
1

Evolution of Kiting Behavior in a Two Player
Combat Problem

Pavlos Androulakakis and Zachariah E. Fuchs

Abstract—We examine the use of an evolutionary algorithm to
design a feedback controller for a two player combat problem.
This problem consists of two players on a one-dimensional line.
One player is referred to as the Defender and is held at the
origin (unable to move). The other player is referred to as the
Attacker and is free to move back and forth with a constant
speed. The goal of the Attacker is to inflict as much damage
as it can on the Defender while suffering as little damage as
possible. The greater the difference between damage inflicted vs
damage taken, the more successful the attack. The Attacker’s
controller is represented by a parameterized control vector. An
evolutionary algorithm is then used to evolve populations of these
control vectors in an attempt to obtain a near optimal feedback
controller.

I. INTRODUCTION

The development of cost effective engagement strategies

is an important capability in many real-world and game

scenarios. Targets are rarely defenseless, and the threat posed

by their defensive capabilities represents some risk to the

Attacker during an engagement. Additionally, the Attacker

may not possess sufficient offensive capabilities to destroy

the target in one pass. Instead, it must reengage the target

over the course of multiple smaller skirmishes. Therefore, the

Attacker must determine an optimal strategy for approaching

and striking the target and then retreating to a safe distance

while minimizing the cost and risk generated by the Target’s

defensive capabilities.

The general behavior in which an Attacker engages a Target

and then retreats to a safe distance is known as kiting and is

often utilized within real-time strategy games. There have been

numerous efforts to utilize a variety of artificial intelligence

methods to develop effective kiting behaviors for a wide range

of games and engines. Some approaches utilize influence maps

and similar approaches use potential fields [1], [2], [3], [4].

Most of these methods presuppose that kiting behavior is

the desired behavior and then tune a controller or system

parameters within the behavior to optimize for a particular

scenario.

In this work, we do not impose any predefined behavior

on the Attacker’s strategy. Instead, we examine the problem

from an optimal control perspective, in which we develop a

feedback control strategy that calculates the optimal Attacker

action based on the current state of the system. In the general

case, the feedback controller is capable of modeling any

arbitrary behavior, including kiting. There are many traditional

Pavlos Androulakakis is with the Department of Electrical Engineering and
Computer Science, University of Cincinnati, Cincinnati, OH.

Zachariah E. Fuchs is with the Department of Electrical Engineering and
Computer Science, University of Cincinnati, Cincinnati, OH.

control techniques for designing optimal controllers [5], [6].

Game-theoretic methods have also been utilized to calculate

both strategic and tactical level engagement strategies and

interactions [7], [8], [9], [10]. Although these methods calcu-

late the true optimal solution for simple cases, there may not

necessarily be analytical solutions for the resulting optimality

conditions when the system contains nonlinear cost functions

or dynamics. Instead, numerical methods must be used to

optimize the controller or search the space of admissible

control strategies.
Our previous work has shown that evolutionary algorithms

can be used to develop optimized feedback controllers for

a variety of scenarios [11], [12], [13]. In this paper, we

examine a generalized system consisting of two agents: a static

Defender and mobile Attacker. The system is represented in a

two dimensional state space, and we use a system of ordinary

differential equations to model system dynamics. This scenario

can be found in many different games and game engines. For

the scenarios considered in this paper, the Attacker strives

to maneuver towards the Defender, fire its weapon, and then

retreat to a predefined retreat boundary. The exact motion of

the Attacker and when it fires its weapon is undefined a priori.

We do not require the Attacker to retreat, but the Defender

will continue to inflict cost onto the Attacker until it crosses

the retreat boundary. The amount of damage inflicted onto the

Defender is based on the integral of an instantaneous cost

function dependent on the separation distance between the

Defender and Attacker. Simultaneously, the Defender inflicts

a cost onto the Attacker as a function of separation distance.

The goal of the Attacker is to maximize the amount of damage

inflicted onto the Defender while minimizing the amount of

damage received.
We analyze the resulting optimal Attacker behavior pro-

duced by two different Attacker cost functions. The first

cost function inflicts maximum damage at zero distance,

which represents a melee type unit. The second Attacker

cost function achieves maximum instantaneous damage at a

nonzero distance from the Target, which models a type of

ranged unit. As will be shown in the results, the evolutionary

algorithm produces qualitatively different types of behaviors

when engaging with different classes of units.
In Section II, we define the problem under consideration.

We define the controller parameterization and evolutionary

architecture used Section III. Numerical results are presented

in Section IV, and we conclude the paper in Section V.

II. PROBLEM DESCRIPTION

The scenario under consideration consists of two agents,

an Attacker and a static Defender. The Defender represents
978-1-7281-1884-0/19/$31.00 c©2019 IEEE

2

a stationary high-value target such as a base, protected re-

source, or mission objective. The Defender uses its defensive

capabilities to inflict damage (or a cost) onto the Attacker

over the course of the encounter. The amount of damage

inflicted by the Defender on the Attacker is a function of

the separation distance between the agents. The Attacker is

capable of maneuvering toward or away from the Defender

and can inflict damage on the Defender by firing its weapon.

Similar to the Defender, the amount of damage inflicted by

the Attacker is a function of the separation distance. However,

the Attacker possesses a finite amount of weapon energy, and

once this energy is depleted, the Attacker can no longer inflict

any damage on to the Defender. The Attacker strives to inflict

as much damage as possible on the Defender while incurring

minimal damage to itself.

The state of the system is represented by a two-dimensional

state vector x = (d, w), where d represents the separation

distance between the Attacker and Defender and w represents

the Attacker’s remaining weapon energy. The dynamics are

modeled using a system of two ordinary differential equations:

ḋ = vAu1 (1)

ẇ = rAu2, (2)

where vA represents the Attacker’s speed and rA represents

the energy expenditure rate. The Attacker controls its motion

through the control variable u1 ∈ [−1, 1], and it controls the

activation of the weapon through u2 ∈ [0, 1]. The Attacker’s

control vector is defined as u = (u1, u2).

The skirmish terminates when the Attacker retreats beyond

the retreat boundary defined by dr, which occurs when the

state satisfies the termination condition:

Γ(x) = d− dr = 0. (3)

We define the set of conditions that satisfy (3) as the terminal

surface ST := {x|Γ(x) = 0}. The terminal time tf is defined

as the moment that the terminal condition is satisfied.

During the skirmish, the Defender constantly fires at the At-

tacker and inflicts damage onto the Attacker according the De-

fender cost function CD(x). The Attacker inflicts damage onto

the Defender according the Attacker cost function CA(x,u).
The exact definitions of CD(x) and CA(x,u) depend on the

type of unit and its capabilities. In this paper, we examine

how different types of cost functions generate optimal Attacker

control strategies with qualitatively different behaviors.

The Attacker strives to inflict as much damage as possible,

while incurring as little damage as possible from the Defender.

This can be modeled by a utility function of the form

UA(u(t);x0) =

∫ tf

t0

CA(x(t),u(t))− CD(x(t))dt, (4)

where x0 is the state of the system at initial time t0 and is

defined as x0 := x(t0) = (d0, w0). For an initial position x0,

we can define an optimization problem to analytically calculate

the optimal Attacker control strategy, u∗(t;x0), as

u∗(t;x0) := max
u(t)

UA(u(t);x0). (5)

The resulting optimal solution can then be substituted into the

dynamics (1)-(2), and integrated forward in time from x0 to

obtain the corresponding optimal trajectory x∗(t,x0).
The resulting optimal control strategy u∗(t;x0) is only

guaranteed to be optimal for the particular initial condition

x0. If the skirmish is initialized at a different initial condition

or if the Attacker would deviate from the resulting optimal

trajectory x∗(t;x0), the optimization problem would need to

be updated and solved from the new position. Although it

may be possible to continually update and solve the optimal

control problem in real-time, it would be more computationally

efficient to precompute an optimal feedback controller u∗(x),
in which the optimal control is a function of the current

state instead of time. The overall performance of a feedback

controller can be determined by averaging its utility over every

state within the admissible state space:

UA(u(x)) =
1

drwc

∫ dr

0

∫ wc

0

Uf (u(x);x0)dwdd, (6)

where wc is the maximum weapon energy and Uf (u(x);x0)
represents the resulting utility of the feedback controller

initialized at the given state x0 = (d, w)

Uf (u(x);x0) =

∫ tf

t0

CA(x(t),u(x(t)))− CD(x(t))dt. (7)

Using the overall utility function (6), we can pose an

optimization problem in which we optimize the performance

of the feedback controller over the entire state space:

max
u(x)

UA(u(x)). (8)

In this paper, we will attempt to solve this optimization prob-

lem by using an evolutionary algorithm to evolve a discretized

parameterization of the feedback controller u(x).

III. EVOLUTIONARY ARCHITECTURE

In order to evolve a feedback controller, we must define

a parametric representation with a set of tunable parameters.

Once parameterized, we can use an evolutionary algorithm

(EA) to evolve populations of these feedback controllers

through the processes of crossing and mutation.

A. Controller Encoding

We begin by defining the range of all possible states. The

relative distance is bounded between 0 (collocation) and dr
(retreat). The weapon energy is lower bounded by 0 (empty

weapon energy) and upper bounded by wc (maximum weapon

energy capacity). Together, these bounds define the set of

admissible states

x ∈ {0 < d < dr, 0 < w < wc} .
As defined in Section II, the Attacker’s feedback control

strategy, u(x), consists of two separate control functions:

u1(x) and u2(x). The motion control function, u1(x), can

only take on the discrete values of u1 ∈ {−1, 1} where

−1 corresponds to move left and 1 corresponds to move
right. The fire control function, u2(x), is also discrete valued

3

Fire ControlMotion Control

Fig. 1: 2D State Space Control Example

Fire ControlMotion Control

Fig. 2: Grid Parameterization Example

with u2 ∈ {0, 1}, where 0 corresponds to hold fire and 1
corresponds to fire. By bounding the state and discretizing

our control output in this way, we can represent the feedback

controller as two separate two-dimensional state spaces. Figure

1 shows an example of two such state spaces with arbitrary

boundaries defining regions of control. The color of the region

indicates the value of the controller output at that given state.

Yellow represents a control output of u1 = 1 for motion

control and u2 = 1 for fire control. Blue represents a control

output of u1 = −1 for the motion control and u2 = 0 for the

fire control.

In order to complete the parameterization of the controller,

we must be able to represent the boundaries between the

regions of control. This can be done with many different

methods such as neural networks, support vector machines,

or anchor points [14], [11]. While these methods can be

very effective, they can also add more complexity than is

necessary in certain problems. For this reason, we aim to

use a simpler controller representation: a parameterized grid

structure. The grid resolution is defined by parameters ε1
and ε2. The higher the grid resolution, the more complex

boundaries this parameterization is able to approximate. Figure

2 shows a parameterized example of the state space boundaries

from Figure 1 for ε1 = ε2 = 4.

By parameterizing our controllers in this way, we can

represent a candidate control strategy c as a set of two-

dimensional matrices:

c = {m,n},

where

m =

⎛
⎜⎝

m1,1 . . . m1,ε2
...

...

mε1,1 . . . mε1,ε2

⎞
⎟⎠ n =

⎛
⎜⎝

n1,1 . . . n1,ε2
...

...

nε1,1 . . . nε1,ε2

⎞
⎟⎠ .

A feedback controller can then be parameterized in terms of c
as u(x; c) = (u1(x; c), u2(x; c)), where u1 and u2 are defined

as

u1(x; c) = mi,j

u2(x; c) = ni,j ,

for

i = floor(
ε1d

dr
) + 1

j = floor(
ε2w

wc
) + 1

where ε1 and ε2 are the resolution of the grid parameterization

and dr and wc are the given boundaries of the state variables.

B. Initial Population

We begin the evolutionary algorithm with a population

of M candidate controllers to serve as our first generation

G0 = {c1, c2, ..., cM}. These candidate controllers are initial-

ized with random control values uniformly drawn from the set

{−1, 1} for motion control, and {0, 1} for fire control.

After generating the initial population, G0, the evolutionary

algorithm will fill the next generation, G1, as follows. The

controllers with fitness in the top 5% of the old generation

are considered elite and are passed on to the next generation

without any change. This ensures that the top performing

controllers persist through to the next generation and don’t

accidentally get degraded by the crossing and mutation opera-

tions. The remaining 95% of the next generation is filled with

the results of crossing and mutation. This process will repeat

until the evolution reaches a predefined number of generations

and ends with generation Gf .

C. Fitness Evaluation

As shown in (6), the overall utility of a candidate feedback

controller is obtained by evaluating it from a continuum of

initial conditions across the admissible state space. Since this

is computationally infeasible to do, we approximate the overall

utility by sampling the state space at a γ1 × γ2 grid of

different initial conditions. We define the set of n = γ1γ2
initial conditions as X0 = {x0,1 x0,2 . . . x0,n}. These initial

conditions can be represented as the set

X0 = {(w, d)|∀w ∈ w̄, d ∈ d̄},
for

w̄ =

{
j
wc

γ1
| j ∈ � : 1 ≤ j ≤ γ1

}

d̄ =

{
j
dr
γ2

| j ∈ � : 1 ≤ j ≤ γ2

}
.

An individual candidate controller ci can be used to

parametrize a feedback controller u = (x, ci) which is then

4

Parent 1 Parent 2

Split Points Child

Fig. 3: Crossing Example

evaluated individually at each of these initial conditions to

return a utility as described in (7). The total fitness of a

candidate controller ci is defined as the average of all the

utilities resulting from evaluating u = (x, ci) at the initial

conditions in the set X0 and is defined as

fi(u(x; ci);X0) :=
1

n

n∑
k=1

Uf (u(x; ci);x0,k).

This total fitness is used throughout the rest of the evolutionary

algorithm to judge how fit the candidate controller is with

respect to the rest of the population.

D. Crossing

Crossing begins by randomly selecting two parents from the

previous generation. The likelihood that a candidate controller

is selected for crossing is proportional to its relative fitness

with respect to the rest of the population. The more fit the

individual, the higher the probability that it will be selected

for crossing.

Once two parents, (referred to as ca and cb), are selected, a

child controller cc is created by subdividing the parent’s state

space using a split point method. A split point is defined as a

point that is randomly selected from the admissible bounded

state space with uniform probability distribution. For this

crossing method, two split points are generated; s1 = {d1, w1}
and s2 = {d2, w2}. Given these two split points, the value of a

cell in the child’s control matrix (take for example the motion

control matrix mci,j) can be defined as

mci,j =

{
mai,j

�1 < �2
mbi,j �1 ≥ �2

,

for

�1 =
√
(di − d1)2 + (wj − w1)2

�2 =
√

(di − d2)2 + (wj − w2)2,

where {di, wj} is the state value of the center of grid cell

mci,j :

di = (i− 1)
dr
ε1

+
dr
2ε1

wj = (j − 1)
wc

ε2
+

wc

2ε2
.

This process computes the distance from each split point to the

center of every grid cell. Grid cells closer to split point s1 will

have their control assigned from the corresponding grid cell

in parent ca. Grid cells closer to split point s2 will have their

control assigned from the corresponding grid cell in parent cb.

An example of this process for the motion control matrix is

show in Figure 3. The red dot indicates split point s1 and the

blue dot indicates split point s2.

This process is performed independently for each of the

control matrices; once for the motion control matrix, and once

for the fire control matrix. The result is a child whose control

matrices contain information from both parents. Since this

crossing is fitness based, candidate controllers with higher

overall fitness will be more likely to produce children and

pass on their control information.

E. Mutation

After a child cc = {m,n} is produced from crossing,

random mutations are applied to create a mutated version of

the child c̄c = {m̄, n̄}. Each cell in each of the child’s control

matrices has a μ chance of being mutated. When a mutation

occurs, the cell’s control value is randomly reassigned from

the admissible control values. For a cell in the mutated motion

control matrix m̄i,j , the resulting distribution of control values

is

p(m̄i,j) =

{
1− μ m̄i,j = mi,j

μ m̄i,j ∈ {−1, 1} .

For the fire control matrix, the resulting distribution for the

control values is

p(n̄i,j) =

{
1− μ n̄i,j = ni,j

μ n̄i,j ∈ {0, 1} .

The resulting mutated child c̄ is then added to the set of

candidate controllers for the next generation.

5

0 2 4 6 8 10
Distance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
D

am
ag

e
In

fli
ct

ed

Defender
Attacker

Fig. 4: Cost Function of Melee Attacker vs Melee Defender

IV. RESULTS AND ANALYSIS

The results in this section were obtained by evolving a

population of 200 candidate controllers over 2000 generations

with the following parameters:

Attacker Velocity: vA = 0.2

Weapon Energy Depletion Rate: rA = 0.1

Retreat Distance: dr = 10

Maximum Weapon Energy : wc = 10

Controller Grid Resolution: ε1 = ε2 = 16

Initial Condition Resolution: γ1 = γ2 = 16

Mutation Chance: μ = 0.2%

A. Melee Attacker vs. Melee Defender

We begin with the case in which both Attacker and Defender

have damage profiles that correspond to close range melee

units. The Defender is a balanced unit that inflicts moderate

damage up close and has a slow exponential damage drop off

as the relative distance increases.

CD(x) = e(−d/5) (9)

The Attacker is a specialized unit that inflicts high damage at

close range, but as a consequence has a fast exponential drop

off as distance increases.

CA(x,u) = u2

(
2e(−2d/5)

)
(10)

Figure 4 shows both of these damage profiles overlaid on each

other for u2 = 1. For all distances closer than d = 3.46, the

Attacker has a damage advantage. For all distances greater

than d = 3.46, the Defender has a damage advantage.

The evolutionary algorithm was run and the resulting fitness

change over the 2000 generations is shown in Figure 5. The

maximum fitness follows a logarithmic shape, with most of

the improvements happening early in the evolution. We can

also see that at no point does the maximum fitness decrease

200 400 600 800 1000 1200 1400 1600 1800 2000
Generations

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Fi
tn

es
s

p

Max Fitness
Mean Fitness

Fig. 5: Fitness Over the Generations

from one generation to the next. This is a direct result of

elitism. The candidate controller with the highest fitness in

the last generation is considered the best evolved controller

and is examined in the following analysis.

Figure 6a shows the motion control matrix and Figure

6b shows the fire control matrix of this best evolved con-

troller. Four sample trajectories are shown by the solid/dashed

red/green overlaid lines. A solid line indicates a trajectory that

is initialized from a state within the EA training set (x0 ∈ X0).

A dashed line indicates a trajectory that is initialized from an

untrained initial condition (x0 /∈ X0). The color of the line

indicates the type of strategy implemented. A red line indicates

an kiting strategy and a green line indicates a retreat strategy.

We begin by looking at the solid red line. This trajectory

starts in a trained initial condition with close to full weapon

energy at a far distance, x0 = {9.33, 9.33}. We can see that

from this initial condition, the Attacker starts by holding its

fire while approaching the Defender. Once the Attacker gets

close, it begins to expend its weapon energy and inflict damage

onto the Defender. It remains in this position until its weapon

energy starts to run out. At this point the Attacker begins to

retreat while continuing to inflict damage until it completely

runs out of weapon energy.

The integrated utility over the course of this trajectory can

be seen as the solid red line in Figure 7. We can see that as

the Attacker is approaching, it suffers an increasing amount

of damage from the Defender. It seems counterintuitive for

the Attacker to hold its fire since it could be reducing its

net damage by inflicting damage on the Defender. The reason

for this behavior is the finite weapon energy of the Attacker.

By holding fire, the Attacker is able to wait until it has a

significant damage advantage before it begins attacking. This

allows the Attacker to get as much net damage as possible

from its limited energy. At time t = 35 we can see that the

Attacker begins attacking the Defender and the utility starts

to sharply increase. This result shows that the evolutionary

algorithm was able to develop a control strategy to conserve

the limited weapon energy of the Attacker and only use it

6

0 1 2 3 4 5 6 7 8 9 10
Distance

0

1

2

3

4

5

6

7

8

9

10
W

ea
po

n
En

er
gy

(a) Motion Control

0 1 2 3 4 5 6 7 8 9 10
Distance

0

1

2

3

4

5

6

7

8

9

10

W
ea

po
n

En
er

gy

(b) Fire Control

Fig. 6: Best Evolved Melee Attacker Grid Controllers

0 20 40 60 80 100 120 140 160 180
Time

-10

0

10

20

30

40

50

60

70

U
til

ity

Fig. 7: Integral Utility of Trajectories

when the net damage is the highest.

The dashed red line shows a trajectory that starts from

the untrained initial condition of x0 = {4.2, 2.9}. We can

see that this trajectory implements a very similar strategy to

the red solid line. It engages the Defender, attacks from a

close distance, and then disengages The integral utility for the

trajectory is shown as the dashed red line in Figure 7. Even

though this Attacker started from an untrained initial condition,

it was able to implement the kiting strategy and inflicted more

damage on the enemy than it received in turn. This type of

result indicates that the evolved solution is generalized enough

to translate its performance into initial conditions it has never

seen before.

The solid green trajectory starts from the trained initial

condition where the Attacker has only 4 weapon energy and

starts at a distance of 8 from the Defender, x0 = {8, 4}. The

Attacker decides to retreat while using as much of its remain-

ing weapon energy as possible. In this case, the damage that

would be incurred trying to approach the Defender would be

significantly greater than the amount of damage the Attacker

could inflict with only 4 weapon energy remaining. The best

strategy in this case is to take as small of a loss as possible

and retreat while expending all remaining weapon energy. The

integral utility for this trajectory can be seen in Figure 7 as

the solid green line.

The dashed green trajectory shows a similar scenario, but

in this case the Attacker starts in the untrained state of 1.7
weapon energy at a relative distance of 3.4, x0 = {3.4, 1.7}.

We can see that similarly to the trained initial condition, this

trajectory implements a retreat strategy to minimize incurred

cost. We can see that during its retreat, the Attacker passed

through a blue hold fire grid cell in the fire control. In this case,

the Attacker was already out of weapon energy, so the cell did

not have an effect. However, if a trajectory with remaining

weapon energy were to pass through this cell, a yellow fire
cell would have reduced the incurred cost and ended up with

a slightly higher integral utility.

These small errors indicate that our controller was not

completely done evolving and needed more time to refine the

controller through crossing and mutation. While these errors

may seem large, we can see that they are in locations that

have very few trajectories passing through them. The fewer

trajectories that pass through a cell, the less impact it has on

the overall utility. The lower the effect a cell has on the utility,

the less likely it is to be improved over another more impactful

cell during the evolutionary algorithm. So overall, while these

cells are indeed incorrect, they have a relatively small impact

on the utility of trajectories generated by controller.

B. Ranged Attacker vs. Melee Defender

Next we examine the case in which the Attacker has a

damage profile corresponding to a ranged unit. A ranged unit

7

0 1 2 3 4 5 6 7 8 9 10
Distance

0

1

2

3

4

5

6

7

8

9

10
W

ea
po

n
En

er
gy

(a) Motion Control

0 1 2 3 4 5 6 7 8 9 10
Distance

0

1

2

3

4

5

6

7

8

9

10

W
ea

po
n

En
er

gy

Fire Control

(b) Fire Control

Fig. 8: Best Evolved Ranged Attacker Grid Controllers

0 2 4 6 8 10
Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
am

ag
e

In
fli

ct
ed

Defender
Attacker

Fig. 9: Cost Function of Ranged Attacker vs Melee Defender

inflicts maximum damage from some non-zero distance that

is usually outside the effective range of a melee unit. The

damage profile chosen for our ranged unit is defined as

CA(x,u) = u2

(
e−(d−5.5)2/2

)
. (11)

Figure 9 shows this ranged damage profile along side the

standard melee damage profile from equation (9) for u2 = 1.

As shown, the ranged Attacker inflicts maximum damage at

d = 5.5 and has a steep drop off in either direction.

The evolutionary algorithm was run using this ranged dam-

age profile for the Attacker and the standard melee damage

profile for the Defender. Similarly to the previous case, the

maximum fitness over the evolution follows a logarithmic

shape. The control matrices of the candidate controller with

the highest overall fitness in the final generation are shown in

Figure 8.

0 50 100 150
Time

-10

0

10

20

30

40

50

60
U

til
ity

Fig. 10: Integral Utility

We begin the analysis with the solid red trajectory initialized

from the trained initial condition of x0 = {9.66, 9.66}. The

Attacker begins by holding its fire while approaching the

Defender. At a distance of d = 5.66, the Attacker starts to

fire. This strategy persists until it is almost out of weapon

energy at which time it expends the rest of its weapon energy

while running away to the retreat boundary.

Unlike the melee unit, this ranged control strategy did not

hold the Attacker at its peak damage distance (in this case

d = 5.5). Instead, it held it at a distance of d = 5.66. This

behavior is a result of the controller parameterization. The only

way for the parameterized grid controller to hold the Attacker

at a fixed distance is to place it on a boundary between move
left and move right. Ideally we would like to hold the Attacker

at d = 5.5, but with the given grid resolution, the closest cell

boundary occurs at d = 5.66. So the controller evolved a

8

strategy in which it holds the attacker at the nearest possible

distance of d = 5.66.

The dashed red trajectory shows the performance from the

untrained initial condition of x0 = {0.5, 9.1}. Similarly to the

trained case, the Attacker conserves its weapon energy until

it approaches the maximum effective range of d = 5.5. Once

it is near, it begins firing and then retreats when its weapon

energy begins to deplete. This result again shows the ability

of the evolved solution to translate its strategies into initial

conditions it was never trained in.

The solid green line shows a retreat strategy initialized from

the trained initial condition of x0 = {8, 0.66}. Much like the

melee unit in section IV-A, there is not enough weapon energy

left to justify an engagement. Instead the Attacker retreats

while expending all remaining weapon energy to cut its losses.

The dashed green line shows a retreat strategy from the

untrained initial condition of x0 = {9.1, 0.5}. Even though

the controller was never trained at this initial condition, it is

able to implement a retreat strategy. The integral utility of

this and all previous ranged trajectories is shown by lines of

corresponding color/line-style in Figure 10.

C. Summary of Results

The results in this paper show two distinct strategies that the

evolutionary algorithm learned to implement. The first strategy

resembles traditional kiting behavior, where the Attacker holds

its fire while repositioning itself, expends its limited weapon

energy where it can inflict maximum damage, and then runs

away. The second strategy consists of retreating and is used to

prevent the Attacker from engaging in scenarios where an at-

tack would be too costly. As stated in the introduction, neither

of these strategies were imposed upon the Attacker. Instead,

they are a result of the cost functions, the utility function,

and the evolutionary process. By looking at the parameterized

control matrices, one can see the boundaries between these

strategies and see how the evolutionary algorithm was able

partition the state space.

It is important to note that these best evolved controllers are

not guaranteed to be the optimal feedback controller u∗(x).
Evolutionary optimization techniques such as this one suffer

from the problem of induction and can only be guaranteed to

improve the solution from initial conditions in which they are

evaluated. Since we can not evaluate the evolved solution from

the entire continuum of admissible states, we can not guarantee

true optimality. Additionally, the controller parameterization

limits the accuracy of the evolved controller. What our solution

does provide is an estimate of the true underlying optimal

control. Our results show that the evolved controllers are

accurate enough to exhibit kiting behavior, and robust enough

to extend this performance to untrained initial conditions.

Thus, the evolved solutions can be effectively used as an

approximation of the optimal control.

V. CONCLUSION

In this paper, we evolved closed loop controllers capable of

controlling an attacking player with varying damage profiles.

The resulting solutions were complex enough to implement
multiple strategies and robust enough to be effective in both

trained and untrained initial conditions. The grid parameteri-

zation used provided a simple way to parameterize a feedback

controller so that an evolutionary algorithm could be used.

Future work will aim to examine more complex controller

parameterizations in hopes that we can better represent the true

optimal boundaries and thus obtain more accurate solutions.

We also plan to examine the case of a mobile Defender with

more complex damage profiles.

REFERENCES

[1] A. Uriarte and S. Ontanon, “Kiting in RTS Games Using Influence
Maps,” in Artificial Intelligence in Adversarial Real-Time Games: Papers
from the 2012 AIIDE Workshop, 2012, pp. 31–36.

[2] T. DeWitt, S. J. Louis, and S. Liu, “Evolving micro for 3d real-
time strategy games,” in 2016 IEEE Conference on Computational
Intelligence and Games (CIG), Sept 2016, pp. 1–8.

[3] J. Hagelback and S. J. Johansson, “Dealing with fog of war in a
real time strategy game environment,” in 2008 IEEE Symposium On
Computational Intelligence and Games, Dec 2008, pp. 55–62.

[4] J. Hagelback, “Potential-field based navigation in starcraft,” in 2012
IEEE Conference on Computational Intelligence and Games (CIG), Sept
2012, pp. 388–393.

[5] E. Bryson and Y. Ho, Applied Optimal Control. New York: Hemisphere
Publishing Corporation, 1975.

[6] D. Kirk, Optimal Control Theory: An Introduction, ser. Dover Books
on Electrical Engineering Series. Dover Publications, 2004. [Online].
Available: https://books.google.com/books?id=fCh2SAtWIdwC

[7] Z. E. Fuchs and P. P. Khargonekar, “Encouraging attacker retreat through
defender cooperation,” in 50th Conference on Decision and Control and
European Control Conference (CDC-ECC), Dec 2011, pp. 235–242.

[8] ——, “An engage or retreat differential game with an escort region,” in
53rd Conference on Decision and Control, 2014, pp. 4290–4297.

[9] Z. E. Fuchs, D. W. Casbeer, and E. Garcia, “Singular analysis of a
multi-agent, turn-constrained, defensive game,” in American Control
Conference (ACC), 2016, July 2016.

[10] M. Pachter, E. Garcia, and D. W. Casbeer, “Active target defense differ-
ential game,” in 52nd Annual Allerton Conference on Communication,
Control, and Computing, 2014, pp. 46–53.

[11] P. Androulakakis and Z. E. Fuchs, “Evolutionary design of engagement
strategies for turn-constrained agents,” in IEEE Congress on Evolution-
ary Computation, May 2017.

[12] P. Androulakakis, Z. E. Fuchs, and J. E. Shroyer, “Evolutionary design
of an open-loop turn circle intercept controller,” in IEEE Congress on
Evolutionary Computation, July 2018.

[13] P. Androulakakis and Z. E. Fuchs, “The effects of controller representa-
tion on the evolution of the variable speed turn-circle intercept problem,”
in IEEE Congress on Evolutionary Computation, July 2019.

[14] K. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionnary Computation, vol. 10, no. 2, pp.
99–172, 2002.

