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Abstract—Monte Carlo Tree Search (MCTS) does not require
any prior knowledge about a game to play, except for its legal
moves and end conditions. Thus, the same MCTS player can be
applied (almost) as it is to a wide variety of games. Accordingly,
MCTS may be used as a touchstone to evaluate artificial players
on different games. In this paper, we propose to use MCTS to
qualitatively evaluate the strength of artificial players as the
minimum number of iterations that MCTS needs to perform
equivalently to the target player. We define this value as the
“MCTS complexity” of the target player. We introduce a bisection
procedure to compute the MCTS complexity of a player and
present experiments to evaluate the proposed approach on three
games: Connect4, Awari, and Othello. Initially, we apply our
approach to compute the MCTS complexity of players imple-
mented using MCTS with a known number of iterations, next to
players using different strategies. Our preliminary results show
that our approach can identify the number of iterations used
by MCTS target players. When applied to players implementing
unknown strategies, it produces results that are coherent with the
underlying players’ strength, assigning higher values of MCTS
complexity to stronger players. Our results also suggest that,
by using iterations to evaluate the strength of players, we may
be able to compare the strength of algorithms that would be
incomparable in practice (e.g. a greedy strategy for Connect4
and alpha-beta pruning for Awari).

I. INTRODUCTION

Artificial players for board games come in a wide vari-
ety of flavors. Some implement basic greedy heuristics like
for example “always do the move that captures the most
pieces” in Mancala games [10]. Other ones apply traditional
strategies taken from the game literature [10], [21], well-
known search algorithms (e.g., A-Star, Iterative Deepening
[15], Monte Carlo Tree Search [2], [6]), or more advanced
approaches (e.g., a combination of Monte Carlo Tree Search
and Deep Neural Networks [24]). These players are usually
evaluated by comparing them against existing strategies in
terms of performance. Published results usually demonstrate
the superiority of one approach over another. The complexity
of the players is typically discussed in terms of the time needed
to perform one move or using a parameter connected to the
algorithmic complexity of the player (e.g., the depth of the
search for A-Star or the number of iterations for Monte Carlo
Tree Search).

Monte Carlo Tree Search (MCTS) [7] is a decision making
algorithm that has been successfully applied to a wide variety
of games [4]. MCTS has several advantages over other well-
known tree search methods. It performs an asymmetric tree
growth that focuses on promising areas of the search space by
visiting interesting nodes more often. MCTS is an anytime al-
gorithm that can be halted at any time to return the current best
estimate. Most importantly, for the goal of this paper, MCTS is
aheuristic and does not require any prior knowledge about the
domain except for its legal moves and end conditions. Thus,
in principle, the same MCTS player can be applied, (almost)
as it is, to a wide variety of games and may be used as a
touchstone to evaluate artificial players on different games.

In this paper, we propose to use Monte Carlo Tree Search to
provide a qualitative evaluation of the strength of an artificial
player (implementing an unknown strategy) as the minimum
number of iterations that MCTS needs to perform equivalently
to such player. Figure 1 delineates a simplified version of
the proposed scenario comprising an MCTS player using m
iterations, a game with perfect information, a target player
we want to evaluate, and a search algorithm. The goal is to
compute the minimum number of iterations m∗ that MCTS
needs to match the performance of the target player. For this
purpose, we first run n matches with the two players and
collect the overall statistics such as the number of wins for
each player, the number of ties, etc. If the statistics show that
MCTS performs better than the target player, it means that
the current number of iterations m is too high and should
be decreased; conversely, if the statistics show that MCTS
performs worse than the target player, the number of iterations
m is too low and should be increased; when the two players
perform equivalently (e.g., they both have the same win ratio
or they tie most of the matches), the search stops and the
current number of iterations is returned. Note that, since
MCTS is stochastic (and the target player could be stochastic
too), the procedure must be repeated several times to obtain
a reliable estimate of m∗ as, for example, the average over
all the runs. The output of the procedure basically provides a
qualitative evaluation of the strength of the target algorithm in
terms of MCTS iterations since, on average, the target player
performs comparably to an MCTS using m∗ iterations. We
name this value, the MCTS complexity of the target algorithm.
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Figure 1: The proposed scenario.

The outcome of the above process is influenced by (i) the
number of matches n that are run to compare the two players,
the higher it is the more reliable the comparison is (as well
as the computation time); (ii) the criterion applied to decide
when two players perform comparably; and (iii) the algorithm
used to update the current number of MCTS iterations based
on the collected statistics.

In this paper, we present the results of a set of experi-
ments we performed to provide a preliminary evaluation of
the proposed approach. In particular, we considered three
games, Connect4, Awari, and Othello. We applied the bisection
method to search for the minimum number of MCTS iterations
required to match the strength of the target player and we
used two criteria to determine whether MCTS and the target
player perform equivalently. The first criterion is based on
the raw difference between the number of wins and thus
defines players equivalence using a hard threshold. The second
one applies True Skill [1] that characterizes players’ skill
as a normal distribution, and computes the quality of the
match as an estimate of its draw probability. Initially, we
apply bisection search to compute the MCTS complexity of
players implemented using MCTS and a known number of
iterations starting the search from given lower bound and
upper bound. Next, we introduce a procedure to compute the
initial bounds and finally apply bisection search to compute the
MCTS complexity of players, available online, using different
strategies. Our results show that our approach can identify the
number of iterations used by MCTS target players and thus
it can accurately evaluate MCTS complexity. When applied
to players implementing unknown strategies, bisection results
are coherent with the underlying complexity of the strategies,
assigning higher values of MCTS complexity to stronger
players. At the same time, by using iterations to evaluate the
strength of players, we suggest we can compare the complexity
of algorithms that would be incomparable in practice (e.g. an
alpha-beta pruning for Connect4 against a greedy player for
Othello).

II. MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) identifies a family of
decision tree search algorithms that has been successfully
applied to a wide variety of board games [2], [6], [20], [25],
card games [8], [9], [22], [26], video games [5], [18], and Gen-
eral Video Game Playing [11], [13], [19]. MCTS iteratively
builds a partial and asymmetric decision tree by performing
several random simulations. The algorithm comprises four
steps: (i) selection, (ii) expansion, (iii) simulation, and (iv)
backpropagation.

Selection: a tree policy is used to descend the current search
tree by selecting the most urgent node to explore until either
a leaf (representing a terminal state) or a not fully expanded
node is reached; the tree policy typically uses the Upper
Confidence Bound for Trees (UCB1 for Trees or UCT) [3],
[14] to descend the child node that maximizes the UCT value
computed as,

UCT (v′) =
Q(v′)

N(v′)
+ c

√
2
lnN(v)

N(v′)
(1)

where v is the parent node, v′ is a child node, N(v) is the
number of times v (the parent of v′) has been visited, N(v′) is
the number of times the child node v′ is visited, Q(v′) is the
total reward of all playouts that passed through v′, and c > 0
is a constant that controls the amount of exploration.

Expansion: if the node does not represent a terminal state,
then one or more child nodes are added to expand the tree. A
child node represents a state reached by applying an available
action to the current state.

Simulation: a simulation is run from the current position in
the tree to evaluate the game outcome by following a default
policy (typically random); this results in a reward computed
according to a reward function.

Backpropagation: the reward received is finally backpropa-
gated to the nodes visited during selection and expansion to
update their statistics.

III. EVALUATING PLAYERS’ STRENGTH WITH MCTS

MCTS does not require any strategic or tactical knowledge
about the domain to make reasonable decisions. In principle,
the same MCTS might be applied to a wide variety of games
with perfect information almost as it is—for example, the
exploration constant might require some tuning for the specific
reward function and domain.

We propose to use MCTS as a touchstone to evaluate the
strength of artificial players, implementing unknown strategies,
in terms of the minimum number of iterations MCTS needs
to perform comparably to such players. Figure 1 depicts the
scenario we propose. To evaluate the target player, we run
n matches between MCTS using m iterations and the target
player. Based on the matches’ statistics, the search algorithm
adapts the number of iterations to find the value of m for which
MCTS and the target player perform equivalently. In this



paper, we implemented the search algorithm using a bisection
procedure that starts with a minimum and a maximum number
of MCTS iterations (min and max). The initial number of
iterations m is computed as the average of min and max. If
the statistics show that the two players performed similarly,
the process stops and the current number of iterations is
returned; if the statistics show that MCTS outperformed the
target player, the search moves to the lower half of the interval
(identified by min and m); conversely, if the statistics show that
the target player outperformed MCTS, the search moves to the
upper half of the interval (identified by m and max). MCTS is
a stochastic algorithm and the target player might be stochastic
too. Accordingly, to obtain a reliable evaluation, we repeat the
bisection process t times and output the value m∗ computed
as the average of m1 . . .mt. We name this value, the MCTS
complexity of the target algorithm. The procedure assumes that
the target player is weaker than MCTS using max iteration, if
this is not the case, the procedure will return values near to
the upper bound max.

A. The Search Algorithm

Algorithm 1 shows the bisection procedure in details. It
takes as input the two players (mcts and target), a minimum
and maximum number of iterations (min and max), and the
number n of matches to perform to compare the players
(line 1). At first, the upper bound and the lower bound for
bisection search are initialized (lines 2-3), the current number
of iterations is set to the average of the two (line 4), and
the end condition is set to false (line 5). The following loop
is repeated until the end condition is met (lines 6-26). The
number of MCTS iterations is assigned (line 7) and n matches
are played between the MCTS and the target player (line 8). If
the match quality has been reached (line 9), the end condition
is set to true otherwise the search boundaries are updated. If
the MCTS player has won more matches (line 13), it means
that the number of iterations used is too high and therefore the
search should continue to the lower half of the search interval
(lines 17-18); if the target player has won more matches, the
number of iterations is too low and the search should continue
to the upper half of the search interval (lines 17-18). If the
two players won the same number of matches, the search
should end.1 Finally, the algorithm checks the updated search
boundaries and if these are are too narrow the search stops
(line 23).

B. Evaluating Match Quality

Bisection stops when either the bounds have become too
narrow (Algorithm 1, line 23) or the two players have reached
a comparable performance (Algorithm 1, line 9). We con-
sidered two measure of match quality (see Algorithm 2)
that we applied to determine whether the players performed
similarly, namely Score Difference and True Skill. The former
computes the absolute difference d between number of wins
of the players and compares it with a percentage θsd of the

1Note that this condition would be captured by the MatchQualityReached
function but we included this extra statement for completeness in the code.

Algorithm 1 Bisection Search

1: function BISECTIONSEARCH(mcts, target, min, max, n)
2: lower ← min
3: upper ← max
4: iterations ← (lower+upper)/2
5: end ← false
6: repeat
7: mcts.iterations ← iterations
8: stats ← PlayGame(mcts, target, n)
9: if MatchQualityReached(stats, min, max) then

10: end ← true
11: else
12: diff ← stats.wins(mcts)-stats.wins(target)
13: if diff>0 then
14: upper ← iterations
15: iterations ← (lower + upper)/2
16: else if diff<0 then
17: lower ← iterations
18: iterations ← (lower + upper)/2
19: else
20: end ← true
21: end if
22: end if
23: if upper-lower≤threshold then
24: end ← true
25: end if
26: until end
27: return lower, upper, iterations, stats
28: end function

initial range (max-min): if d is smaller than θsd(max-min), the
bisection stops. Score Difference provides a hard threshold to
stop the bisection process; accordingly we considered a second
criterion based on a probabilistic estimation of the players’
skill. True Skill [1] is a skill-based ranking system developed
by Microsoft Research. It is a generalization of the ELO rating
system2 used in Chess that can track the uncertainty about
players’ skills. It characterizes a player’s skill as a normal
distribution with mean µ, representing the player’s perceived
skill, and standard deviation σ, representing how uncertain
the system is about the player’s skill µ. True Skill maintains a
belief in every player’s skill using µ and σ: if the uncertainty
is still high, the ranking system does not yet know exactly
the skill of the player; if the uncertainty is small, the ranking
system has a strong belief that the skill of the player is close
to the average skill. By maintaining an uncertainty, True Skill
makes big changes to the skill estimates early on but small
ones after a series of consistent matches has been played.
Given a belief of the players’ strength, True Skill can compute
the match quality as an estimate of the draw probability of the
match, thus the higher it is the more similar the players’ skill
levels.

2https://en.wikipedia.org/wiki/Elo rating system



We performed a set of simulations to compare the two
criteria we adopted to evaluate the players’ match results.
For this purpose, we considered different probability values
for winning and tying a game, simulated 1000 matches, and
evaluated the results using Score Difference and True Skill.
In our experiments, we used the implementation of True
Skill taken from [17]. Figure 2, for each pair of tie and
win probability values, reports (a) the score difference as a
percentage of the number of matches played; (b) the match
quality computed using True Skill. As can be noted, True Skill
maintains a certain degree of uncertainty about its belief in
players’ skills even when players tie almost all the matches.
In fact, True Skill values remains around 0.98 both when the
tie probability is 1.0 (when we are certain that the players
perform equivalently) and when the tie probability is just 0.7
and one player is winning 60% of the matches (when we might
be not so certain that the players perform similarly). At the
same time, when ties are less probable, True Skill appears
to be quite effective at measuring the quality of matches. In
contrast, Score Difference values (Figure 2a) seems to provide
more information in borderline situations even when the tie
probability is rather high. For example, with a tie probability
of 0.8 or 0.9, the Score Difference values of similar winning
rates (e.g., 0.5 and 0.4) are quite different (0.01 and 0.04
respectively). In the same situation, True Skill values are
basically identical. These results suggest that Score Difference
may provide a better measure to compare players’ strength in
games in which tying easily becomes highly probably (e.g.,
Tic Tac Toe)

Algorithm 2 Match Quality Evaluation

1: function MATCHQUALITYREACHED(stats, min, max)
2: if use score difference then
3: d ← abs(stats.wins(mcts)-stats.wins(target))
4: threshold ← θsd abs(max-min)
5: return d≤threshold
6: else
7: return stats.tsquality≥ θts
8: end if
9: end function

IV. VALIDATION WITH MCTS PLAYERS

We performed an initial set of experiments to validate
our approach using players of known MCTS complexity on
three games, Connect4, Awari, and Othello. Awari [16], [23]
(also known as Wari, Owari, Awale, Awele, and Ayo) was
introduced in 1991 by the computer scientists Victor Allis,
Maarten van der Meulen, and H. Jaap van den Herik. It is
a variation of the two-player abstract strategy Mancala board
game Oware or Awele and it is the most widespread Mancala
variant. All the games implemented the same reward function
for MCTS that returns 1 for winning, 0 for losing, and 0.5
for tying; the UCT constant was set to 0.7, and applied the
standard random simulation strategy.

At first, we used bisection search (Algorithm 1) to evaluate
Connect4 players implemented using MCTS with different
number of iterations. The number of matches n was set to
1000; the initial bounds (min and max) were set to 1 and 2500
respectively; the Score Difference threshold was set to 1% of
the initial range (θsd is 0.01) while the True Skill threshold
θts was set to 0.975. For each target player, we run ten trials
and computed the average lower bound, upper bound, and
estimated complexity. Then, we computed the ratio between
these average values and the number of backups used by the
target player. Figure 3 shows the results when using (a) Score
Difference and (b) True Skill; values are averages over ten
runs. The plots report the ratio of (i) the average upper bound
ratio (solid circle markers), (ii) the average lower bound ratio
(white circle markers), and (iii) the final number of backups
(solid lines) with bars showing the standard error. As can
be noted, bisection search using Score Difference (Figure 3a)
accurately evaluates the target players. The ratio between the
average number of backups returned by the search and the
number of backups used by the target player is very close
to one, apart from few exceptions (e.g., 200, 500, and 1400
iterations). The evaluation performed using True Skill is less
accurate (several times the ratio is slightly farther from one but
always below 1.1, that is below 10% of the target number of
iterations) and more noisy (the standard error bars are larger).

We repeated the same experiment using Awari with the
same settings. Figure 4 shows the results when the evaluation
was performed using Score Difference (Figure 4a) and True
Skill (Figure 4b). The plots confirm the results for Connect4.
Quality evaluation based on Score Difference accurately eval-
uates the target players with ratios always close to one and
small standard error values. True Skill results in less accurate
evaluations, the ratio is often slightly larger than one and more
noisy as the larger error bars show.

Finally, we applied bisection search to evaluate target play-
ers on Othello using a 6×6 board. Table I reports the target
number of backups, the initial search interval, and the results
produced by Score Difference and True Skill; values are aver-
ages over ten runs; mean and standard error are reported. As
before, bisection using Score Difference accurately identified
the target number of iterations with an estimated ratio of 1.01
and 1.00 in the two trials. In contrast with previous results,
True Skill produces similarly accurate results.

V. SEARCHING FOR THE INITIAL BOUNDARIES

The bisection procedure assumes that it is possible to
provide a minimum and maximum number of iterations to
bound the search. It also assumes that the estimated value of
MCTS complexity of the target player lies in such an interval.
In the previous experiments, we provided the boundaries to
guarantee such constraints. In the second set of experiments,
we introduced a procedure to compute the initial boundaries
and applied it to target players implemented using MCTS with
a known number of iterations. Then, we applied bisection
search to evaluate the MCTS complexity of the target algo-
rithms using such boundaries.
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Figure 2: Match quality as a function of the tying and winning probabilities using (a) Score Difference and (b) True Skill.

Score Difference True Skill
Target min max Lower Upper Estimated Lower Upper Estimated
1000 1 5000 0.93±0.04 1.11±0.04 1.01±0.02 0.68±0.09 1.27±0.14 0.98±0.03
2000 1 5000 0.97±0.02 1.03±0.03 1.00±0.02 0.90±0.05 1.14±0.03 1.02±0.02

Table I: Bisection search applied to evaluate MCTS players on 6×6 Othello: (a) Score Difference and (b) True Skill; values
are averages over ten runs.

Algorithm 3 shows the procedure to compute the initial
lower and upper bounds for the bisection search. It takes as
input the target player (target), an MCTS player (mcts), the
initial bounds (min and max), and the number of matches used
for comparing the players. At first, the algorithm initializes
the bounds and sets the termination criterion to false (lines
2-4). Then, it compares the players over n matches (line 7); if
the MCTS player wins more matches (line 8), the process
ends and the current bounds are returned. Otherwise, the
bounds are updated by setting the lower bound to the current
upper bound (line 11) and doubling the current upper bound
(line 12). When updating the bounds, we introduce a random
perturbation to increase variation to the search process and
thus to the computed bounds. To obtain a robust evaluation
of the bounds, in the experiments presented in this paper, we
repeated Algorithm 3 ten times and computed the final bounds
as the average over the ten runs. Algorithm 3 increases the
upper bound exponentially and tends to produce wide intervals
when facing competitive players that might lose only to MCTS
players with a high number iterations. Indeed the procedure
might be improved by updating the upper bound with increases
adapted to the MCTS losing rate (the lower it is, the smaller
the increases of the number of iterations).

Algorithm 3 Compute the bounds for bisection search

1: function COMPUTEBOUNDS(mcts, target, min, max, n)
2: upper ← max
3: lower ← min
4: end ← false
5: repeat
6: mcts.iterations ← upper
7: stats ← PlayGame(mcts, target, n)
8: if stats.wins(mcts)≥ stats.wins(target) then
9: end ← true

10: else
11: lower ← upper - Random(0.1×upper)
12: upper ← 2×upper + Random(0.1×upper)
13: end if
14: until not end
15: return lower, upper
16: end function

We applied bisection search to evaluate MCTS players
with 500, 1000, and 2000 iterations with Connect4, Awari,
and Othello on a 6×6 board. Initially, for each game, we
run Algorithm 3 ten times and took the average lower and
upper bound returned by the algorithm as the initial bounds
for the subsequent bisection procedure. For this purpose,
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Figure 3: Bisection search applied to evaluate MCTS players
using different number of iterations on Connect4: (a) Score
Difference; (b) True Skill; values are averages over ten runs.

ComputeBounds started with an initial lower bound (min in
Algorithm 3) of 1, an initial upper bound (min in Algorithm 3)
of 100, and n of 100. Next, we applied the bisection procedure
using the same parameters used in the first set of experiments
for the boundary values computed using the above procedure.
Table II reports the results of the experiments using the mean
and standard error. Column Target reports the number of
iterations; min the computed lower bound; max the computed
upper bound; for Score Difference and True Skill, it also
reports the average lower and upper bounds returned by the
bisection procedure as well as the average estimated MCTS
complexity (columns Lower, Upper, Estimated); all values
are reported as the ratio with respect to the target number
of iterations. Both approaches accurately evaluate the target
players reporting values near to one. In few cases, bisection
underestimates or overestimates the target player reporting like
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Figure 4: Bisection search applied to evaluate MCTS players
using different number of iterations on Awari: (a) Score
Difference; (b) True Skill; values are averages over ten runs.

for instance for Othello 6×6 for 1000 and 2000 iterations using
Score Difference (with values of 0.96±0.02 and 0.97±0.03)
and True Skill (with a value of 1.08±0.06). The analysis
of the intervals generated by the bisection procedure shows
that overstimation and underestimation typically happened
when the average of the current bounds generated a value
of iterations near the target value but the statistics of the
evaluation caused the update toward the wrong side of the
range making the target value unreachable. However, note that
the bisection guided the search toward the correct value so that
the final ratio is still quite near to one.

VI. EVALUATION OF ARTIFICIAL PLAYERS

Finally, we applied our approach to evaluate players im-
plementing different strategies that were available online. We
used the same setup of the previous experiments and applied
the procedure to compute the search boundaries (Algorithm



Score Difference True Skill
Game Target min max Lower Upper Estimated Lower Upper Estimated

Connect4 500 395±21 839±44 0.93±0.04 1.11±0.04 1.01±0.02 0.68±0.09 1.27±0.14 0.98±0.03
Connect4 1000 640±71 1357±71 0.97±0.02 1.03±0.03 1.00±0.02 0.90±0.05 1.14±0.03 1.02±0.02
Connect4 2000 1297±146 2792±312 0.86±0.03 1.12±0.07 0.98±0.03 0.78±0.02 1.16±0.04 0.97±0.02

Awari 500 398±21 850±44 0.97±0.02 1.04±0.02 1.01±0.01 0.87±0.03 1.15±0.04 1.01±0.02
Awari 1000 769±56 1657±122 0.95±0.04 1.13±0.05 1.04±0.01 0.95±0.04 1.13±0.04 1.04±0.03
Awari 2000 1427±154 2994±321 0.93±0.01 1.05±0.03 0.99±0.01 0.79±0.04 1.31±0.07 1.05±0.02

Othello 6×6 500 362±27 801±60 0.99±0.01 1.07±0.04 1.03±0.02 0.87±0.03 1.16±0.08 1.02±0.03
Othello 6×6 1000 722±66 1567±139 0.86±0.05 1.06±0.05 0.96±0.02 0.91±0.06 1.13±0.03 1.02±0.02
Othello 6×6 2000 1518±149 3226±311 0.88±0.04 1.06±0.04 0.97±0.03 0.86±0.06 1.29±0.18 1.08±0.06

Table II: Bisection search applied to evaluate MCTS players on Connect4, Awari, and Othello 6×6 starting from boundaries
computed using Algorithm 3.

Score Difference True Skill
Game Target min max Lower Upper Estimated Lower Upper Estimated

Connect4 Random 1.00 105±35 1.83±0.48 3.83±0.70 2.33±0.56 2.50±0.50 4.00±0.58 2.80±0.49
Connect4 NFriendsFloyd 1.00 105±35 20.83±0.31 23.33±0.76 21.67±0.33 21.00±0.60 22.00±0.60 21.00±0.60
Connect4 MiniMax 1.00 105±35 36.00±11.17 71.50±10.71 53.50±1.61 57.80±3.66 59.40±3.56 58.20±3.57

Awari Random 1.00 105.10±35.14 1.33±0.21 2.67±0.33 1.50±0.22 1.10±0.10 3.70±0.62 2.00±0.37
Awari Divilly 1.00 103.20±34.49 37.00±8.12 60.33±10.14 48.17±2.55 30.80±5.51 62.30±8.28 46.30±2.38
Awari MiniMax 194.60±72.18 417.60±156.03 267.17±12.75 289.83±9.01 278.17±10.20 157.30±19.37 418.90±33.43 288.00±10.47

Othello 6×6 Random 1.00 105.00±35.12 1.17±0.17 2.50±0.34 1.33±0.21 1.10±0.10 3.30±0.30 1.70±0.15
Othello 6×6 Simple 1.00 104.40±34.95 25.00±5.03 34.83±4.30 29.50±1.52 9.10±4.12 52.20±1.87 30.50±1.41

Table III: Bisection search applied to evaluate players implementing different strategies that were available online.

3) first, and the bisection search next (Algorithm 1). MCTS
player parameters were set as in the previous experiments.
For Connect4 we evaluated the basic random player, a player
implementing an intermediate strategy (NFriendsFloyd3), and
a player implementing an alpha-beta pruning using a heuristic
to evaluate partial boards.4 For Awari, we evaluated the basic
random player; the greedy player discussed by Divilly and
O’Riordan [10] which implements a weighted combination of
several known heuristics; an alpha-beta pruning search using
a heuristic to evaluate intermediate states.5 For Othello, we
evaluated the basic random player and a player using a value
function to decide the best next move.

Table III reports the results of the experiments as the mean
over ten runs and the corresponding standard error. In this case,
we report the raw values and not the ratio since we don’t have a
reference value of iterations as in the previous experiments. As
can be noted, Score Difference and True Skill return basically
the same values. In all the evaluations of random players,
the bisection process, both with Score Difference and True
Skill, returned on average 1-3 iterations that is coherent with
the workings of MCTS: with just a couple of iterations, the
selection of the action to perform is basically random.

In Connect4, bisection produced an increasing value of
MCTS complexity as the strength of the strategy increased.
The random strategy corresponds to a value of MCTS com-
plexity around 2-3 iterations; for the NFriendsFloyd strategy,
which is advertised as an intermediate strategy, bisection com-
puted an MCTS complexity of around 21 iterations; finally, for
the alpha-beta pruning player, bisection returned a complexity
of around 53-58 iterations. Also in Awari, bisection produced

3https://archive.codeplex.com/?p=connect4
4http://users.softlab.ntua.gr/∼ttsiod/score4.html
5https://github.com/neelamgehlot/Mancala-Game-Playing-Agent

an increasing value of MCTS complexity coherently with
the strength of the players. It is around 2 for the random
player, around 46-48 for the greedy player developed by
Divilly and O’Riordan [10] which combines six different basic
playing strategies, while for the alpha-beta pruning player,
the returned MCTS complexity is around 288. Similar results
were produced for Othello 6×6. Bisection evaluates the MCTS
complexity of the random player around 2 while, for the player
using a simple value function, bisection returns an MCTS
complexity of around 30.

It is worth noting that by using iterations to evaluate the
strength of players, we can somehow compare algorithms that
are incomparable in practice. For example, Table III shows that
the alpha-beta pruning for Connect4 has a lower complexity
than the alpha-beta pruning for Awari. In fact, the former has
an MCTS complexity of around 21, the latter of around 46-48.

VII. CONCLUSIONS

We introduced the concept of MCTS complexity of an
artificial player as the minimum number of iterations that
a vanilla MCTS needs to perform equivalently to the target
player. We introduced a bisection procedure to compute such
value and two criteria to check when two players perform
similarly, namely, Score Difference and True Skill. The former
provides a hard threshold to stop bisection when the difference
in the number of wins is below a given threshold. The
latter computes the match quality as an estimate of the draw
probability of the match. We evaluated our approach first
by computing the complexity of players implemented using
MCTS with a known number of iterations. Next, we applied
our approach to compute the MCTS complexity of players
implementing different strategies.



The results we presented show that bisection can accurately
identify the number of iterations used in target MCTS players.
They also show that, when applied to players implementing
unknown strategies, our approach produces results that are
coherent with the underlying complexity of the evaluated
strategies assigning higher values of MCTS complexity to
stronger players. Noticeably, by using MCTS iterations to
evaluate the strength of players, we may compare the com-
plexity of algorithms that would be otherwise incomparable
(if not from a pure algorithmic complexity viewpoint) like for
instance a heuristic for Connect4 and alpha-beta pruning for
Awari.

Our approach is limited in several respects. Firstly, it is
computationally very expensive to derive reliable evaluations.
Although bisection partitions the initial range of iteration
values logarithmically, each evaluation requires a substantial
number of matches. Note however that the use of GPU might
help speed up the process in this respect. Secondly, MCTS-
complexity values depends on the parameters of the MCTS
used in the bisection (our touchstone) which also depends
on the reward function used by the games. For instance, if
we were to repeat the same experiments using an optimized
version of MCTS (e.g. using RAVE [12]) or a different reward
function we would probably get different values, although the
ranking of the target algorithms would be probably the same.

Finally, our approach might be extended in principle to
evaluate the MCTS complexity of a game instead of a player.
In this case, we define the MCTS-complexity of a target game
as the minimum number of iterations m∗ such that, any other
MCTS player using a higher number of iterations m would
perform equivalently to the MCTS player using m∗ iterations.
The procedure to compute m∗ works similarly to the procedure
to determine the upper bound for the bisection search.
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