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Abstract—In this paper, we present the use of a so-called Game
Management AI to classify players not just by passively observing
them, but by actively manipulating the game to get the players
to provide data currently missing to achieve the classification.
We call this “Active Probing”. The Game Management AI uses
two sets of rules, one set that contains rules that are intended to
represent the knowledge allowing a classification and one set that
contains rules that indicate which game events can contribute to
triggering conditions used in the first rule set. When a rule of
the first set comes near to being triggered, the event suggested
by an appropriate rule in the second set is then offered to the
player in the game.

We instantiated this use of a Game Management AI to identify
players with a very high interest level for the role playing game
“Realm of Dreams”, a game that we created for this purpose. Our
experimental evaluation showed that using the active probing by
the Game Management AI allows us to identify players in our
targeted class in a quarter of the time that was needed to classify
such players without active probing.

Index Terms—Game analytics, Player modelling, Active prob-
ing, Game Management AI

I. INTRODUCTION

It is essential for game producers to get an idea how players
play and enjoy a game, which includes, for example, how they
use (or not use) particular features of the game. In addition
to traditional methods like test players and focus groups, the
use of game analytics (see [9]) has become very important for
this. Being able to identify different types of players and types
of play (see [13], [15]) allows to also use these classifications
to identify the appropriate types for a new player (or at least
many of them), which then offers various possibilities. For
example, a game can monitor how much a player is enjoy-
ing the game and interfere before the player loses interest.
Also, marketing teams can use player analytics systems to
optimize their monetization techniques. For example, in games
where the main monetization vector are in-app purchases,
optimizations could lead to players purchasing more in-game
items. Alternatively, if the monetization follows a model where
players pay a subscription fee, these optimizations can judge
how likely a player is to burn out and interfere to get the
player to continue the subscription. On top of that, the popular
massive online games usually tend to introduce updates every
once in a while in order to introduce new content and to

balance existing content in order to keep the players happy.
This process is accompanied by increasingly sophisticated
tools that simulate game playing and collect logs of activity
from existing players [1] to make sure that such updates do
not flop. There are already proposals for systems that employ
AI methods like Machine Learning within games to identify
behavioral patterns in players [4]. This includes using datasets
of long-term game-play to customize the player experience for
each person or a group of players [8], [10], [13].

So far, all these approaches are assuming that analytics
is a passive process, just observing the player playing the
game, even in approaches that aim at adjusting the game after
a classification has happened. While this follows generally
accepted data collection processes in many areas, it is an
inherently slow process, as usually games have a lot of choices
in regards to what the players can do, and players choose to
do these actions in a very indirect manner. If an observation
method requires to observe the player in a given situation in
order to classify him or her, so far, nothing can be done but
wait until the player is put in such a situation by chance.

In contrast to this current practice, we propose to speed-
up the classification process by having a so-called Game
Management AI (GMAI) perform active probing. This means
that the GMAI tries to introduce players to key situations as
soon as possible, reducing the element of chance. It also gets
the player into situations which have a high chance to reveal
information that makes a particular classification more likely.

More precisely, our GMAI collects data about the player and
uses two rule sets to help identify when a player’s behavior
puts him or her into a known player class. The first rule set,
the class recognition rules, inspects the collected data about a
player and triggered rules raise the score for a particular class
of players. When such a score is above a given threshold,
the player is considered to belong to this class. In order to
realize the active probing, a second set of rules, the threshold
probing rules, is used to inspect the class recognition rules
and look for rules that are nearly triggered. Once such a rule
is identified, the set of threshold probing rules is checked for
rules that indicate to the GMAI that a specific game scenario
might bring this class recognition rule nearer to triggering and
the GMAI will then present this scenario to the player.

We evaluated this concept within an on-line Role Playing
978-1-7281-1884-0/19/$31.00 ©2019 IEEE



Game (RPG) called “Realm of Dreams” to identify players
that are highly interested in the game. This game was created
specifically for this research, using the Unity3D Game Engine
[12] and a centralized web server component that collected
player analytics and instantiated our GMAI system. Using this
system, we identified 6 players that exhibited higher interest
behavior patterns out of our 37 participants. Out of these
6 players, 4 were in the group that had the GMAI system
which used the active probing technique. These 4 players were
identified to have a high level of interest towards the game in
only a quarter of the time needed to identify the other 2 players
who were only passively observed.

This paper is organized as follows: after this introduction,
in Section II we present how a GMAI can be used for
player classification. In Section III, we present the instantiation
to Realm of Dreams and in Section IV we describe our
evaluation. This is followed by some more related work in
Section V and concluding remarks in Section VI.

II. USING A GMAI FOR PLAYER CLASSIFICATION

The idea of a GMAI is to customize the whole gaming expe-
rience for a particular player using general information about
game playing, about the particular game, the general playing
behavior of players of the game and the playing behavior of
the particular player. The possibilities for customization range
from game world building over just building scenarios to the
creation (and triggering) of in-game events, but also including
events outside of the game world, like sales promotions. A
GMAI can be used to customize the game to provide more fun
to the player (using different definitions of fun), to get players
that do not “fit” the player community to give up on the game,
other purposes and, naturally, combinations of purposes.

The particular customization task we are concerned with
in this paper is the active detection of players in a class that
exhibit high levels of interest in the game. For this task, we use
two sets of rules (created by the game designer). The first set of
rules, the class recognition rule set ClassRec, consists of rules
of the form cond1(P )∧...∧condk(P )→ AddToScore(y, P ),
where P is the player information about a player (who we
will also call P ). Each condi has the form featurei(P ) >
thresholdi, evaluating the current value of featurei for
player P . AddToScore(y, P ) is the action of adding y points
to player P ’s class score ClassScore(P ), which is part of
P ’s information and represents our only class of interest for
our proof of concept system. The second set of rules, the
threshold probing set ThreshProb, has rules of the form
featurei(P ) → CreateEvent(P ), where CreateEvent is
a particular action for the GMAI to have player P encounter
a particular event (or events) in the game as soon as possible.

For each player P , the GMAI collects at least the informa-
tion about all features occurring in rules in ClassRec during
game play whenever the player does something that leads
to a change of the feature value. Additionally, the GMAI
is integrated into the standard control loop of the game in
the following manner: After each meaningful interaction with
the game by player P , the player information, including the

interaction counter, is updated. If the GMAI wants then to
evaluate the rules in ClassRec (which can be determined by
either using a timer or a number of interactions, but should
not be done after every interaction), it does so, updating the
ClassScore value according to every newly triggered rule
in ClassRec. If the ClassScore has reached the threshold
that is considered as indicating that the player should be a
member of the class, the GMAI performs whatever actions
the game designers want to be done in that case. Otherwise, if
the GMAI thinks that it should do active probing, it determines
the feature feat it should do probing on and selects among all
the rules in ThreshProb that have feat as condition the rule
feat→ CreateEvent(P ) that it wants to use. It then initiates
CreateEvent(P ) and finishes the control loop. If there is no
followup to a previously initiated event from ThreshProb and
the GMAI does not want to evaluate the rules in ClassRec or
does not want to do active probing, the game uses the “normal”
control loop given by the game designers.

There are several possibilities how the GMAI can determine
if it wants to do active probing, depending on how much
game designers allow their normal game control loop to be
influenced. The possibilities range from using evaluations of
how near rules in ClassRec are from being triggered to just
simple counters. Also for determining what feature feat to
do active probing on there are different general possibilities.
One possibility, that we used in our system, is to have for
each feature featurei of a rule additionally a weight wi,
which is intended to be the importance of the feature for the
rule. All the weights for a rule add up to 1. We then divide
the current featurei(P )-value by thresholdi and multiply
it by wi, which gives us this feature’s weighted completion
percentage. Adding up these percentages for all features gives
us the completion percentage for a particular rule. Then we can
determine the rule in ClassRec (that has not been triggered,
yet) with the highest completion percentage (which means that
it should be nearest to being triggered) and select the feature
within that rule that has the lowest weighted completion
percentage as feat. Finally, the selection of the rule from
ThreshProb can be done in several ways. One way would
be to allow for each possible feature only one rule with that
feature as condition. Another way is to choose one possible
rules randomly or assigning weights to the rules and select the
rule with highest weight that has not been selected before.

The combination of possibilities for the various decisions
the GMAI has to make is chosen based on a particular
game and the available knowledge for creating rules. We
suggest using rules and the presented modification of the
control loop to allow for easily changing the rules in both
sets, to accommodate new knowledge or new possibilities for
CreateEvent (in new game versions, for example).

III. INSTANTIATION TO REALM OF DREAMS

In this section, we will first describe the game “Realm of
Dreams” we created to allow us to evaluate our active probing
concept for classifying players and the various data we collect
in the game about a particular player. Then we will present



the two rule sets ClassRec and ThreshProb we created for
this game and why we think that these rule sets allow for
fast classification of the level of interest a player will exhibit
through that player’s life-cycle in the game. Finally, we present
our choices from the possibilities for the various decisions in
the game control loop for a player.

A. Realm of Dreams

In Realm of Dreams (available at: www.realmofdreams.ca),
the player controls an avatar in a virtual world. It is a multi-
player game that mimics the popular style of Multi-User
Dungeon (MUD) games from the 80’s and 90’s and takes
inspiration from more modern Role Playing Games (RPG)
such as World of Warcraft, Tibia and Ultima Online. This
avatar travels a virtual world and has the ability to interact
with non-player characters and monsters. There are different
items that the player can use, to both increase the damage
it deals to monsters and reduce damage taken from them.
There are healing poitions and other supporting materials as
well. For our purposes, a key component of the game is our
FakeAd system, which tries to emulate video games where the
player gets an extra benefit from watching a short commercial
advertisement. This system rewards the player with a special
in-game currency, souls, that can be used to give the player an
advantage in the game (or not). This includes better healing
potions, the removal of some death penalties and the ability
to instantly travel to a specific location on the map. However,
in order to collect these souls, the player has to watch a timer
of different lengths (30 to 90 seconds of count down), which
is a very boring and routine task. We assume that time spent
watching the timer, along with some other key statistics, are a
good indicator of a player’s level of interest in the game. This
assumption is often validated in industry and the key features
of the player’s interest can be adjusted easily in our system.

The following are the meaningful interactions between the
player and the game, which is stored in the player information:

• player movement on a single map,
• player killing a monster,
• player interacting with Non-Player Characters (NPC),
• player sending a message in chat,
• player finishing a quest,
• player watching a FakeAd,
• the completion of a few special quests by the player,
• usage of items by the player and if it was successful or

not (certain items have a failure chance - if the item usage
fails, the player depletes the item but does not gain the
beneficial effect),

• movement of players between maps (large areas of the
game world),

• the amount of in-game gold and experience a player has
gathered and

• player deaths.
The number of occurrences of these interactions or the col-
lected amounts (both for the whole game and for a session)
are part of the features. Additionally, we keep track of the
playing time for each session of play by the player in P .

There are two special quests that a player can complete
during game play. Both can be given to the player by the
normal control loop of the game or by our instantiation of the
GMAI. The first special quest asks the player to kill a slightly
more difficult “boss” monster. Doing so awards the player with
a custom look for the player’s avatar - more specifically, the
avatar wears a magic hat on top of the regular appearance,
setting this player apart from the rest of the participants. This
effect lasts only for the current session (i.e. until the player
logs out of the game). The second special quest involves
the player killing a specific type of creatures. The type of
the creature is determined based on the player’s advancement
through the game. Once the player has slain the requested
amount of the correct creatures, the player is rewarded with
the ability to change the game’s welcoming message - the first
message that is automatically sent by the server when a player
logs into the game.

B. Our rules for ClassRec

There is a lot of literature on why people play games.
Our review of previous works helped us identify several main
indicators for when a player is very interested in a game. Some
of these are not only based on the behavior of a player in the
game [5], [6], [16]. Moreover these indicators can be used for
player behavior prediction [13], [14].

For our interest class recognition rules we were inspired
by 6 such indicators, namely: immersion, social involvement,
“busy work”, repeat failure, the amount of time the player
spent in the game and the player’s in-game achievements
(by gold, experience and exploration). These are the guid-
ing principles on which we will instantiate our ClassRec
rules. For every class recognition rule that deals with global
averages, the running average of all players were updated
and calculated with each player’s interaction that affected the
relevant average. For example, when a player sent a message,
that player’s message count would increase and the game
server would update the average amount of messages sent by
all players. This would be in effect for any future calculations
of the relevant rules.

More specifically, we used 500 points as threshold for
ClassScore. Since we are not covering all known indicators
and our rules are only inspired by some indicators, it is
important to note that we do not claim that the current
configuration of rules and parameters is ideal. Our system only
identifies players exhibiting behavior patterns that according
to existing literature correspond to those of players with high
interest in the game. This information could be used by the
gaming industry to both help prevent abusive behavior in
players who might be showing signs of self-destruction or
could be used for marketing purposes and future game design.
In the following, we present the rules in ClassRec grouped
by the 6 indicators mentioned above.

1) Immersion: Players who seek to escape the real world
and get immersed in a virtual adventure are a natural fit
for highly interested players. Such Escapism was shown
to be a very good indicator of the player’s involvement



in the game [16]. The idea is that when players begin to
associate their avatar in a virtual world with themselves,
they are highly engaged with the game and are in the
group of players that we seek to identify. Our rule that
corresponds to immersion uses the fact that the player has
done the special hat quest, indicating that there is a strong
link between player and avatar, and the amount of time
the player was logged in for the current session compared
to the player’s average session length. Formally, the rule
is: CurrentSessionT ime(P ) > AvgSessionT ime(P ) ∧
HasHat(P ) > 0 → AddToScore(300, P ). Note that 300
is a very large addition to the interest score as this is a major
indicator according to [16].

2) Social Involvement: Social relationships are a major part
of gaming. In fact, it has been shown that persons with poor
social relationships in real life tend to gravitate to social inter-
actions in a virtual setting and that these players have a higher
attachment to their virtual avatars [3], [17]. Therefore, for this
indicator, we used the second special quest and checked if
the player has changed the game’s welcome message or not.
This was measured together with the total number of messages
the player has sent and compared to the player’s average
number per session. Formally, the rule has the following form:
PlayerSessionMsgs(P ) > AvgMsgsPerSession(P ) ∧
HasChangedWelcome(P ) > 0 → AddToScore(300, P ).
The first part checks if the player has sent more messages to
the chat than he does on an average session and the second
checks if the player has completed the second special quest and
changed the server’s welcome message. As this rule checks for
the player’s main forms of social interaction, this is another
strong indicator and upon successful triggering of this rule,
300 points were added to the player’s interest score.

3) “Busy Work”: A large part of what sets highly involved
players apart from more casual players is their dependency
on positive reinforcement from the game, even when there
is not much of a challenge to the player [6]. In our game,
players receive positive reinforcement when they kill a monster
and improve their character by gaining experience. We track
the number of creatures killed in a session as well as the
overall difficulty of all creatures killed. To this end, each
time a creature is killed a difficulty score is added to the
player’s information using the formula difficultyToAdd =
CreatureDifficulty − (playerLevel/3). The creature dif-
ficulty was hard coded into the game for each creature
according to the perceived difficulty. As the gap between
the player level and the creature difficulty increased, the
difficulty component of this rule becomes fulfilled faster, based
on the concept of easy challenges and low reward being
common in highly involved players [17]. As such, the full
form of the rule is CreaturesKilledThisSession(P ) > 40∧
CreatureDifficulty(P ) > 40 → AddToScore(200, P ).
The first part of the rule checks that the player has killed
more than the hard-coded threshold for the number of creatures
needed to be killed (40) and the second part of the rule checks
that the total difficulty exceeded the threshold (40) as well.
These thresholds were the same number by coincidence, but

they don’t have to be. As a medium indicator, when this rule
is triggered, we increase that player’s interest score by 200
points.

4) Repeat High Risk Failure: In a similar way to “busy
work”, a player that loses the game multiple times in a row
can indicate a high level of interest. Such players are sucked
into the game and seek the excitement of a very hard challenge,
one that they know they are unlikely to overcome. While
showing that the player is not very skillful at the game,
such behavior in the game could indicate that the player is
very engaged with the game and enjoys taking high-stake
risks within the game’s environment [16]. By tracking the
player deaths, we were looking for sessions that are close
to each other in time (at least an hour from each other)
in which the player died 3 times in a row. As such, if
the player managed to fail 3 times but was not deterred
from continuing the game, we considered the player highly
engaged. The rule has only one feature and is of the form
PlayersDeathInARow(P ) > 2 → AddToScore(100, P ).
This is considered a weak indicator and increases the player
interest score by 100 points.

5) Longer Sessions: One of the features that highly en-
gaged players exhibit is an excessive amount of game time.
This is one of the ways by which such players can be distin-
guished from other more casual players, according to [18]. For
this rule, we compare the player session’s length to the global
session average of all other players to determine if the player
has spent more time playing the game than most other players.
As such, the rule has the form PlayerSessionT ime(P ) >
GlobalAvgSessionT ime() → AddToScore(100, P ). When
this rule is triggered, it is considered a weak indicator and the
player interest score is incremented by 100 points.

6) In-Game Achievements: Finally, the attempts to become
very successful at the game is another potential indicator of
interest [2], [16]. There are 3 rules that measure the player’s
in-game success. As such, we track three per session pieces
of information - how much in-game gold the player has ac-
cumulated, how much experience the player has accumulated
by killing monsters and through how many maps the player
has traveled [2].

The first rule compared in-game gold achievements
and is of the form PlayerSessionGold(P ) >
GlobalAvgSessionGold() → AddToScore(100, P ).
In a similar fashion, the second rule is of the form
PlayerSessionExp(P ) > GlobalAvgSessionExp() →
AddToScore(100, P ), for the player’s experience gain.
Finally, the last rule measures how much exploration
a player has achieved in a single session and has
the form PlayerMapV isitedSession(P ) > 4 →
AddToScore(100, P ), where the threshold of 4 was
selected as most dungeon sets (a reasonable amount of
exploration) were 2 or 3 maps. Each of these rules we
consider a weak indicator and add 100 points to the interest
score.

A summary of all the rule motivation, rule components and
their relative score can be seen in Table I.



TABLE I
SUMMARY TABLE OF THE ClassRec RULES, INCLUDING THE RULE

MOTIVATION AND THE SCORE TO ADD TO THE INTEREST SCORE OF A
PLAYER.

Rule Motivation Rule Components Score
Immersion CurrentSessionTime(P),

AvgSessionTime(P),
HasHat(P)

300

Social Involvement PlayerSessionMsgs(P),
AvgMessagesPerSession(P),
HasChangedWelcome(P)

300

Busy Work CreaturesKilledThisSession(P),
AverageDifficulty(P)

200

Repeated High Risk
Failure

PlayersDeathInARow(P) 100

Longer Sessions PlayerSessionTime(P), Global-
AvgSessionTime()

100

In-Game Achievements
(Gold)

PlayerSessionGold(P), Global-
AvgSessionGold()

100

In-Game Achievements
(Experience)

PlayerSessionExp(P), Global-
AvgSessionExp()

100

In-Game Achievements
(Exploration)

PlayerMapVisitedSession(P) 100

C. Our rules for ThreshProb

For each feature in the interest recognition rules discussed
in the previous section, a game event had to be configured. As
mentioned before, the class recognition rule which is closest
to activation is selected for probing and the feature that is
the most distant from completion is then the one that dictates
which game event is created.

As the scope of our game was limited, some of the game
events were re-used for different threshold probing rules where
they were appropriate. Other game events can be written for
every rule and more work needs to be done to identify the
parameters for the best game events - we have used the
reasoning behind each interest probing indicator to define
some that are sufficiently close. Note that while we created
only one rule for each feature there could be more rules for
each feature. In addition to having the two special quests, we
will use quests that are part of the normal game control loop
as events as often as possible, since this limits the additional
effort needed for active probing (and we expect that this
can be done for many games). This also feels natural for
many players, who should be somewhat familiar with quests
as dynamic missions, based on their experiences with other
modern games. This is important, as the fact that a player
realizes that he or she are being probed could influence the
effectiveness of the system.

The rule CurrentSessionT ime(P ) → GiveT imeQ(P )
indicates that the player has not spent enough time in the
game to make this feature condition true in the recognition
rules and the GMAI should trigger a game event that offers a
time consuming quest to the player. The dynamically created
event GiveT imeQ(P ) encourages the player to stay in the
game by killing a set amount of creatures on the map that the
player is currently located on.

HasHat(P )→ GiveHatQ(P ) is the obvious rule around
the hat, triggering the hat quest if the player has not gotten
the hat, yet.

Next, PlayerSessionMsgs(P ) → TalkNPCQ(P ) gets
the game to offer the player to conduct a dialog with NPCs in
the game. This dialog is story driven, an event that is already
part of the game and increases the number of messages sent
to chat if the player decides to act on it.

Another rule is HasChangedWelcome(P ) →
GiveWelcomeQ(P ). This indicates that the player has not
completed the special quest that allows him or her to change
the welcome message. Therefore the GiveWelcomeQ(P )
event triggers the game to offer this special quest.

The rule CreaturesKilledThisSession(P ) →
CreaturesKillQ(P ), triggers a game event that offers a quest
for the player to kill more creatures, optimized on quantity.
CreatureDifficulty(P ) → CreaturesDiffQ(P ) triggers
a similar event, except this time it is targeting easier creatures
compared to the player level to minimize difficulty (and
therefore maximize increase in CreatureDifficulty(P )).

Another rule is PlayersDeathInARow(P ) →
HardChallenge(P ). This in-game event encourages
the player to explore areas that are considered much too
difficult for the player by offering such a quest (and providing
the means to enable the player to get to this fast), increasing
the likelihood of the player dying, again.

The PlayerSessionT ime(P ) → GiveT imeQ(P ) reuses
the GiveT imeQ event to increase the time the player spends
in the current session (which is unsurprising, given that the
features this rule and the first rule above are targeting are
rather similar). Similarly, the PlayerSessionGold(P ) →
GiveGoldQ(P ) rule uses a game event that sends the player
to kill more creatures or a boss monster - this presents
the player with a quest that results in more gold collected.
The PlayerSessionExp(P ) → GiveExpQ(P ) rule uses an
event meant to increase the player’s gained experience (so the
monster selection is optimized around maximizing experience
gained). Finally, with the PlayerMapV isitedSession(P )→
GiveExploreQ(P ) rule, the game tasks the player with a
quest that will take the player to a new area in the game to
which the player has not traveled yet.

A summary of all the rule components and the events the
GMAI invokes can be seen in Table II.

D. The instantiated GMAI control loop

We have presented a number of options in regard to how
the GMAI can be involved in the control loop of the game in a
previous section. For our instantiation, we introduce a minimal
activation period - a player has to be in the game for at least
that long before the GMAI checks the ClassRec rule set.
This is introduced to give the system some minor amount of
time to decide which rule is actually likely to fire and prevent
rules from being fired based on the first observable action
(which could be just a coincidence, at the very beginning).
As such, not all players are probed by the active learner at
the same time. This random amount of time was between 2
and 5 minutes in our experiments. While the exact overhead
of our GMAI system was not measured, it was negligible and



TABLE II
SUMMARY TABLE OF THE TreshProb RULES AND WHAT GAME EVENTS

ARE INVOKED BY THE GMAI FOR EACH RULE COMPONENT.

Lowest Rule Components Game Event
CurrentSessionTime(P) GiveTimeQ(P), offer the player a

time consuming quest.
HasHat(P) GiveTimeQ(P), GivaHatQ(P), offer

the hat quest to the player
PlayerSessionMsgs(P) TalkNPCQ(P) offer the player to talk

to an NPC for more messages
HasChangedWelcome(P) GiveWelcomeQ(P) offer the wel-

come message quest to the player
CreaturesKilledThisSession(P) CreaturesKillQ(P) offer the player a

quest to kill more easy monsters
CreatureDifficulty(P) CreaturesDiffQ(P) offer the player a

quest to kill more difficult monsters
PlayersDeathInARow(P) HardChallenge(P) offer the player a

very difficult quest
PlayerSessionTime(P) GiveTimeQ(P) offer the player a

very time consuming quest
PlayerSessionGold(P) GiveGoldQ(P) offer the player a lu-

crative quest in terms of gold reward
PlayerSessionExp(P) GiveExpQ(P) offer the player a lu-

crative quest in terms of experience
reward

PlayerMapVisitedSession(P) GiveExploreQ(P) offer the player a
quest that will take the player to a
new area of the game world

allowed the game to continue without noticeable effect for the
player or major resource consumption from the game server.

Other than this modification, the GMAI activates every 15
seconds on the general game loop and evaluates the ClassRec
rule set for every player that is still on-line. This amount of
time was a general balance point between observing these rules
often enough and not taxing the game server with too frequent
updates, but this will vary for other games. A player specific
evaluation also occurs as part of the log-in sequence and the
log-out sequence of the game control loop.

The evaluation of the ThreshProb rule set (the active
probing) happens right after the evaluation of ClassRec.
Based on the latest update of ClassRec, a feature is selected
and a potential game event is executed. There are a few
exceptions to this, however. First, the system checks if there
is an already active game event. An active game event can
expire - in which case it is canceled (with the consequences
communicated to the player) and it is added to a special list
which prevents this event from being activated again during the
current game session. If there is a game event that is currently
active and it has not expired, the active probing stops here and
awaits the completion or the expiration of the event. If there
were no active events, a feature is selected as is described
in the general method, unless they have unsuccessfully been
probed prior to this, in which case the next best feature is
selected. For our rules, all features had the same wi, so all
rules with a single feature had the weight as 1 and the rules
with 2 features had the weight as 0.5 for both features. Finally,
if the evaluation was the same for 2 rules or more, the tie was
broken randomly.

IV. EVALUATION

To evaluate our GMAI for player classification based on
player interest we recruited players via an online recruiting
site (www.realmofdreams.ca), which we published on online
gaming forums and in Facebook ads that targeted both genders
and an age group of 18 to 65+ located in the major English
speaking countries who showed interest in computer games.
Each player creating an account for our game was randomly
put into one of two groups: the “active” group that played the
game using our GMAI as described in the last section and the
“passive” group that played a game variant where the active
probing via the rule set ThreshProb was disabled. The data
we discuss in the following was collected over 31 hours of
collective game play from all the players. There were 37 active
players in this experiment. A player was considered active if
he or she created an account and spent at least 10 minutes
playing the game. There were 20 players in the passive group
and 17 players in the active group.

The first data of interest is naturally if there were players
identified as having a high level of interest and when that
identification point happened. As we hoped, the active probing
by the GMAI was able to expedite the identification of highly
engaged players, and therefore we had more highly engaged
players in the active group than in the passive group for the
same amount of testing time. We have identified a total of 6
such players, 4 from the active group and 2 from the passive
group, as shown in Table III. It is interesting to note that these
6 players are responsible for 15 hours of game play – almost
half of the total amount played.

In this section, players are identified just by an ID number
(for privacy reasons) and the group they were in is identified
by P for the passive group or by A for the active group.
In Table III we compare all 6 highly engaged players and
how long (in-game seconds) it took for them to reach the
identification threshold we defined (column “Identification
Time”).

TABLE III
TIME STATISTICS (IN SECONDS) ON HIGHLY ENGAGED PLAYERS.

Player First Probe Identification Time Time Played
A1 190 3268 15427
A2 242 2342 5065
A3 212 1074 3671
A4 162 2258 6182
P1 315 10695 13896
P2 205 8212 8579

As Table III clearly show, players from the active group
exceeded the identification threshold much faster. In fact, the
average time it took to identify players from this group was
2,235.5 seconds (37.25 minutes), compared to 9,452.5 seconds
(157.5 minutes) for the passive group. This means that the
GMAI with active probing needed only a quarter of the time
than the game version without active probing!

The other columns of Table III provide a closer look at the
6 players identified. Since active probing begins only some



random playing time after a player first logs into the game, the
table lists under the column First Probe when active probing
became enabled for a player, respectively when the GMAI
first performed a probe in the game. For passive players (who
were not actively probed), we kept a log of when such a probe
would have happened, had they been in the active group.

As can be seen, this had no influence on the results. The last
column shows that for all the players in the active group the
highly interested player classification took place before they
have played half of their total time, whereas without the active
probing it took the vast majority of a player’s total game-play
time to classify the player.

TABLE IV
COMPARISON BETWEEN PLAYERS THAT WERE CLASSIFIED AS HIGHLY

ENGAGED AND PLAYERS WHO WERE CLASSIFIED AS MORE CASUAL BASED
ON MAJOR GAME METRICS AVERAGES.

Highly Engaged? Score Gold Moves Kills Souls
Yes 1483 1230 4251 535 2682
No 53 48 566 35 145

Fig. 1. Graphical representation of Table IV

Table IV compares the player groups that were classified as
highly engaged and those that were not on some major game
metrics (averaging over all players in each group). Figure 1
makes the trend even clearer: among the players that were
classified as highly interested in the game, there was a higher
average interest score, higher average total gold earned, they
have moved almost 8 times as much as their counterparts and
killed 500 monsters more on average. This is not surprising,
as players that show interest in the game would likely play
the game more. Finally, players that were classified as highly
interested have used the (very boring) FakeAd system 18 times
more on average!

Table V expends on the comparison of the player groups that
were classified as highly engaged and those that were not, by
comparing the key game analytics events for those two groups.
We compare the following between the two groups to show
that indeed the groups are very distinct in their behaviors:

• Average total time played for each group, measured in
seconds for each player.

• Average total experience gained in-game by each group.

TABLE V
COMPARISON BETWEEN PLAYERS THAT WERE CLASSIFIED AS HIGHLY

ENGAGED AND PLAYERS WHO WERE CLASSIFIED AS MORE CASUAL BASED
ON MAJOR GAME METRICS AVERAGES.

Metric (Average) Highly Interested Players Other Players
Time Played (s) 8214.3 1597.2

Experience Gained 356491.3 387.1
Number of Sessions 7.6 2

Player Movement 3793 516.5
Creatures Killed 463.8 30.5
Shop Sessions 42 1.6

Private Messages 8 1.2
Public Messages 38.8 2.6

Quests Completed 13 6
Fake Ads Watched 19 0.6

Souls Collected 2350 75
Soul Items Purchased 27.6 0.3

Bosses Killed 2.1 0.03
Maps Area Traveled 21.3 1.7

• The average number of sessions players in each group
played.

• The average number of movement commands sent to the
server from players in each of the groups.

• The average number of creatures killed by players from
each group.

• The average number of times a player interacted with an
in-game shopkeeper. This event is required for a player
to buy and sell equipment in the game, both using gold
and souls.

• The average number of public and private messages sent
by players from each of the groups. Public messages are
messages that were sent in the general chat, which every
other online player can see. Private messages are ones
directed to NPC or other players and only the given player
sees them.

• The average number of quests completed by players in
both groups.

• The average number of Fake Ads watched by players in
both groups.

• The average reward of Souls for Fake Ads by players in
both groups.

• The average number of redeemed benefits in the form
of purchases of items by players in both groups. These
ranged from stronger healing potions to teleport scrolls
and blessings that temporally removed death penalties.

• The average number of boss monsters killed by players in
both groups. These monsters are farther in the dungeons
and require longer playing sessions to reach, as well as
have a higher difficulty level.

• The average number of maps traveled by players in both
groups. Each map has connection points to other maps,
which players must reach in order to travel deeper into
the dungeon or back to town. This category of events
represents how far and how often players traveled in our
game.

As can be clearly seen from Table V, Highly Interested
Players highly exceed the other players on these core game



metrics. This is not surprising, as these metrics were chosen
to measure core game activities - and highly active players are
likely to be highly interested in the game. This validates that
the players our system classified as highly interested in the
game are indeed so, regardless of active probing.

Together, Table V and Table IV show that what our system
was classifying was indeed two separate groups of behaviors,
where one group is clearly more engaged in the game than
the other. This classification is clearly distinct and players
are usually quite obviously placed in one group or the other.
Finally, as Table III shows, the amount of time to find the
classified players as highly engaged was much shorter in the
active probing group. This fulfills the initial goal of the active
probing - to reduce the time of data collection to achieve this
player classification, so that the benefits of knowing a player
is highly interested in the game could be acted upon earlier by
game producers, maximizing player conversion rates, monetiz-
ing and deriving game design decisions as quickly as possible.

V. RELATED WORK

There are three related areas of work to our research.
The first area of work that has seen some attention from
researchers dealt with customizing the game experience for
different players. This topic has been widely explored and
covered areas such as adjusting the difficulty of the game,
generating content based on player actions and using an AI
to direct the flow of the game on the fly [8], [10], [13].
A special note should be made when comparing our GMAI
system to ”Experience Managers” or ”AI Directors” as in the
work of [7], [11]. While both systems use AI techniques to
interact with the player and modify the game environment,
a core difference is the motivation of doing so. In classic
drama and experience management, the idea is to serve a
different game that would be considered “fun” for the player.
In the GMAI approach, the core functionality is to identify
as fast as possible if a player falls into a stereotype class that
the developers and publishers of the game have defined as
lucrative or at high risk. While similar techniques can be used,
the two problems are very different.

The second area covers the psychology of gamers. There
is a lot of work on modelling the gaming motivations of
players and why players even play games to begin with, for
example [2], [16]. Finally, researchers have already tried to
use this knowledge to build systems that datamine information
about the user [13], [14]. While our research also uses game
analytics, our inclusion of active probing has not been applied
in any of these areas. It would be interesting to see how more
established analytics frameworks could be enhanced using this
active probing approach by a Game Management AI.

VI. CONCLUSIONS AND FUTURE WORK

We presented the idea to add to the use of game analytics to
identify the class of a player (in our case the class of players
that show signs of being highly engaged in playing a specific
game) the idea of not relying on just observing game play but
also actively probing the player for signs of interest. The later

is achieved by using a Game Management AI, an AI system
that modifies the game according to general knowledge about
games, the particular game, behavior indicating high involve-
ment of the player and other player related observations.

In our experimental evaluation, we identified signs of very
high levels of interest with active probing in a quarter of
the time without active probing. These players were clearly
exhibiting a different pattern of behavior, and our shorter
discovery time enhances both game developers’ and marketing
teams’ ability to identify these players sooner. This either
influences their behavior by smart game design that is tailored
for them or promotes player interest with limited offers tar-
geted at these highly involved individuals. Future work should
look into creating more ideas for rules for the GMAI (both
for the indicators we used and for additional indicators in the
literature) for highly interested players but also other player
classes of interest and, naturally, into applying our ideas to
other games and game genres. It would be interesting to see
how a more mature framework for game analytics could be
improved when using active probing and managed by GMAI.
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