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Abstract—With the advent of the fighting game AI competition,
there has been recent interest in two-player fighting games.
Monte-Carlo Tree-Search approaches currently dominate the
competition, but it is unclear if this is the best approach for
all fighting games. In this paper we study the design of two-
player fighting games and the consequences of the game design
on the types of AI that should be used for playing the game, as
well as formally define the state space that fighting games are
based on. Additionally, we also characterize how AI can solve the
game given a simultaneous action game model, to understand the
characteristics of the solved AI and the impact it has on game
design.

I. INTRODUCTION

In the fighting game space, there are a few areas of interest
that can be addressed, such as creating an AI that will beat
any human or computer opponent, creating an AI that is
interesting for humans to play against, and scaling the skill
of an AI with the skill of a player. Recent work in Fighting
Game AI has focused on building strong AI players [1-12]
which will beat any opponent, and the current competition
has a component which focuses on how to beat opponents as
quickly as possible [34]. This raises the question of what it
would mean to solve a fighting game, or to build a perfect
fighting game AI. The definition of a perfect player depends
critically on the definition of the game being played. However,
current literature, to our knowledge, does not contain a precise
definition of a fighting game, meaning that the notion of
building a perfect AI for such games is ill-defined.

Thus, the focus of this paper is threefold. First, the paper
builds a broad definition of the state space of a fighting
game based on the cross product of finite state machines
that determine the possible actions for each player at each
stage of the game. Because players have the potential to take
actions simultaneously, there are then information sets defined
over these states. Next, the paper shows how a game can be
solved via retrograde analysis and using Nash equilibria to
determine optimal play over the information sets. Finally, the
paper builds an optimal strategy for a small fighting AI game
and characterizes the solution to the game. Even in a simple
game the optimal strategy is complex enough to be non-trivial,
such that simple strategies will not perform well against the

optimal AI. This work opens the door for deeper study of
both optimal and suboptimal play, as well as options related
to game design, where the impact of design choices in a game
can be studied.

II. RELATED WORK

A variety of approaches have been used for fighting game AI
in both industry and academia. One approach in industry has
game AI being built using N-grams as a prediction algorithm
to help the AI become better at playing the game [30].
Another common technique is using decision trees to model
AI behavior [30]. This creates a rule set with which an agent
can react to decisions that a player makes. The game designers
then create interesting decision trees for every enemy and boss
that they want to implement in the game. In Super Smash Bros
4 and Super Smash Bros Ultimate, Nintendo implemented
a system where a toy called an Amiibo is trained to play
the game. While Nintendo has not officially released the
algorithms that these Amiibo are based on, fans have worked
out a probable algorithm based on extensive testing. There is
an underlying decision tree which governs specific behaviors
that would want to be executed under all circumstances, and
a learnable section where the AI will learn to favor specific
moves over other moves [35]. The probability that a particular
action should be used is updated over time in the learnable
section to reflect the individual play style of the opponents
that the Amiibo plays against. These Amiibos show that a
machine learning model can also be effective in learning to
play a fighting game, as opposed to just using rule-based AI.

In academia, there are several algorithm classes that have
been implemented on fighting game platforms in order to
design fighting game AI. At the Conference on Games, there
is an annual competition hosted by Ritsumeikan University
using a platform called Fighting ICE. In this competition,
the AI is playing a fast-paced game where it has a reaction
speed of 15 frames at 60 frames per second, and is playing
other AI using different strategies to determine a winner with
a round-robin tournament. Early work attempted to improve
on the existing rule-based AI that are common in published
games by implementing a prediction algorithm, K-Nearest
Neighbors [1,2,3,4]. These predictions assumed that there is
one dominant move at every state in the state space, and
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aim to predict that single move. Hierarchical Task Networks
were also added to the existing rule-based AI as a way of
implementing prediction, but was unable to plan effectively
[25]. This work was abandoned in favor of Monte Carlo Tree
Search (MCTS) algorithms which have consistently placed in
the top 3 for the competition [5,6,7,8,9,10]. As such, there
has been other research to improve this model by combining
it with existing algorithms. Genetic algorithms [11], Action
tables [12], and Hierarchical Reinforcement Learning [13]
have all been combined with MCTS in attempts to improve on
the original algorithm. MCTS works by searching a tree for a
set period of time, and returning either the correct answer or
the best answer found so far. This algorithm has been validated
experimentally to perform well through competing against
other AI, but there has been no published work to understand
why this algorithm is effective. Another type of algorithm
that has been implemented is a multi-policy one, where the
rules of the agent is designed to be switched based off of
the state parameters [16,17]. These types of algorithms rely
on dynamic scripting [23,24] to learn the optimal state with
which to execute each individual policy. More complicated
algorithms such as genetic algorithms [19], neural networks
[20,21,22], and hierarchical reward architecture [26] have all
been implemented on the fighting ICE framework and have
learned strategies that are stronger than the ”default” rule-
based AI.

Other research has been done using AI-TEM framework,
which is a Game Boy Emulator that can play a variety of
games. The AI reads the components of the chosen fighting
game in order to make informed decisions. An agent was
trained by learning how a human would play a game [14],
in an attempt to learn a viable strategy. A neural network was
also trained using human play data [15] on a different game, or
the human play data was used to create a finite state machine
(FSM) that can be plays to a rule based AI.

III. FIGHTING GAME DESIGN

In its simplest form, all fighting games have these three
basic design elements: Timing, Spacing, and Effectiveness.
Each of these design elements are parameterized to make up
the overall design of the game.
• Timing is the duration attributed to the actions that can be

executed in the game. This is split into a few categories:
lead time, attack duration, lag time, and input time. The
input time is the amount of time required for a player
to input a move, which is generally shorter than the
other timings. Lead time is the time before the attack
is executed. The attack duration is the amount of time
that an attack has damaging potential. Lag time is the
amount of time after a move has been executed that a
player is unable to input another move.

• Spacing is the distances that are important in the game.
Both moves and characters have spacing. Each character
has two different dimensions that are important: the
hurtbox and the hitbox [54]. The hurtbox is the area
that the opponent can attack without taking damage, and

the hit box is the area during an attack that can inflict
damage to the opponent. Move spacing can be split into
two categories: The distance in which a particular action
will hit an opposing character, and the area of its hitbox.
Similarly, the character spacing can be split into the area
of its hurtbox and it’s individual x and y coordinates.

• Effectiveness is the performance of a given action. Usu-
ally this is the amount of damage assigned to an action,
but it can also be affected by its relation to other moves.
Suppose there is a block mechanic in the game. If player
one blocks and player two attacks, player two’s move
can be partially or fully blocked, which decreases the
effectiveness of the move.

A. Game Play Mechanics

This paper will analyze the mechanics and dynamics from a
Mechanics-Dynamics-Aesthetics (MDA) perspective [31]. The
mechanics of any fighting game can be modeled by a (FSM)
which determines the outcomes of a players controls for a
given state. Each FSM f has a time t associated with it, and
list of available actions that the agent can take m1...mk, where
k is finite. This FSM has a starting state f0 where the player
is idle, as shown in Figure 1. When a player selects an action
mi, i ∈ {1...k}, the state of the machine transitions to the
start of the chosen move, with a lead time of tlead, continues
to the action which has an attack duration of ta, and ends
with lag time tlag before returning to idle. Because of how
the FSM transitions, once the player has chosen a move, that
move typically must be executed to completion before another
move can be attempted.

Fig. 1. FSA that governs the players actions

Each player has an individual FSM that is controlling the
state in which that player exists. By combining the two FSM,
we can reach a state sg ∈ FSMP1

× FSMP2
. For the full

state of the game, sg also has attributes a1...an, where n is
finite, of the current state such as the health and the spacing
of the individual players, which will indicate whether an
action does damage against the opposing player. If player one
successfully attacks player two while player two is not at an
idle state, then the FSM for player two will automatically
either transition to idle or to lag time, preventing it from
executing the remaining part of the machine.

Each player has an individual FSM that is controlling the
state in which that player exists. By combining the two FSM,
we can reach a state sg ∈ FSMP1

× FSMP2. For the
full state of the game, sg also has the attributes a1...an of
the current state such as the health and the spacing of the
individual players, which will indicate whether an action does
damage against the opposing player. This state sg transitions to



the next state s′g through both the action of player one and the
action of player 2. This transition is deterministic and results
in a unique time, location, and states for each attribute, which
is determined by the outcome of the interaction of the actions
that each player used. If player one successfully attacks player
two while player two is not at an idle state, then the FSM for
player two will automatically either transition idle or to lag
time, preventing it from executing the remaining part of the
machine.

B. Game Play Dynamics

Assume both player one and player two have one attack,
m1, with lead time tlead = k1, and their spacing is such that
if either player executes the move, they will do damage to
their opponent. If player one is in the idle state and player two
chooses to execute m1, then the attack m1 will be successful
and player one will take damage. If both players are in idle, the
player that executes m1 first will do damage. In this situation,
whichever player can execute the action first will win.

However, fighting games usually have more than one move,
with a variety of lead times. Assume that player one and player
two both have action m1, but now also have action m2 with
lead time tlead = k2, where k1 < k2. If player one were
to execute m2, then there is a period of time, k2 − k1, where
player two can execute m1 and counter m2. Using this model,
the agent would simply have to wait for the opponent to select
a move, and then respond accordingly.

To simplify the game dynamics, assume that the FSM has
no lead or lag time, so that there is a single state with which
the FSM can transition to from idle. Additionally, restrict the
timing of the game such that each player has to execute the
game, so then it becomes purely a simultaneous move game.
This can be modeled as Rock Paper Scissors (RPS) because it
shares the quality of what fighting game expert David Sirlin
calls ”double-blind decisions” [28]. Double-blind decisions are
created in a situation where both players are making a decision
at the same time, and both of their decisions are revealed
at the same time. Double-blind decisions, Sirlin argues, fully
capture the essence of fighting games because at the moment
a player chooses a move, they do not know exactly what the
opponent is doing due to the fast-paced nature of the game.
The opponent’s move can be modeled using information sets.
An information set is the set of all the states that cannot be
distinguished by a player because the full state of its opponent
is unknown, and a player must make the same action in every
state in an information set. Figure 2 shows a game play tree
which creates an information set. The root is the state of player
one, and the edges are the different actions available to player
one, punch, kick, or idle, which can be taken from that state.
Each child of the root represent the state of player two, where
player two can also execute actions punch, kick, or idle at
that state. Once both players have selected a move, a reward
is assigned at a depth of two, and the reward is dependent on
both the action from player one and the action from player
two. The information set is the set of all nodes at depth one,
and is outlined by the box in the figure. This set represents the

unknown action of player one when player two must select an
action.

Fig. 2. Information set created by the simultaneous move model

A simultaneous move game can be modeled as a matrix
game which maps the n actions {a1, a2, ..., an} of each
individual players to their rewards ri. Each player has its own
reward matrix M = n × n, which gives the instantaneous
reward rij of player one taking action i and player two taking
action j at Mij . The payoff for a given player Rk, k ∈ {1, 2},
is the total instantaneous reward accumulated by playing some
strategy. The optimal policy π1 of player one is a policy that
maximizes the payoff of player one given all possible player
two strategies. However, player two also has an optimal policy
it is trying to execute, so player one wants to minimize the
reward that player two gains simultaneously. Thus the optimal
policy for player one can be defined as maxR1

minR2

∑
rij .

RPS can be modeled as a matrix game M1 by assigning values
to the outcomes of player one, as shown in Table 1. If the result
of an action is a win, 1 is assigned. If the result of an action
is a loss then -1 is assigned. If the result of an action is a
tie then 0 is assigned. If the reward assigned for some set of
actions ai and aj for player two is the negative value of the
reward of the reward assigned for the same set for player one,
then it is a zero sum matrix game. In that case, the reward
matrix for player two is M2 = −M1.

P2
Rock

P2
Paper

P2
Scissors

P1
Rock 0 -1 1

P1
Paper 1 0 -1

P1
Scissors -1 1 0

TABLE I
REWARD MATRIX FOR PLAYER 1 IN ROCK PAPER SCISSORS

By replacing the moves of RPS with moves from a fighting
game, a similar reward matrix can be generated. Let move
a and move b be attacking moves, which have different
effectiveness based on the opponent’s move. Move a will
inflict damage against a block, but not against move b. Move b
will not inflict damage against a block, but will against move a.
Figure 3 shows the relationship between these moves, where
the arrow pointing to another move indicates that the move
will ”win” and inflict damage against that move.

If the winner of the game is determined only by one action,
then the factors that influence whether a player wins are the



Fig. 3. Effectiveness of moves A, B, and Block in relation to each other

spacing between the two players and the effectiveness of the
move. If the spacing is such that the two players are out
of attack distance, then the entire reward matrix would be
zero. However, if the spacing between the two players is such
that they are within attack distance of each other, then the
moves have the possibility of doing damage and generating an
interesting reward matrix. The diagonal of this matrix is zero
because both players would successfully execute the move, in
which case the reward would be 1 + -1 = 0.

A zero sum payoff matrix can be solved using linear
programming which finds the policies π1 and π2, for player
one and player two respectively. These policies are the set of
probabilities with which each move in the game should be
used, which forms the strategy for each player. An optimal
strategy for a player is one that maximizes its own payoff
and minimizes its opponent payoff. In practice, this means
that the player cannot unilaterally change their policy to gain
more reward, provided that their opponent does not change
their strategy. If both players are playing with their optimal
policies, it is a Nash Equilibrium. Using the rock paper scissors
analogy, if both players are attempting to play optimally, the
optimal strategy for player one is to use each move 1/3 of the
time, and the optimal strategy for player two is to use each
move 1/3 of the time.

Timing still needs to be considered in the fighting game
model. Time is not infinite, because there is a time limit
imposed on the game itself. Thus, there are two ending
conditions for a match, when the timer reaches zero or if
one of the player’s health becomes 0. If the player’s health
becomes 0, we can introduce a higher reward value for that
move, which incentivizes the agent to win the game. For every
state s, each time step has its own reward matrix, and the
individual reward matrices for each state are linked through
time. The time in which that state has a higher reward has an
effect on the future reward matrices, because that high reward
is propagated through all future times, as shown in Figure
4. The value in red at time 0 is the initially high reward, and
gets propagated to time 1. At the final reward matrix at time t,
the final reward is still affected by the initial high reward. The
rewards in the matrix are then influenced both by the positions
of the players, and the rewards of the previous matrices.

C. Game Balance

Balancing the game is adjusting the different game play
mechanics such that they interact in a way that produces the

Fig. 4. Illustration of reward being propagated through time

desired outcomes. For fighting games, usually the goal is to
prevent a dominating character or strategy from appearing.
This can be difficult because there is an inherent level of
uncertainty integrated into the gameplay mechanics. While a
player is playing the game, they do not know which move
the opponent will pick next, which makes the player have to
predict what the opponent’s move will be. Sirlin describes the
ability to predict the opponent’s next move as ”Yomi” [28,29].
When the opponent’s move is uncertain, the player engages in
Yomi because they are forced to make their best guess on what
move the opponent will make, and then respond appropriately
given that prediction. Sirlin argues that using a rock paper
scissors like mechanic for the core of action resolution is the
optimal way to balance fighting games, because it forces Yomi
interactions and prevents any single move from becoming
dominant.

Aside from properly balancing the individual game mechan-
ics, fighting games also need to balance the level of skill. Each
move is assigned a certain number of inputs that the player
must make in the correct order in order to execute that move.
These can be simple - such as simply pressing the A button
- to extremely complex - such as quarter circle right, quarter
circle right, A button, B button. This skill affects the game play
because a higher difficulty level would create a higher chance
of the human incorrectly inputting the move, which would
trigger a random move being executed. A computer has a the
ability to correctly input any move at any state, while a human
will always have some probability of incorrectly inputting a
move.

IV. SOLVING A FIGHTING GAME

An analysis of how MCTS performs in RPS by Shafiei
[33] demonstrated it produces suboptimal play because it
cannot randomize correctly for a RPS type of game play
model. In a simultaneous move fighting game, the time limit
ending condition allows for retrograde analysis to be used to
work backwards from the end of the game to the start state.
Bellman showed that this technique can be applied to chess
and checkers [32] using minimax trees where the max or the
min is taken at each state and propagated through the tree.
With imperfect information at each state, we instead compute
the Nash Equilibrium at each state and propagate the expected
value of the Nash Equilibrium. This approach is based on work
done by Littman and Hu, which applied reinforcement learning
algorithms to markov games to create a nash equillibrium
[36,37].



Using a retrograde analysis allows for a quick convergence
of the state space. Without it, there would be a need for
multiple value-iteration passes to propagate the correct values,
which is more computationally expensive. These information
sets that appear as matrix games for each state in the retrograde
analysis can be solved using linear programming to find the
optimal policy and create a Nash Equilibrium.

A. Rumble Fish

The fighting game chosen for the computational model is
a game called Rumble Fish, similar to Street Fighter, and is
also the game that is used in the Fighting ICE competition. It
takes in eight directional inputs and two buttons, which can be
executed in sequence to produce moves. These moves can then
be strung together into combos to deal more damage. While
playing, the character can build up mana, which allows them
to execute stronger moves such as projectiles that cost mana.

The game was simplified in several ways to solve the game
quickly and understand the impact of the game and solver
design on the optimal strategy. Only one character was chosen,
so that the same character would be playing against itself. This
was to eliminate any potential tier differences between charac-
ters, where one character could have dominating features and
could always win the game. The width of the available space
was also reduced, and the jumping and mana mechanics were
eliminated. Only five moves were chosen to begin with:
• Move Forward: Move towards the other player by 25

pixels
• Move Backward: Move away from the other player by

120 pixels
• Punch: A short range attack with a damage of 5
• Kick: A long range attack with a damage of 10
• Block: A block will only affect the kick, which reduces

the given damage to 0. The block is ineffective against
punches and the player will still take 5 damage when
punched

The block was modified to introduce an RPS mechanic.
Otherwise, the kick becomes the dominating strategy because
it has the longest reach and the highest damage. The health
was also restricted to be 20, and all distances between 0 and
170 pixels were examined. The maximum distance of 170
was chosen because the kick has a range of 140 pixels. All
distances larger than 170 are treated as the state 170 because
if the players are out of attack distance and moving forward
does not bring you into attack range, it can be treated in the
same way. If a punch or a kick is successful, the opposing
player will be pushed back. However, if the opposing player
was blocking then they will not move. The length of the game
was not fixed, but the retrograde procedure in the next section
was run backwards until the policy converged.

B. Retrograde Analysis

Retrograde analysis is more efficient than forward search for
this state space. Time starts at the end of the match, and then
runs backwards to the start of the match. The flow through
for this algorithm is shown in Figure 5. Moves Forward Walk,

Fig. 5. The flow through for the modified retrograde analysis algorithm when
applied to fighting games

Back Step, Punch, Kick, and Block have been abbreviated
”fw”, ”bs”, ”p”, ”k”, and ”b” respectively. This figure shows
the payoff matrix for player one for any given state s, where
the values at each index i, j is the value of the state at the
previous time step when actions ai and aj are chosen. When
the time is zero, the box on the left indicates the the value of
the state is the difference in health for player 1 and player 2.
When the time is not zero, the value of the state is calculated
differently. The first down arrow shows that the policy for
player one is determined, which is then used to find the
expected value of that state. This new state value then feeds
back into the payoff matrix for the next state. A more precise
description of the approach is described below.

Each time step t is one frame backwards in time and the
analysis is run until the beginning of the match is reached. At
time t = 0, the value v0(s) of each state s ∈ S was initialized
to be the difference in health from player one to player two.
Each possible health value for player one and player two were
considered, to account for the situation where time runs out.
If the state s was a winning state for player one, meaning that
player two’s health is zero and player one’s health is nonzero,
then the value of the state was increased by 100 because those
are the most desirable states for player one to be in. The reward
for losing is not decreased by 100, in order to encourage the
agent to continue attacking even if it is at low health.

To calculate the value of state s at time t > 0, a 5x5
reward matrix is created where player one is represented by
the rows and player two is represented by the columns. All of
the rewards assigned to each outcome is the reward for player
one. The rewards for player two are the negative value of
each reward, which can be calculated without creating another
matrix. Given a set of five actions A = {Forward Walk, Back
Step, Punch, Kick, Block}, each row i and each column j is a
selection a ∈ A, where ai is the action for player one and aj is
the action for player two. The next state s′ is the state reached
by executing actions ai and aj at state s. The intersection i
x j is the reward of the moves ai and aj that were chosen at
state s, which is the value of the state vt−1(s′) . This matrix
is then solved using linear programming to produce π1 and



π2, which are the policies of player one and player two. Each
policy represents the probabilities that each action in a ∈ A
should be executed for state s at Nash Equilibrium. The value
of state s is the expected value of that state calculated as
follows:

vt(s) =

5∑
i=1

5∑
j=1

pai
paj

vt−1(s
′) (1)

This value vt(s) is stored for the time t. When two actions
lead to s at time t+ 1, the value vt(s) is used as the reward
for those actions. In this way, the state values will propagate
through the time steps to produce the final state. The iteration
process is monitored for convergence for all states s using a
δ, where δ = Vt(s)−Vt−1(s). When δ < 0.01, the values are
considered converged.

V. RESULTS AND DISCUSSION

To understand the characteristics of the Nash Equilibrium
model, a few simple rule-based AI were designed to play the
game.
• Random: The agent will randomly select an action from

the available move set with equal probability
• Punch: The agent will always punch
• Kick: The agent will always kick
• Rules: The agent will punch when it is at a distance where

a punch will cause damage, kick when it is at a distance
where the kick will cause damage, and otherwise walk
forward

The AI’s were then initialized to the starting conditions of
the game. They both have 20 health, and all starting distances
0 to 170 were examined, where the starting distance is the
initial spacing on the x-axis between the two players and is
measured in pixels. The maximum distance of 170 was chosen
because the maximum range of the kick attack is 140. This
leaves 30 pixels of space where neither player has the ability
to do damage. This is sufficient for the player to learn any
policies where it is out of range of an attack, and all distances
greater than 170 can be modeled as distance 170. Player one
is always the Nash Player, which is the policy created by the
retrograde analysis as described in the previous section. Then,
there are four possible outcomes for the Nash player, player
one: win, lose, tie, and run away. A win is the situation where
player two’s health is zero. A lose is when player one’s health
is zero. A tie is when both player’s health is zero. Run away
is the situation where both agents choose to move out of range
of the attacks, and will never move forward, so at the end of
the game both of the players still have health. Each of these
scenarios were run in three trials, to account for randomized
play.

Figure 6 shows the results of the Nash player. None of the
simple strategies are able to beat this player in any of the
simulated situations. The random player is the best strategy
because it minimizes the amount of wins for the Nash player.
The Nash player is playing most similarly to the Rules AI,
because it results in the most number of ties. However, the
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Fig. 6. Results from the Nash AI

Rules AI still loses to the Baseline Nash 95 times, so the
Nash player is still a better strategy.

The total number of moves selected by the Nash agent while
playing these matches was compared to the number of moves
where it had a mixed strategy, shown in Table 2. This was done
to determine if the Nash player used a deterministic strategy
or not. The total number of moves for every match and the
total number of moves where the Nash AI selected a mixed
strategy was recorded. The percentage of mixed moves was
then calculated as the number of mixed strategy moves divided
by the total number of moves for the match. The percentage
of moves where the Nash player was picking a mixed strategy
is very low, at only 2.07%. This means that the Nash player
is playing a deterministic strategy in most of the states, even
though the game was designed to contain RPS mechanics and
lead to mixed strategies. In the case of RPS, if one player
is playing at Nash Equilibrium, the other player can use any
strategy and still arrive at a Nash Equilibrium. In the fighting
game, this is not the case given the Nash player is able to win
more than the other strategies

Total Number
of Actions

Total Number of
Mixed Action

Percentage of
Mixed Actions

8637 197 2.07%
TABLE II

PERCENTAGE OF MIXED ACTIONS OUT OF TOTAL ACTIONS

Some variations on the retrograde analysis were created to
model additional behavior such as imperfect human input [39].
These variations had no effect on the overall performance of
the Nash player, and had no effect on the percentage of mixed
strategies the Nash player chose.



A. Custom Game

The results from this simplified version of Rumble Fish
were not as interesting as expected due to the presence of
a dominating strategy within the game. With this in mind, a
custom fighting game was designed to address these issues and
create a Nash player that has a mixed strategy. Six moves, 4
attacks and 2 blocks, and two distances were chosen to build
the state space, and the effectiveness of the moves were set
up such that at each state there was always two of the attacks
were always dominated actions. The remaining two attacks
and a block were set up in an RPS like wheel, where each
action had a specific counter. The remaining block was set
to only be effective against some of the attacks, but not all
of the attacks. The results from this custom game produced a
Nash Equilibrium where it is always beneficial to mix between
the actions of the RPS wheel, and never choose a dominated
move. The introduction of the dominated actions to the state
space was able to successfully create a ”bad” move, which if
chosen would produce sub-optimal play.

VI. FUTURE WORK

Future work on this project would focus on three main areas,
the first of which is scale to larger games. One of the ways to
accomplish this is to expand the number of moves available to
the agent. Most fighting games have a large variety of moves,
more than are currently modeled, so more actions should be
incorporated. Another way to increase the size of the game is
to increase the range of distances. Each distance value has its
own unique effectiveness wheel, which dictates which moves
are dominant to other moves in an RPS-like manner.Adding
these features to the current model causes for the custom
fighting game to become more similar to published fighting
games, which allows for a deeper understanding of the design
choices on the overall balance and play of the game.

Another consideration is the restrictions on how the players
can take actions. In the custom fighting game, each action has
the same lead time, attack duration, and lag time. First, the
overall attack times of each move can be varied, such that
each available action is a multiple of the action that has the
shortest attack time. Still restricting to mostly simultaneous
moves, one player would then be allowed to choose 1 long
action while the other player can choose 2 or more fast actions.
Then, the different lead and lag times could be incorporated
into the simultaneous move model, so that particular moves
can dominate other based not only on the effectiveness of the
action but also on timing. Once this model has been built, we
will have a comprehensive understanding of the full range of
factors that affect actions and the consequences of each action
within the game.
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