplars rather than as
descriptors. She describes these relationship as verb/noun pair
(−→v ,−→n) which act as affordant to the extent that (−→n+−→a = −→v)
where −→a is the affordant vector which is desired. To satisfy
these equation, the knowledge base will return the n closest
verbs (−→vc1, ...,−→vcn) to the point −→n +−→a .

Neuroevolution - Fig. 4 illustrates the architecture of the
neuroevolution component which is composed of a MLP as

the function approximator to the SNES evolutionary algorithm.
The FNN is made of one hidden layer with 100 neurons.We
chose 100 neurons for the hidden layer as it represents the
number of dimensions in the word vectors. [21] We then used
tanh as the activation function in the hidden layer so that the
output values range between [-1, 1]. There are 10,100 weights
in this MLP architecture. The weights of the neural network
and the corresponding agent reward rgt are passed as input to
the SNES algorithm.

Fig. 4. The neuroevolution structure which is implemented in our game agent

The process of fine-tuning the word embeddings are as
follows; First, we will track each word in the game’s state text
description and then perform pre-processing methods such as
lower-casing all the words and concatenating them with ’ ’
and their corresponding POS tag.

Next, we will retrieve their index position and their corre-
sponding vector of 300 dimensions from the word2vec model
[22]. We convert the list that contains the word vectors into
an array so that it can be passed as an input to the MLP.
Beyond that, we will obtain the agent reward, rgt as a result
of the game reward which is transformed using the reward
shaping formula. The weights of the neural network and the
agent reward, rgt for the corresponding state are then passed
as inputs to the SNES algorithm.

The SNES algorithm will evolve the weights of the neural
network structure by using the agent reward’s values as
feedback. These new weights are then adapted back to the
MLP’s structure. Then, the original array that contains the
previous word vectors will be passed through the MLP in a
feedforward manner. The resulting output is the new word
vectors. The analogy function will then query the word2vec
to extract the new query list based on the new position of the
word in the word2vec vector space.

V. RESULTS AND EXPERIMENTS

Our experiments have two main objectives which are to
build an effective game agent and investigate if the addition
of the neuroevolution component influenced our game agent’s
performance.

A. Textplayer Framework

We evaluated the agent on six text-based games using
the Textplayer framework. These games are part of Multi-

User Dungeon (MUD) genre and can be accessed from the
Interactive Fiction Archive (IF) library.

Textplayer1 is a python interface to run the games which
are compatible with Infocom’s Z-machine using Frotz. It also
provides our baseline agent, on top of which Neuragent is
built. All the games in the framework differ by their properties.
For example, games such as ’Zork1’ represent fictional world
situations whereas ‘Detective’ represent business scenarios.

B. Parameters

Table 1 describes the final parameters for the Neuroagent
which were tuned through trial and error. The MLP was built
using Keras’s2 Dense layer. The SNES algorithm codes were
adapted with permission from Samothrakis et al. [23].

TABLE I
THE FINAL PARAMETERS FOR THE NEUROAGENT

Layer Parameter Values

Multilayer Perceptron (MLP)

No. of Layers One Layer with 100 neurons
Activation Function tanh

Number of weights to be evolved 10,100

SNES No. of Population 50
No. of Generations 500

As the Neuroagent is built upon the work done by Fulda et
al. [2], we will use Fulda et al. [2]‘s agent as a baseline.
We will run the baseline agent over 25,000 iterations to
ensure uniformity among the measured results. Then, we will
group the baseline scores in increasing increments of 50
iterations to represent one generation which would result in
500 generations.

C. Comparison of Results

Table 2 shows the comparison of the final scores which
were achieved by the Neuroagent and baseline at the end of
500 generations over five runs when evaluated on the six text-
based games in the textplayer framework.

TABLE II
COMPARISON OF THE FINAL SCORES WHICH ARE ACHIEVED BY

NEUROAGENT AND THE BASELINE

Game Maximum score of the game Final score of the agents
Baseline NeuroAgent

detective 360 0 70
omniquest 50 5 10
deephome 300 1 1

zork1 350 10 10
Balances 51 5 10
Advent 350 36 36

The bold values in the table indicate the agent that obtained
the highest score for each game. The results show that the
Neuroagent outperformed the baseline in three out of the six
games. There are three games in which both agents achieved
similar scores.

1https://github.com/danielricks/textplayer
2https://github.com/keras-team/keras

Besides using the score as a benchmark for performance,
we plot the learning trajectories [23] of the agents in Fig. 5.
These figures were generated using seaborn’s lineplot which
aggregates the different measurement runs at each generation
by plotting the mean and the 95% confidence interval around
the mean.

We can observe that the Neuroagent reaches convergence
faster compared to the baseline in the games of ’detective’
and ’Balances’. In the game ‘detective’, it also exhibited
a faster learning curve as it continues to achieve higher
reward as the game progresses. This is in contrast to the
baseline’s performance which decreases as it gets killed early
on during the gameplay. In the game ‘Balances’, the baseline’s
performance stagnates from the generation no. 150 onwards.

The Neuroagent’s performance in the game ‘omniquest’ is
peculiar as it has a more ‘bumpy’ learning curve compared to
the baseline which reaches its highest score early on during the
game. However, the Neuroagent eventually outperformed the
baseline after generation no. 350 onwards whereas the baseline
was stuck in the same score for the rest of the game.

In the games ‘deephome’ and ‘Advent’, both agents
achieved a similar score, and their learning behaviour are
almost identical. The only notable difference is that the Neu-
roagent gets killed in half of the runs towards the end of the
‘deephome’ game in contrast to the baseline that managed to
stay alive for the rest of the game.

We can focus specifically on the learning behaviour of
the agents based on the game reward that is received during
gameplay. Fig. 6 illustrates the game milestones where the
agents either receive a positive or negative reward as the
game progresses. The peaks in the graph represent these
milestones. The general observation is that both agents receive
zero rewards for the majority of the game and there are only a
few instances when the agent receives a reward. Besides that,
in most of the games, the Neuroagent have more instances of
game milestones compared to the baseline which indicates that
the Neuroagent can take more relevant actions that warrant a
response from the game interpreter.

VI. DISCUSSION

Overall, the results show that Neuroagent is capable of
exhibiting a faster learning curve to either outperform or
match the performance of the baseline in every game. It
could also obtain game rewards faster than the baseline and
produce a more stable policy as the game progresses [24].
The results also suggest that Neuroagent is a more efficient
agent compared to the baseline. In this section, we will discuss
the effects that are caused by the implementation of the
neuroevolution component in the Neuroagent. We will analyze
the results which are obtained from the game ‘detective’ as
points for discussion.

Analysis of Neuroagent’s performance in the game
‘detective’ - In the game ‘detective’, the Neuroagent achieves
a higher score compared to the baseline. We will use the term
‘milestones’ to define the game states in which the agent

collects a nonzero reward. The leftmost diagram in Fig. 6
describe the milestones in the game ‘detective’ for both agents.

Although both agents use the same pretrained word embed-
dings as a knowledge base, they generate different actions.
This observation is caused by the neuroevolution component
of the Neuroagent.

The neuroevolution algorithm guides the direction of the
word vectors shifts in the word2vec vector space by using
the agent reward as feedback. The leftmost diagram in Fig. 7
shows the progress of the agent reward throughout the game.
If a particular action does not result in any reward, the reward
shaping function will transform the agent reward to a negative
value, and this value will then be passed as an input to the
neuroevolution algorithm. As most of the action which are
taken in the game eventually results in zero game reward, thus
the neuroevolution algorithm will continually shift the word
vectors around the word2vec vector space. The agent’s reward
act as an intrinsic reward which guides the agent’s exploration
of the search space.

We can further demonstrate the word vectors shift by using
the example of words that were seen throughout the ‘detec-
tive’ game which can be queried using word2vec’s analogy
function. We visualize the projection of these words vector
representation at the start of the game onto a two-dimensional
space using t-SNE algorithm [25] as shown in Fig. 8 (a).
The left most diagram in Fig. 8 (a) represents these word’s
original vector position in the pre-trained word embedding
vector space. The next diagram then shows the shift in the
position of these words at generation no. 400. Finally, we can
again observe that the word vectors shifts again at the end of
the game at the rightmost diagram. Furthermore, all the word
vectors tend to be more compact and better clustered to each
other as the game progresses [26].

By constantly shifting the word vector position around in
the vector space, word2vec’s analogy function will generate
a different query list. The nearest neighbour for this word
is more spread across several parts of speech during the
gameplay [27].

The neuroevolution algorithm continually tunes the word
embeddings so that it would improve the affordances extrac-
tion to ensure that the agent avoids getting stuck at suboptimal
positions [21]. One of the limitations of the baseline agent
was that it generates many invalid actions. This situation
can be attributed to the fixed position of the word vectors
in the word2vec vector space thus the analogy function will
always generate the same query list throughout the game. The
drawbacks of a fixed vector position mean that the agent is
not able to trial new verb and noun pair combinations even
though the agent may have discovered that the entire list of
verbs in the existing query list does not result in any reward.

Limitations of the Neuroagent - As the Neuroagent is
composed of evolution learning algorithms, the training time
increases as the state text descriptions in games grew. Besides
that, the analysis of the embeddings which are learnt by the
agent in the ‘Omniquest’ game are illustrated in Fig. 8 (b)
shows that there is no defined cluster which was obtained at

Fig. 5. The progression of the learning trajectories of the agents during 500 generations

Fig. 6. The milestones in the game where the agents collect a nonzero reward

Fig. 7. The progression of the agent reward which is passed as input to the neuroevolution component of the Neuroagent over 500 generations

the end of the game. Thus, the learning behaviour might have
been random.

VII. CONCLUSION AND FUTURE WORK

In this report, we have proposed a new architecture to
fine-tune word embeddings so that an Artificial Intelligence
(AI) agent can enable language-based interaction learning in
any domain. We evaluated this architecture on the domain of
text-based games by modifying the architecture of last year’s
Text-Based Adventure AI competition winner to incorporate
the new component which uses neuroevolution algorithm to
perform the fine-tuning tasks. We found that the addition of
the neuroevolution algorithm enabled our game agent which is
referred as Neuroagent to outperform the baseline in three out
of the six games which were tested. Based on these results,
we also found that the neuroevolution component managed to
compress the game’s word vector which resulted in better verb-
noun pair combinations as action selection [11] and enabled
the agent to improve its learning curve with more effective
exploration as the game progresses.

Although the results are promising, it is still inconclusive to
claim that the Neuroagent is a more efficient agent compared
to the baseline due to the limited number of games in which the
agents were tested. We were unable to test the agents on more
games as we encountered problems such as memory error and
not being able to obtain any reward in other games within
the textplayer framework. However, we can deduce that the
neuroevolution algorithm can guide the exploration of word

embeddings vector space by using game rewards as feedback
so that the game agent does not get stuck in suboptimal
solutions.

There are multiple future work directions that we would like
to point out. First, we could experiment with different function
approximators in the neuroevolution algorithm. We can use
more advanced activation functions such as Exponential Linear
Units (ELU) which could help to speed up the neural network’s
learning curve as they bring gradient closer to the unit natural
gradient which fits well with the S-NES algorithm. Besides
that, we can compare the performance of the game agents by
replacing the neuroevolution component with a standard neural
network layer with backpropagation - this however would
require chancing he training regime of the agent. Furthermore,
we can evaluate the generalization ability of the fine-tuned
word embedding by first training the word embedding on one
game and then testing its performance on other unseen games.
The results of this approach can serve as a guide to further
research in zero-shot learning ability of neuroevolution based
language learning methods.

REFERENCES

[1] Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781.

[2] Fulda, N., Ricks, D., Murdoch, B. and Wingate, D., 2017. What can
you do with a rock? Affordance extraction via word embeddings. arXiv
preprint arXiv:1703.03429.

Fig. 8. t-SNE visualization of the entire words seen in the games as the game
progresses

[3] Risi, S. and Togelius, J., 2017. Neuroevolution in games: State of the art
and open challenges. IEEE Transactions on Computational Intelligence
and AI in Games, 9(1), pp.25-41.

[4] Ansari, G.A., Chandar, S. and Ravindran, B., 2018. Language Expansion
In Text-Based Games. arXiv preprint arXiv:1805.07274.

[5] Fogel, D.B., Hays, T.J., Hahn, S.L. and Quon, J., 2004. A self-learning
evolutionary chess program. Proceedings of the IEEE, 92(12), pp.1947-
1954.

[6] Branavan, S.R., Chen, H., Zettlemoyer, L.S. and Barzilay, R., 2009,
August. Reinforcement learning for mapping instructions to actions. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP: Volume 1-Volume 1 (pp. 82-90). Association
for Computational Linguistics.

[7] He, J., Chen, J., He, X., Gao, J., Li, L., Deng, L. and Ostendorf, M.,
2015. Deep reinforcement learning with a natural language action space.
arXiv preprint arXiv:1511.04636.

[8] Côté, Marc-Alexandre, et al. ”TextWorld: A Learning Environment for
Text-based Games.” arXiv preprint arXiv:1806.11532 (2018).

[9] Even-Dar, E. and Mansour, Y., 2003. Learning rates for Q-learning.
Journal of Machine Learning Research, 5(Dec), pp.1-25.

[10] Narasimhan, K., Kulkarni, T. and Barzilay, R., 2015. Language under-
standing for text-based games using deep reinforcement learning. arXiv
preprint arXiv:1506.08941.

[11] Gao, X. and Ichise, R., 2017. Adjusting Word Embeddings by Deep
Neural Networks. In ICAART (2) (pp. 398-406).

[12] Wikipedia. (2018). Text-based game. [online] Available at: https://en.
wikipedia.org/wiki/Text-based game [Accessed 28 Jun. 2018].

[13] Narasimhan, K.R., 2017. Grounding natural language with autonomous
interaction (Doctoral dissertation, Massachusetts Institute of Technol-
ogy).

[14] Aytar, Y., Pfaff, T., Budden, D., Paine, T.L., Wang, Z. and de Freitas,
N., 2018. Playing hard exploration games by watching YouTube. arXiv
preprint arXiv:1805.11592.

[15] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J., 2013.
Distributed representations of words and phrases and their composition-
ality. In Advances in neural information processing systems (pp. 3111-
3119).

[16] Gladkova, Anna, Aleksandr Drozd, and Satoshi Matsuoka. ”Analogy-
based detection of morphological and semantic relations with word
embeddings: what works and what doesn’t.” Proceedings of the NAACL
Student Research Workshop. 2016.

[17] Linzen, T., 2016. Issues in evaluating semantic spaces using word
analogies. arXiv preprint arXiv:1606.07736.

[18] Wierstra, D., Schaul, T., Peters, J. and Schmidhuber, J., 2008, June.
Natural evolution strategies. In Evolutionary Computation, 2008. CEC
2008.(IEEE World Congress on Computational Intelligence). IEEE
Congress on (pp. 3381-3387). IEEE.

[19] Schaul, T., 2012, July. Benchmarking separable natural evolution strate-
gies on the noiseless and noisy black-box optimization testbeds. In
Proceedings of the 14th annual conference companion on Genetic and
evolutionary computation (pp. 205-212). ACM.

[20] Schaul, T., Glasmachers, T. and Schmidhuber, J., 2011, July. High di-
mensions and heavy tails for natural evolution strategies. In Proceedings
of the 13th annual conference on Genetic and evolutionary computation
(pp. 845-852). ACM.

[21] Cruz, F., Magg, S., Weber, C. and Wermter, S., 2016. Training agents
with interactive reinforcement learning and contextual affordances. IEEE
Transactions on Cognitive and Developmental Systems, 8(4), pp.271-
284.

[22] Feng, W., Zhuo, H.H. and Kambhampati, S., 2018. Extracting Action
Sequences from Texts Based on Deep Reinforcement Learning. arXiv
preprint arXiv:1803.02632.

[23] Samothrakis, S., Perez-Liebana, D., Lucas, S.M. and Fasli, M., 2015,
August. Neuroevolution for general video game playing. In Computa-
tional Intelligence and Games (CIG), 2015 IEEE Conference on (pp.
200-207). IEEE.

[24] Haroush, M., Zahavy, T., Mankowitz, D.J. and Mannor, S., 2018.
Learning How Not to Act in Text-based Games.

[25] Maaten, L.V.D. and Hinton, G., 2008. Visualizing data using t-SNE.
Journal of machine learning research, 9(Nov), pp.2579-2605.

[26] Ansari, G.A., Chandar, S. and Ravindran, B., 2018. Language Expansion
In Text-Based Games. arXiv preprint arXiv:1805.07274.

[27] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K.
and Zettlemoyer, L., 2018. Deep contextualized word representations.
arXiv preprint arXiv:1802.05365.

https://en.wikipedia.org/wiki/Text-based_game
https://en.wikipedia.org/wiki/Text-based_game

