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Abstract—One of the main problems in the design through
optimization of car racing bots is the inherent noise in the
optimization process: besides the fact that the fitness is a heuristic
based on what we think are the keys to success and as such
just a surrogate for the ultimate objective, winning races, fitness
itself is uncertain due to the stochastic behavior of racing
conditions and the rest of the (simulated) racers. The fuzzy-
based genetic controller for the car racing simulator TORCS
we have defined in previous works is based on two fuzzy sub-
controllers, one for deciding on the wheel steering angle and
another to set the car target speed at the next simulation tick.
They are both optimized by means of an Evolutionary Algorithm,
which considers an already tested fitness function focused on
the maximization of the average speed during the race and
the minimization of the car damage. The noisy environment
asks for keeping diversity high during evolution, that is why
we have added a Blend Crossover (BLX-α) operator, which
is, besides, able to exploit current results at the same time it
explores. Additionally, we try to address uncertainty in selection
by introducing a novel selection policy of parents based in races,
where the individuals are grouped and compete against others
in several races, so just the firsts ranked will remain in the
population as parents. Several experiments have been conducted,
testing the value of the different controllers. The results show
that the combination of a dynamic BLX-α crossover operator
plus the pole position selection policy clearly beats the rest of
approaches. Moreover, in the comparison of this controller with
one of the participants of the prestigious international Simulated
Car Racing Championship, our autonomous driver obtains much
better results than the opponent.

Index Terms—Simulated Car Racing, TORCS, Fuzzy Con-
trollers, Autonomous Drivers, Genetic Algorithms, Optimization,
BLX-α Crossover, Race-based Selection, Uncertainty

I. INTRODUCTION

Games are, in many cases, closed and controlled envi-
ronments, mini or simulated worlds that allow you to test
techniques that will then eventually be applied in real life,
probably combined with other different technologies to tackle
its complexity and variability. Car racing simulation includes
many of the factors that are present in autonomous driving:
tracks are very different and not known in advance, there are
other vehicles present on the track, and the conditions change
according to weather, and car deteriorates with damage. Car
is also aware of this only through a set of limited sensors, and

it will have to take a decision on speed and steering that is
optimal in several different senses [15], including, depending
on the context, the possibility of beating a set of opponents in
a simulated race.

Since testing different autonomous driving methodologies
in real life is usually reserved to just a few big players,
methodologies as well as algorithms are usually tested in
simulated environments; these simulated environments, at the
same time, offer the incentive of competition among your
system and others. In this paper, we will be using The Open
Racing Car Simulator (TORCS) [32], a very realistic racing
simulator which offers a great testbed for the implementation
and evaluation of autonomous drivers. It has been used sev-
eral times for the celebration of Artificial Intelligence (AI)
competitions, where the aim is to create the best autonomous
driver for racing [17]–[19]. Besides being able to test your car
against other cars that have been published, it can be used as
a standalone environment to optimize driving in a solo race.

Evolutionary Algorithms (EAs) [2] have been frequently
applied as a general-purpose optimization method in this
area, generally combined with behavioural engines that rule
different parts of the car [13], [24], [25]. These driving engines
have included lately fuzzy controllers [9], [16], [23]. These
controllers use fuzzy Logic [7], a technique that is quite
suitable for defining this kind of autonomous agents, since they
are in part inspired by the human reasoning when driving. A
fuzzy controller works with linguistic variables, and will for
instance turn slightly to the right when the next curve is close,
but these controllers have to be designed to map properly
inputs to desired outputs in particular situations.

From the point of view of optimization, one of the main
problems is that the environment is always going to change;
this is correctly reflected in the simulator used, and it means
that the score (and thus the ranking, if that’s the eventual
target) will always change, making selection of the best or
winning controller probabilistic at best. This uncertainty is a
challenge from two points of view: non optimal (non-winning)
controllers might be selected just by chance, since they were
assigned a score favored by that uncertainty, and, once they are
selected, that might make the algorithm explore zones around
some controllers that have been selected just casually, and
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leave others unexplored. For these two reasons, there are two
challenges that we intend to approach in this paper: reduce
uncertainty in the selection of the “best”, and keep diversity
high to not exploit just the areas around those individuals
whose score might have been favored by chance at a certain
point in the evolution process.

Previously, the authors presented an approach combining
two specialized fuzzy controllers, designed by hand, that were
able to decide the car’s proper steering angle and desired speed
at every single point (or tick) during a race [29]. This driver
was later improved [30] optimizing the parameters of their
membership functions by means of a Genetic Algorithm [8];
this automated design improved manual one obtaining several
controllers that were able to beat the initial hand-designed
controller in a race, as well as other published controllers.
Finally, the authors enhanced the controller in the last paper
[28] by means of the definition of new fitness functions. The
selection of the best controller at the end of the evolution was
based on a set of races among the best 4 solutions, getting a
better driver than in previous studies.

This proved that evolutionary algorithms were able to
get the fuzzy controller parameters better than a hand-made
design, but at the same time revealed several challenges. In
general, evolutionary algorithms optimize the fitness function
that is used; evolved fuzzy controllers (hereafter FCs) will be
eventually as good as the fitness function allows. But in this
particular case we cannot use as fitness function the position
obtained by the FC in every possible race on every possible
track with every possible opponent, so we have to settle for
a surrogate of the fitness in a very limited environment. First
we opted for eliminating opponents and making evaluations
in solo races; then we chose a particular track that combined
straight segments as well as some curves and did not take too
long to run, and eventually we had to decide what factors
related to speed, damage and lap time were going to be
effectively included in the final fitness function.

The two new techniques introduced in this paper, namely,
“Pole” Position selection (race-based) and BLX − α
crossover, try to improve on previous results by first relying
less on the surrogacy of the fitness function to select the
best individuals. The Pole selection will use a parameter-
less fitness function to select a few individuals that will race
against each other; racing will smooth out randomness in the
fitness by putting them in a more real environment; racing cars
against each other will offer a result that varies much less than
simply comparing fitness. But, even so, uncertainty is present
in the fitness and we should avoid excessive exploitation of
the results. The BLX−α crossover we have introduced takes
care of this aspect.

With these methods we aim to obtain more reliable and
competitive controllers and we will test them against some
tough opponents, including a controller from the state of the
art in Simulated Car Racing Competitions.

II. STATE OF THE ART

TORCS has become one of the main environments for
research on AI since its launch in 2007 [32]. Autonomous
cars, or bots, created to win races in this environment need to
set the optimal parameters for the cars [14] with the ultimate
objective of participating in one of the Simulated Racing Car
Competitions [18], [19]. However, the problem of racing a car
itself is a challenge, and thus it has been used as a subject
of research from the beginning even without the intention
of participating in the competition; in any case, published
controllers are always used as the state of the art reference,
and any new bot should be compared against at least those
that are available.

There are many possible ways of approaching the design of
an automatic driver for a car, and through the use of different
simulators and techniques, they have probably been pursued
in one way or the other. They have to provide for a way to
drive the car, in real time, from the inputs gathered by the
car. TORCS offer a rich array of sensors, but it also includes
vision [33], although most papers do rely only on the sensors,
since they offer enough information for driving the car.

The way sensors and effectors are connected also varies.
The simulator itself offers a baseline controller, but that is also
configurable and you can choose to wire it in some other way
[3]. While this might be effective for some specific purposes
like the one used in the paper, evaluate the dangerousness of
the track, in general working with an already wired controller
that is able, for instance, to work towards a target speed instead
of dealing directly with throttle and braking is much more
convenient. This default controller, as a matter of fact, lets you
choose what you actually want to change or optimize. Some
people opt for changing just the steering [22], [23], [25].

Although you can simply create a controller and optimize
a series of probabilities or rates by hand, generally meta-
heuristics such as neural networks [33] or fuzzy controllers
[1]. Besides, working towards the automatic configuration via
optimization of the steering wheel and the target speed also
allows a bit of more leverage to obtain the maximum perfor-
mance out of the racing cars [16], [24]. The main intention of
these authors was to imitate human driving patterns; however,
in our case, we aim to optimize the performance.

Evolutionary algorithms have been often used as an opti-
mization mechanism, but any optimization mechanism must
take into account the uncertainty in selecting the best. For
instance, Fernández-Ares et al. [5] use a mechanism called
Joust selection, avoiding inherently noisy fitness by subsuming
selection in a situation as close to real as possible. Sev-
eral different mechanisms have been applied in the context
of TORCS racing including application of filters [27] and
averaging [12]. Our own work tried to take the state of
the art further by introducing a fuzzy controller evolved via
evolutionary algorithms in [30], which evolved a fuzzy-based
driver considering the target speed in addition to controlling
steering (two fuzzy sub-controllers). We optimized the pa-
rameters of the membership functions by means of a real



coded genetic algorithm, obtaining a noticeable improvement
in performance. Lately, we presented [28] an improvement on
our proposal considering parameter-less fitness functions and
a final selection of the best based in additional races involving
the top 4 individuals and other rivals.

In this study we build on this last approach, focusing on the
best fitness function to date and the final selection process, but
also involving two new mechanisms during the evolution: a
Blend or BLX-α Crossover operator to control the balance
between exploration and exploitation, and a Pole Selection
policy of parents inspired by the Joust selection mentioned
above and aiming to choose real good drivers in races, rather
than just select those with the highest fitness values.

III. THE OPEN RACING CAR SIMULATOR

The framework in which this study has been conducted
is TORCS [32]. It is an open source, multi-player, modular
and portable racing simulator that allows users to compete
against other computer-controlled opponents. Its high degree
of modularity and portability, together with the realistic and
real-time driving simulation, make it an ideal testbed for
artificial intelligence research, as stated in previous section.

Every car in TORCS includes a large set of sensors [17],
whose values the car can use during a race, such as distances
to track borders, to rivals, current fuel, current gear, position
in the race, speed, or damage, among others. See Figure 1.

Fig. 1. TORCS capture showing some of the sensors that the car includes.

The sensor values are considered by any TORCS au-
tonomous driver, or controller, to manage the car using actu-
ators [17]: the steering wheel, the accelerator, the brake pedal
and the gearbox.

IV. FUZZY SUB-CONTROLLERS

We initially proposed a controller [29] with the same
modular architecture as the simple TORCS driver; however,
the target speed and steering angle are computed by means
of two modular and specialized fuzzy sub-controllers, which
consider five position sensors. This is the controller which will
be improved by means of a GA in this work.

The fuzzy target speed sub-controller aims to estimate the
optimal target speed of the car, both in straight parts and curves
of the track, taking into account two criteria: move as fast as
possible and be safe. This estimation is based on two general
cases: if the car is in a straight line, the target speed will take
a maximum value (maxSpeed km/h). However, if it is close
to a curve, the controller will decrease the current speed to a
value included in the interval [minSpeed, maxSpeed] km/h.

This fuzzy controller has an output, the speed, and three
input values (See Figure 1):

• Front = Track 9: front distance to the track border (angle
0°).

• M5 = max (Track 8, Track 10): max distance to the track
border in an angle of +5°and -5°with respect to Front.

• M10 = max (Track 7, Track 11): max distance to track
border in an angle of +10°and -10°.

It is a Mamdani-based fuzzy system [11] with three trape-
zoidal Membership Functions (MF) for every input variable.
In [30] the different sets of parameters which define the mem-
bership functions were improved using a Genetic Algorithm
to obtain the best results.

Moreover, the controller is based in a set of fuzzy rules,
designed to maximize the car speed depending on the distance
to the track border. These rules can be consulted in [29]. The
second is the fuzzy steering sub-controller, which aims to
define the steer angle estimating and determining the target
position of the car. The structure of this sub-controller is
similar to the speed one, but it has the steering as output. Thus,
the set of sensors considered is the same as in the speed case.

Then, as general rules: if the car is in a straight line, it
will set as target position half width of the race track (central
position of the lane). Whereas, if the car is near a right curve,
it will approach the path leading to the right, with a space
between the car and the border of the track to avoid the loss
of control. The same approach is considered if the car is near
a left curve.

In order to detect the curves, the controller focuses on the
sensor values (M10, M5, and Front). So, if the value on Front
sensor is the longest, there is a straight road; whereas if the
values of M5 and M10 with positive angles (+5 and +10) are
the longest, there is right curve; and the other way round.

It uses a base of rules which has been defined trying to
model the behavior of a human driver [29].

As stated, the designed fuzzy controllers have trapezoidal
membership functions given by Equation 1. In such a con-
troller, fuzzy rules are applied to linguistic terms. These
terms, which qualify a linguistic variable, are defined through
membership functions, which, in turn, depend on a set of
parameters that ‘describes’ their shape (and operation). Using
a GA we will optimize the parameters of the membership
functions that constitute the fuzzy partition of the linguistic
variable [31]. The input linguistic variables in our problem,
Front, Max5 and Max10, are represented by three trapezoidal
membership functions.

A trapezoidal membership function in a finite universe of
discourse [a, b] can be defined by:



µA(x) =


x−x1

x2−x1
, x1 ≤ x ≤ x2

1, x2 ≤ x ≤ x3
x4−x
x4−x3

, x3 ≤ x ≤ x4
0, else

(1)

with:
x1 ≤ x2 ≤ x3 ≤ x4 (2)

This MF function is defined by four parameters x1, x2, x3
and x4 taking their values in the interval [a, b].

Fig. 2. Trapezoidal MFs

And a fuzzy partition with n trapezoidal membership func-
tions is defined by 2n variables (x1,x2,. .., x2n )(Equation 4).
In this case, the representation is given by Figure 3.

Fig. 3. Trapezoidal-shaped MFs coding

With:
x1 ≤ x2 ≤ ... ≤ x2n−1 ≤ x2n (3)

The first variable x1 is chosen to be equal to the lower
boundary of the range (a while x2n is equal to b.

µA1(x) =


1, x1 ≤ x ≤ x2
x3−x
x3−x2

, x2 ≤ x ≤ x3
0, x > x3

µAi(x) =



0, x ≤ x2i−2
x−x2i−2

x2i−1−x2i−2
, x2i−2 ≤ x ≤ x2i−1, n = 2, ..., i− 1

1, x2i−1 ≤ x ≤ x2i
x2i+1−x
x2i+1−x2i

, x2i ≤ x ≤ x2i+1

0, x > x2i+1

µAn(x) =


0, x ≤ x2n−2

x−x2n−2

x2n−1−x2n−2
, x2n−2 ≤ x ≤ x2n−1

1, x > x2n−1

(4)
This is the base of the optimization conducted by the

Genetic Algorithm, as it is described in the following section.

V. GENETIC ALGORITHM

We proposed an optimization approach based in Genetic
Algorithms (GAs) [8] aiming to find the optimal parameters

of the membership functions of the two sub-controllers previ-
ously introduced.

Thus, every individual/chromosome is a vector of 18 val-
ues/parameters, 6 per variable, as Figure 4 shows.

The initialization of the chromosomes (first population)
is performed by assigning random values inside a range
of variation ([0, 100]) [8], in order to start from feasible
values [29]. Since our work requires some precision and the
variation interval of each parameter is not well known, we
have considered a real coding implementation [4] in a vector
that includes all variables to optimize.

The overall process is summarized in Figure V. As it can
be seen, TORCS is used during the evaluation step of every
individual in the evolutionary process.

The evaluation of the individuals is based in different fitness
functions, which we have tested in previous works [30]. In this
study we will consider the one which yielded the best results
in our previous paper [28], namely:

fAV S = AVG(Speed)
Damage+1

(5)

It is a parameter-less approach (no weights in the terms)
[10], which is also more focused on the real objectives for a
driver during a race, rather than the overall target of winning
or not, in order to obtain more ‘human-like’ controllers. It
depends on two variables, so the function aims to obtain
drivers reaching the highest average speed as possible on the
whole track while avoiding damage:

• AV G(Speed): pursues a combination of good driving in
the difficult zones of the tracks (e.g. curves) and also on
easy or straight parts; i.e. considers the overall behavior
in the whole track.

• Damage: aims to create ‘safe’ controllers, as it is manda-
tory being able to finish the race.

So, the fitness of each candidate solution is computed by
injecting its gene values to the parameters of the membership
functions of the two fuzzy sub-controllers. The defined au-
tonomous controller is used to drive a car in a 20 laps race
in a circuit without opponents, and the results (Maximum,
Minimum and Average speed, Damage) are used to compute
the fitness value. As the objective of the car controller is to
win as many races as possible, we tried to optimize the most
general case by carrying out solo training races, which will
be less sensitive to the presence of noise/uncertainty due to
the participation of other controllers [20]. The selected track
for this evaluation will be one with a combination of curves
and straight parts in order to obtain an ‘all-terrain behaviour’.

With regard to the genetic operators, mutation has remained
the same as in previous approaches of our genetic controller,
i.e. non uniform mutation [21].

A new Pole Position Selection policy (or race-based se-
lection) has been implemented in this approach, aiming to get
better or more reliable individuals/controllers to be parents of
the following population. To this end all the individuals are
arranged in groups of 10, then some different races of several
laps are simulated using every individual as a controller (with



Fig. 4. Chromosome description

Fig. 5. Flowchart of the optimization process of a TORCS fuzzy controller. To
evaluate an individual we put the parameter values of the two sub-controllers
in the corresponding chromosome, then we launch a race in TORCS with this
configuration, obtaining the resulting values of Damage, Top Speed and Mean
Lap Time. Individual’s fitness value is computed using these values.

the same car) in a track of TORCS. After every race, the
participants obtain different scores depending on their position
in the final rank. The best 5 controllers in the sum of all the
races are selected as parents for the following offspring.

This way, the best individuals will be selected to reproduce
with higher probability. It is not possible to assure they are
absolutely the best, due to the uncertainty present in this
type of environments, i.e. games against non-deterministic
opponents [20]. However, we argue that this selection policy
will be ‘less sensitive’ to that uncertainty (or noise), and
thus, it will be fairer and more reliable than an approach
purely based on the fitness values. Thus, we think that this
proposed selection mechanism would benefit getting a good
optimization process.

BLX-α Crossover operator [6] has also been added to
the GA (instead of previous two-point operator). The Blend
crossover operator starts by choosing randomly a number from
the interval [xi − α(yi − xi)..yi + α(yi − xi)], where xi and
yi are the ith parameter values of the parent solutions x,y and
xi < yi. See Figure 6.

Thus, this operator is based on the random generation of
genes from the associated neighborhood of the genes in the
parents. Three generated descendants are different among them
and also among them and their parents, leading to a higher
exploration factor in the generation of the offspring. This
operator is suitable for real coded genetic algorithms and it
has proved to achieve a good balance between exploration

Fig. 6. Blend crossover operator (BLX − α)

and exploitation [6].
In the Blend crossover operator, the α parameter values can

control the exploration/exploitation rate. So, in order to ensure
the balance between exploitation and exploration of the search
space, α = 0.5 could be selected.

In GAs, the search process needs a high exploration rate
in the first generations to explore multiple parts of the search
space so to obtain high diversity but in the last generations,
high exploitation is preferred to ensure the optimal solution.

We have considered two different approaches in the exper-
iments, one taking a constant value of α, and another with
a variable scheme, in which the value of α is decreased over
the generations (getting sequentially more exploitation and less
exploration). Thus, its value is obtained as:

α = 1− g

gmax
(6)

Where g is the current generation and gmax is the maximum
number pf generations. We think that this approach can achieve
an effective balance between exploitation and exploration and
therefore, better solutions may be reached.

VI. EXPERIMENTS AND RESULTS

On the basis of the results of our previous paper [28], the
selection of an appropriate track for training is an important
factor in order to obtain competitive bots. Alpine 2 circuit has
been selected for the experiments, since it combines multiple
turns with straight parts (See Figure 7).

Fig. 7. Alpine 2 Track: Slow mountain road. Length: 3773.57m, Width: 10m



As in our others studies, we have used the vehicle car1-
tbr1 for our controllers, since it has a moderate performance,
which will lead our controller to be prepared to drive in the
most usual conditions.

We have evaluated the Genetic Fuzzy Controller (GFC) with
the proposed fitness function: fAV S (Equation 5). We have run
the algorithm with a population size of 60 individuals. The
rest of parameters are: Generations=50, Crossover rate=0.85,
Mutation rate=0.09, and 10 different runs per configuration.

New pole position selection has been conducted considering
Alpine 2 track, 5 races and 20 laps per race. We have defined
a score function based in Formula 1 schema, so the obtained
punctuations depend on the car position in the final rank: 1 -
25 points, 2 - 18, 3 - 15, 4 - 12, 5 - 10, 6 - 8, 7 - 6, 8 - 4,
9 - 2, 10 - 1. The the starting grid (initial positions of cars)
on these races was set randomly. Due to the high-demanding
time this method is, this race-based selection process has just
been performed every 5 generations (not in all of them).

At the end of the evolution (in the last generation) an addi-
tional race-based selection process is applied as in previous
work [28]. So, the best 10 individuals (according to their
fitness) of the final population compete in 5 races (of 5 laps)
in the Alpine 2 track. Formula 1 scores are again applied and
the winner will be selected as the best controller of the run.

The evolution process was applied in separate bunches of
runs to obtain the following controllers:

• GFC: Controller from our previous work [28] using race-
based selection only in the final generation and with
fitness fAV S (Equation 5).

• GFC − RS: A controller obtained by applying the
classical two points crossover operator (as in previous
works) and race-based selection once every 5 generations
and fitness fAV S in the others.

• GFC−FA: A controller obtained by applying BLX−α
crossover operator with a constant value of α = 0.5 and
race-based selection once every 5 generations and fitness
fAV S in the others.

• GFC−V A: A controller obtained by applying BLX−α
crossover operator with a varying value of α using Equa-
tion 6 and race-based selection once every 5 generations
and fitness fAV S in the others.

Once the 10 runs have finished, the obtained 10 best
controllers compete again in a similar set of races as those
conducted in the last generation of the algorithms, in order to
choose the best controller overall per approach, i.e. the best
GFC −RS, GFC − FA and GFC − V A.

The final best GFCs (one per approach) are evaluated in
some races together in a kind of Formula 1 mini championship,
consisting of 10 races, each one for 20 laps, and with a
total of 10 participants per race: the 4 GFCs and also 6
standard bots from TORCS. We have choose two controllers
between tita (a conservative driver), berniw (known by its
aggressive overtaking policy) and inferno (the fastest one).
The first 5 races are conducted in Alpine 2 track (used during
training/optimization); and the other 5 races took place in E-
Track 5 track (not trained for the new controllers). Finally,

in order to do it fairer, we have defined an additional score,
so the controller which gets the fastest lap or the minimum
damage in each race is given 5 extra points. The starting grid
was again set randomly.

The results of this comparison are shown in Table I and
summarized graphically in Figure 8.

Fig. 8. Scores obtained by the different Genetic fuzzy-based controllers in
two different tracks.

It is clear from the table and figure that the GFC − V A
controller yields the best results in the evaluation process.
Indeed, The proposed controller won three races in Alpine
2 track and has been ranked in the second place in the two
other racing tracks. In the E-Track 5 circuit, it won two races,
has been second twice and third in the last race.

The second controller using the BLX − α (constant value
of 0.5) operator came second in all races. It won one race and
was ranked second in two more and third in three races. The
other races were won by the berniw controller, always a tough
rival. We can notice that the BLX −α based controllers won
three out of the five races in the Alpine 2 track used in the
selection and were ranked at least in fourth place. The same
results or even better were obtained for the other track, which
is supposed to be unknown for our controllers.

These results confirm the effectiveness and strength of the
pole position selection policy used to evaluate individuals as
well as to select candidates for crossover. Although this policy
has been applied only once every 5 generations due to its
time-consuming, it has clearly affected the performance of
the obtained controllers looking to the large gap between the
results of the GFC controller against GFC −RS one.

This proposed selection policy combined with the BLX−α
operator, has boosted the performance of the GFC − FA
controller. The introduction of a variable α parameter along the
generations in GFC − V A bot has made it possible to better
control the exploration/exploitation ratio during the evolution-
ary process, allowing to generate descendants different from
their parents in genes and more efficient than them.

In order to check the value of our best controller, we have
conducted an additional experimentation.

We have considered an opponent from the state of the art,
which participated in several Simulated Car Racing Competi-
tions in past editions. It was proposed by Pérez-Liébana, Sáez,



TABLE I
RESULTS OF THE MINI-CHAMPIONSHIP WITH 10 DRIVERS AND 10 RACES IN TWO DIFFERENT TRACKS. tita, berniw AND inferno ARE EXAMPLE

CONTROLLERS INCLUDED WITH THE TORCS SIMULATOR [32]

Races in Alpine 2 track (20 laps each) Races in E-Track 5 track (20 laps each)
Driver R1 R2 R3 R4 R5 Track Score R6 R7 R8 R9 R10 Track Score Total Score
GFC 6 8 8 15 15 52 12 15 10 10 15 62 134

GFC − RS 12 10 18 12 12 64 10 8 12 25 8 63 127
GFC − FA 18 12 15 10 10 65 15 12 25 15 25 92 157
GFC − V A 25 18 25 25 18 111 25 18 15 18 18 94 205

tita1 4 2 6 4 1 15 2 1 2 1 1 7 22
tita2 2 1 2 2 2 9 1 2 1 2 2 8 17

inferno1 8 4 1 1 6 20 4 4 6 8 6 28 48
inferno2 1 6 4 8 8 27 6 6 4 4 4 24 51
berniw1 10 25 10 18 4 67 18 10 8 12 12 60 127
berniw2 15 15 12 6 25 73 8 25 18 6 10 67 140

Recio and Isasi [26] and later refined in the work [16]. We
have baptised it as PSRI in honor of its authors’ surnames.

This controller behaves mainly using a Finite State Machine
(FSM), defining the main states in which the driver can be
(for instance turning, overtaking a rival). The transitions in
the FSM are governed by a set of fuzzy rules, based on
the information read from different sensors. There is also a
classifier module (J48 decision tree), able to analyse the inputs
from some sensors in order to predict parts of the track, to
anticipate the following actions to perform. The fuzzy rules
and also some parameters of the FSM were optimized by
means of a NSGA-II algorithm.

As stated, PSRI controller competed in 2009 edition of the
Simulated Car Racing Championship [18], where it was ranked
4th considering the scores obtained in three different Compe-
titions (held at CEC, GECCO and CIG 2009 conferences).
It performed on average very well, reaching good scores and
positions in several races.

Table II presents a comparison between the two BLX − α
genetic based fuzzy controllers presented in this paper, GFC−
FA and GFC−V A with PSRI controller. The results are the
average values of damage, MaxSpeed and Speed of 10 races
in the Alpine 2 and E-Track 5 tracks.

TABLE II
AVERAGE DAMAGE AND SPEED RESULTS OF 5 RACES IN ALPINE 2 AND 5

RACES IN E-TRACK 5 TRACKS

Alpine 2
GFC − FA GFC − V A PSRI

Average Speed
(km/h)

187.11 199.65 176.94

Max Speed
(km/h)

225.07 231.91 217.83

Damage 126.82 117.55 131.99
Won races 0 4 1

E-Track 5
GFC − FA GFC − V A PSRI

Average Speed
(km/h)

161.11 170.23 160.89

Max Speed
(km/h)

262.88 270.17 266.54

Damage 18.12 14.67 28.09
Won races 1 3 1

The results of the PSRI controller and GFC − FA are
very close, they won two and one race respectively among
10. Their average speeds are similar but as for the damage,
the controller GFC − FA suffered the minimum because of

the inclusion of the variable damage in the fitness evaluation.
The results of the GFC−V A controller are very satisfactory.
Indeed, it won 7 races and got the lowest value of damage
117.55 and 14.67 for both circuits, the highest average speed
199.65 and 170.23.

Looking at these and previous results, we can conclude that
the proposed controllers are very successful, due to the new
included mechanisms to deal with uncertainty and to perform
a more convenient search of the space of solutions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have tried to get winning racing car drivers
by first improving the selection process so that, from time to
time, uncertainty is eliminated by using actual competitions in-
stead of fitness-based evolution, and second, keep the balance
between exploration and exploitation high, and also variable,
by using a fixed and adaptive version of the BLX-α operator.

The fuzzy genetic controller is subject to uncertainties
in the track especially in case of presence of rivals so in
order to overcome this problem and thus design a robust and
reliable bot, we proposed to apply a Pole Position Selection
policy where the selection of parents in the evolutionary
process is carried out according to the results of a set of
mini-championships organized among the individuals of the
population, which looks like a car racing tournament selection.
At the same time, and aiming to intensify the exploration
process in the search space, we used the BLX −α crossover
operator with decreasing values of the α parameter throughout
the generations.

The evaluation was performed by comparing the proposed
controller with bots of the TORCS platform, yielding very
good results. The other evaluation of our controller was
a confrontation with a real bot (PSRI controller), which
participated in several Simulated Car Racing Competitions.
In this case, the BLX operator and the new selection policy
have had a lot of impact in helping our controller to win three
quarters of the races by getting the lowest damage, average
speed and maximum speed values.

These results let us to think that our controller could
have reached a very good rank in the Simulated Car Racing
Competition, which is unfortunately over since 2015. Anyway,
we think that the findings of this study (and previous ones)
could be applied successfully to other car racing simulators,



such as those used in current eSports Competitions, such as
iRace (https://www.iracing.com/).

As future lines of work, this controller can be improved
in some ways: We can extend the selection policy to all
generations while overcoming the computation time drawback
by means of a parallel implementation. We can also explore
other parameter-less fitness functions to evaluate individuals
including other factors affecting the performance of the car.
Another perspective is to use multiple tracks (instead of just
one) in the selection process in order to train a more general
controller, able to deal with many different situations.
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