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Abstract—In Collectible Card Games like “Magic: the Gath-
ering”, one of the developers’ main challenges is creating new
and interesting cards that are not too strong or game-braking,
pertaining the game’s overall balance. One way to address this
issue is through the analysis of the cards resource costs. Powerful
cards need more resource to be played while weaker ones need
less resource. This work proposes a recommender system to a
card’s resource scale. In summary, we model the problem as
a classification task and present and in-depth analysis of our
results. We propose using LSTMs to learn a vector representation
for text followed by XGBoost models to incorporate remaining
features. Our approach is capable of reaching a Mean Reciprocal
Rank of 0.8064 despite superficially identical cards having dif-
ferent mana costs. The analysis provided indicate that the model
was able to learn useful rules for predicting a card’s resource
cost and highlight key insights for future research.

Index Terms—Collectible Card Games, Game Balancing, Deep
Learning, Gradient Boosting

I. INTRODUCTION

Collectible Card Games (CCG), also called a Trading Card
Games (TCG), are games played with specially designed sets
of cards. The modern concept of CCG was first presented
in “Magic: The Gathering”, designed by Richard Garfield and
published by Wizards of the Coast in 1993 [1]. One of Magic’s
core cards are lands. Each player can play one land card per
turn and these are responsible for resource generation. Each
other kind of card has a resource cost, called mana cost, which
informs the amount and color of mana needed to play the given
card. Figure 1 illustrates the basic features of Magic cards.

During the span of its 26 years of existence, “Magic: the
Gathering” published over 17,000 different cards with various
mana costs, as illustrated in Figure 2. In Magic and several
other CCGs, a way of balancing cards is addressing the amount
of resource needed to use them. Powerful cards with various
abilities require larger amounts of mana to be spent in order
for them to be played, while simpler ones require less mana.
However, this balancing is far from perfect. One consequence
is the occurrence of ’broken’ and ’useless’ cards that provide
way too strong or weak effects respectively in comparison to
their mana cost.

This work was partially funded by authors individual grants from CNPq
and FAPEMIG.

Fig. 1. Core concepts that encompass a “Magic: The Gathering” card.
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Fig. 2. Number of cards released in each year with mana cost up to 7. Data
collected in March of 2019.

Designing for balance is core in competitive games. En-
suring fairness in player vs. player games is crucial to the
success of any game that features this sort of interaction. This
is a particularly relevant problem in Magic. Cards that are
too strong end up being banned or have their monetary value
inflated, preventing access to most players. The weak cards, in
turn, end up not being chosen to constitute the decks of many
players. This phenomenon leads to many cards not being seen
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in actual play, which not only harms the competitive scenario
giving players less options, but also consists in the waste of
time and effort of the development team.

This work addresses the challenge of proposing balanced
mana cost for cards in “Magic: the Gathering” CCG. We
propose a resource scale method based on cards already
published. We model this task as a learning the multi-class
classification problem. We employ a LSTM to quantify the
influence of a card’s textual patterns in its cost and extract its
vector representation from the output of the penultimate layer.
We also explore the usage of both Multi-Layer Perceptrons
and XGBoost to join this representation with other handcrafted
features, some of which are illustrated in Figure 1.

The proposed model is able to learn card’s cost abstractions,
reaching +0.8 MRR (Mean Reciprocal Rank) in the general
case and +0.93 MRR when it is allowed to abstain from
predicting under ambiguous interpretations yet still handling
over half the cards in the dataset of existing cards. It is worth
noticing that the data could be interpreted as noisy, as there are
cards with the same features and abilities but with different
mana costs, as well as cards with the same mana cost and
features but with distinctly different abilities.

II. RELATED WORK

Although many works feature “Magic: The Gathering”, to
our knowledge, none attempt to actively tackle the issue of
game balancing. In particular, no work addresses the task
of suggesting mana costs for new and existing cards. The
closest one is from Summerville and Mateas [2]. They created
new magic cards by means of a denoising-autoencoder. In
particular, their approach allows a player to specify only part
of a card’s features and the model is able to fill in the blanks.
Although the work of Summerville and Mateas could be
applied in our scenario, evaluating mana costs is neither their
end goal nor an objective in which their model is focused on.

Other works involving Magic are the ones from Ling et.
al. [3] who proposes a new network type capable of code
generation through the features of TCG cards and uses a
dataset comprised of Magic cards to validate their results;
Ward and Cowling [4] who explored the usage of bandit based
Monte Carlo search applied to the problem of card selection
in “Magic: The Gathering”; and Zilio, Prates and Lamb [5]
that tackled the task of image-text matching.

Regarding game balancing in CCG we can highlight the
work of Gold [6] which addresses the concepts of what is fun
and balanced in CCGs, one of their examples being Magic.
His analysis is focused on the game-play elements of a match
itself. In order for a game to be fair and fun, matches need to be
close and the lead needs to change. Simply adding randomness
might not solve it. Another work that tackles the same problem
is the one from Ham [7] which elucidates balancing challenges
in games that use any sort of collectible objects. He performs
several case studies and mainly focuses on the relationship
between powerful cards and their rarity as well as their overall
price, and how this affects a player’s fun regarding game
balance and the concept of what is unfair. We, on the other

hand, do not feel that the rarities of cards are good balancing
factors in modern CCG games. There are multiple instances
of weak and cheap cards which are rare. Rather, we chose to
focus on a more direct and impactful feature for balancing:
their resource cost.

III. BACKGROUND

In order to understand how to solve the proposed problem
of predicting a resourse scale for Magic cards and compre-
hend the employed model, this section addresses the various
concepts and methods employed in this work. The objective
is to summarize the knowledge necessary to understand the
techniques used. It discusses LSTM, gradient boosting, node
embeddings and the SHAP algorithm.

A. Long Short-Term Memory networks

Long Short-Term Memory (LSTM) networks are an ex-
tension of Recurrent Neural Networks (RNN) that intended
to remedy their problem of vanishing gradients [8]. Unlike
other neural networks, the decision of a recurrent network at
instant t − 1 affects its decision at instant t. These networks
receive two inputs: the present and the recent past. In their
architecture, loops allow information to persist. A fraction of
the network examines the segment of the input relative to
instant t and returns an output. A loop feeds this output back
to the network which lets the learnt information to be persisted
over time. This allows the decision making at instant t+1 to
take into account the output at instant t.

A RNN-based model often encounters the problem of
vanishing gradients. Less information about the distant past is
propagated at each iteration of the RNN loop. In text analysis,
relationships between words that are too far apart in sentences
may dissipate along time. LSTM solves this problem by
storing information beyond the recent past. Data can be stored
in its memory cell as well as overwritten, read or completely
forgotten. Gates control how much of the memory data needs
to be updated, allowing partial information propagation.

B. Node embeddings

Many important problems involving graphs require the use
of learning algorithms to make predictions about nodes and
edges. The main goal behind node embeddings is to map nodes
to low-dimensional embeddings in such a way that similarity
in the embedding space approximates similarity in the original
graph. NBNE [9], [10] solves this challenge by applying a skip
gram-like algorithm using nodes neighborhoods as contexts.
The model learns node’s representations by maximizing the
log probability of predicting a node given another node
within a maximum predefined distance. The main advantage of
NBNE is its training speed, which is far faster than other state-
of-the-art methods while still maintaining similar or better
performance.

C. Gradient boosting

The main idea behind boosting is using an ensemble of weak
learners that can be somehow combined to generate a stronger



model. More specifically, there might be an efficient algorithm
that could convert poor hypothesis, like weak learners which
are slightly better than a random guesser, into a single very
good hypothesis. One approach is filtering the observations,
modifying the distribution of examples in such a way as to
force the weak learning algorithm to focus on the harder-to-
learn parts of the distribution [11].

Let y be the values of the output variable, i be an iteration of
the gradient boosting algorithm and Gi(x) be the output of the
proposed model at time i. The algorithm improves Gi(x) by
constructing a new model that adds an estimator h to provide
a better model, which leads to Gi+1(x) = Gi(x) + h(x). A
perfect h would imply in h(x) = y − Gi(x) . Therefore, the
gradient boosting approach will attempt to fit h to the residual
loss. However, to classification problems, residuals y −G(x)
for a given model are the negative gradients in respect to G(x).
Thus, gradient boosting is a gradient descent algorithm for
combining and training weak learners. In this work we employ
XGBoost, which improves upon the original gradient boosting
machines [12].

D. Shapley additive explanations

Shapley value is a solution concept in cooperative game
theory [13]. Let N be a set of n players in a cooperative
game, S denote a coalition of players and v be a characteristic
function over S. That is, v(S) denotes the worth of a coalition
S and describes the total expected sum of payoffs that the
members of S obtain by cooperation. Adding player ni to
an existing coalition S increases the expected payoff by
v(S ∪ {ni})− v(S). Since there are n! possible ways to line
up the n players and the player ni must be preceded by all
the members of S and followed by remaining players in N ,
there are |S|!(n−1−|S|)! lineups in which player ni joins the
existing coalition S. If we sum its contribution over all lineups
in which ni joins S and over all possible existing coalitions S
that it might join, we get its total contribution over all possible
lineups of N . The Shapley value ϕni

(v) of player ni is the
average of its total contribution in the cooperative game (v,N)

The idea of Shapley additive explanations (SHAP) is the
usage of this concept from game theory to interpret a target
model [14]. We represent how model x′ explains a phe-
nomenon as a d-dimensional vector E(x′) = e1, e2, ..., ed
showing which features are contributing the model’s predic-
tion. Specifically, ei takes a value that corresponds to the
influence that the respective feature xi had on the model deci-
sion. Since many features are vector representations of some
card characteristic, we cannot assume feature independence.
Correlated features end up sharing credit or importance.

IV. PROPOSED APPROACH

Our proposed approach can be divided into two separate
models, one for creating a representation of a card’s text and
other to properly classify a card. We formulate the first model
as a function f(s; θf ) parameterized by θf that maps a word
sequence s to a vector representation v. The second model is
a function g(v, u; θg) parameterized by θg that maps a pair of

vectors (v, u) to a probability distribution encompassing the
classification task. Given a word sequence s, we can obtain its
representation by applying f(s; θf ) thus obtaining v. We feed
v alongside the remaining features u to g(v, u; θg) and obtain
the probabilities of each class given the inputs s and u. We
employ a bidirectional LSTM to learn θf , XGBoost to learn
θg and NBNE in order to reduce the dimensionality of u.

A. Embeddings of card effects
First and foremost we train word embeddings thorough

the Word2Vec algorithm [15] on all words contained in the
card’s abilities. We filter stopwords present and perform both
lemmatization and stemming over all words. Since we have
diversified training instances, this becomes a necessary step to
generate more robust embeddings and to avoid the occurrence
of infrequent variants of relevant words.

A bidirectional LSTM layer followed by a fully connected
layer are responsible for processing the input and generating a
classification, in which the output of the last LSTM cell is fed
to the classification layer [16]. The intuition is that this cell
contains the summarized information of the whole description
and is appropriate for extracting the new representation. A
softmax activation over the last layer allows us to obtain the
probabilities for each class. Figure 3 illustrates our proposed
architecture.

Word	1 Word	2 ... Word	s

...

Maximum	text	size:	50	words

...

Embedding	layer

bi-LSTM	layer

Dense	layer

Probability	Vectors

Forward	LSTM

Backward	LSTM

Embeddings	output
Classifier	Output

LSTM	output	(learnt	representation)

Classifier

Hidden	State	of	LSTM

Fig. 3. Proposed neural network to perform the classification task over cards
descriptions.

The architecture employed serves as a feature extraction
approach and allows us obtain a new compact representation of
all the textual data in a card. To obtain the final newly learned
representation of the original textual features, we extract the
output of the penultimate layer just before the classification
step. The obtained vectors can then be used as input into any
learning model and are explicitly guided by the given classes.
Unlike other possible methods of extracting representations
from text, this approach already introduces a bias relative to
mana cost which will aid further models employed.



B. Addressing dimensionality of sparse features
Most of a card’s features are composed of either categorical

or list attributes. One simple solution is to hot-encode them.
For features like “rarity”, which has only five possible values,
this approach works well. However, there are features such
as printings expansions or the list of its subtypes. When hot-
encoded, we get an extremely sparse representation as each
one has more than 300 possible values. In fact, we obtain data
of dimensionality superior to 1500 when all categorical and
list features are hot-encoded. As an alternative solution, we
propose to encode these features through node-embeddings.

Each of the high dimensional hot-encoded features can be
modelled as a graph, where the nodes represent the cards
and the edges encompass the relations inside each of the
categorical classes. To illustrate this idea, let’s address the
graph of the printing expansions: two nodes have an edge
between them if the cards they represent have at least one
expansion in common. When all expansions are evaluated,
we obtain an undirected graph containing all relationships
between cards given their printings.

Next, we use the NBNE to obtain a compact representation
of each of feature. Because it is based on the analysis of a
node’s neighbourhood, connected cards are close in vector
space while unrelated ones end up distancing themselves.
Through this approach, we are able to summarize each feature
of high dimensionality. We opt to generate node-embeddings
of size ten since, among the features of small dimensionality,
none exceeds ten possible values. We reduce our data from
over 1500 dimensions to 121, barring the representations
extracted from the bidirectional LSTM.

V. EXPERIMENTS

In this section, we discuss the evaluation procedures and
results found associated with the proposed model, hereinafter
referenced as LSTM-XGBoost. In particular, our experiments
should answer the following research questions:

RQ1: In collectable card games, how well can a card’s
resource cost be predicted from its features?

RQ2: Does the usage of latent outputs as inputs to other
models exceed a typical end-to-end network?

RQ3: What is the impact of modeling sparse categorical
features as node-embeddings?

RQ4: Given collectable card games features, can we exploit
some sort of inherent pattern?

RQ5: What is the impact of allowing the model to abstain
from giving a doubtful prediction?

RQ6: What is the impact of specializing in the most
difficult parts of the problem?

RQ1, RQ2 and RQ3 are analyzed during our general model
evaluation in Section V-A. In Section V-B, we attempt to
characterize data using our knowledge regarding the data while
splitting the base into more concise sets, adressing RQ4 in
V-B. Sections V-C and V-D are devoted to answering RQ5
and RQ6 respectively.

We consider only cards of mana cost up to 7 since cards
with cost of 8 or higher are few and far between. We also filter

cards with long texts (more than 50 words) or without any
text at all. However, like many real world problems, the data
is unbalanced. In particular, there are more cards with cost
3 than in any other class. Data augmentation is performed
over the underrepresented classes by making new synthetic
cards which text is compromised of random permutations of
sentences from the original cards. After data augmentation,
we obtain 26040 cards, of which 9039 are synthetic cards and
17001 are original ones.

To ensure the validity of the reported experiments, the orig-
inal card and all its synthetic variations are always contained
in the same train or test split. To ensure the relevance of the
results, we assess the statistical significance of our measure-
ments by means of a pair wise t-test [17] with p−value ≤ 0.05
and through 5-fold cross validation. Unless otherwise noted,
all results are statistically different from one another.

We perform an exhausting grid search to find a suitable
set of hyper-parameters for both the bidirectional LSTM and
XGBoost. In particular, we access the LSTM layer size (which
is tied to the size of the text’s vector representation) as well
as the number of estimators and the depth of XGBoost trees.
Our analysis leads to the usage of a bidirectional LSTM of size
150 and regarding XGBoost, 100 estimators with maximum
depth of 35. We use Stochastic Gradient Descent (SGD) [18]
to optimize the Cross-entropy loss function.

A. Model evaluation

Our first set of experiments address RQ1. In regards to
RQ2, we use as baseline a bidirectional LSTM followed by
a Multilayer-Perceptron (MLP). The core goal of the MLP
is to encode and interpret the non-textual features of each
card. We consider two possible architectures, one in which
the MLP is employed in parallel to the LSTM and both their
outputs are combined into a final prediction (LSTM+MLP)
and a second one in which the outputs of the bidirectional
LSTM are concatenated to the remaining inputs, and this new
vector is fed to the MLP (LSTM-MLP). We also evaluate the
standalone MLP, bidirectional LSTM and XGBoost models.
In order to answer RQ3, we consider the scenarios with the
presence of node-embeddings and without, using instead the
hot encoded representations. All the results are summarized in
Table I.

Node-embeddings Many-hot encoded
ACC MRR ACC MRR

MLP (numeric) .2031 .5012 .0941 .2634
XGBoost (numeric) .5955 .6921 .5599 .6587
LSTM (text) - - .6404 .7655
LSTM-XGBoost (text) - - .6102 .7112
LSTM+MLP .5954 .7344 .5913 .7342
LSTM-MLP .5898 .7314 .5891 .7299
LSTM-XGBoost .6841 .8064 .6582 .7766

TABLE I
RESULTS OBTAINED BY THE PROPOSED MODELS. THE LSTM-XGBOOST
APPROACH IS STATISTICALLY SUPERIOR IN BOTH ACCURACY AND MRR.

Before addressing RQ4, we should first understand the
behavior of the proposed model. We analyze the precision,



recall and F1-score for each class. Table II illustrates the per-
formance of LSTM-XGBoost and Table III of the standalone
bidirectional LSTM.

precision recall F1-score support
Mana 0 .97 .99 .98 3255
Mana 1 .73 .75 .74 3255
Mana 2 .47 .47 .47 3255
Mana 3 .38 .33 .36 3255
Mana 4 .46 .45 .45 3255
Mana 5 .65 .67 .66 3255
Mana 6 .82 .85 .84 3255
Mana 7 .92 .95 .94 3255

TABLE II
LSTM-XGBOOST RESULTS FOR EACH OF THE EVALUATED CLASSES.

ACCURACY OF 0.6841 AND MRR OF 0.8064.

precision recall F1-score support
Mana 0 .93 .96 .94 3255
Mana 1 .66 .70 .68 3255
Mana 2 .42 .39 .40 3255
Mana 3 .34 .27 .30 3255
Mana 4 .42 .42 .42 3255
Mana 5 .59 .62 .60 3255
Mana 6 .78 .83 .80 3255
Mana 7 .87 .95 .91 3255

TABLE III
BIDIRECTIONAL LSTM RESULTS. THIS MODEL ONLY USES THE TEXTUAL

DATA OF A CARD. ACCURACY OF 0.6404 AND MRR OF 0.7655

During further analysis around the model’s confusion ma-
trix, illustrated in Figure 4, some interesting patterns can
be seen. Although the middle classes are indeed the worst
performers, the model still predicts mana costs arithmetically
close to their true values. This emergent behavior was not
explicitly modeled and is a desirable characteristic. It serves
as a strong indicator that the model does indeed learn useful
general features despite the nature of the data and that it may
be applied to suggesting balanced mana costs.

Confusion Matrix for LSTM-XGBoost
ACC : 0.6841 MRR : 0.8064
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Fig. 4. LSTM-XGBoost Confusion matrix. Values are concentrated close to
the main diagonal, implying that the model learned useful rules.
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Fig. 5. SHAP values of the top 20 features used for classification. Several
dimensions related to text representation appear as top performers.

We employ the SHAP algorithm to visualize the impact of
each feature used as input to LSTM-XGBoost. It is possible to
observe that a considerable part of the model’s explanation is
a result of a card’s abilities representation. Among the twenty
most relevant features, twelve of them are some dimension of
the text vector representation as seen in Figure 5. Regarding
the numerical attributes, there is not much that can be done
in order to improve the model besides experimenting with
new modeling forms. However, if we were able to generate
more robust representations of each card’s text in such a
way that they better classify the data, we should observe an
improvement in the predictions. The next experiments involve
mainly LSTM and how to address this task. We chose to
analyze the LSTM individually rather than the full LSTM-
XGBoost model to directly access the impact of our decisions
over the representations, explicitly filtering any correlation that
might exist with the remaining features.

B. Data characterization

A common phenomenon in games published over a long
period of time and which allow the usage of both old elements
and new ones is power creep [19]. The idea behind the concept
is that a company has to sell their new products, but everything
new they create has to compete with previously existing pieces.
To draw consumers’ attention and justify further acquisitions,
new products end up becoming superior to older ones to the
point of becoming strictly better and completely outclassing
one another. This means that older content becomes obsolete
or relatively under-powered. In “Magic: The Gathering”, in
each new edition developers attempt to power up some aspects
of new cards while bringing down in power other ones, overall
balancing things out.



93-00 01-06 07-11 12-14 15-16 17-19
Mana 0 .93 .94 .97 .94 .97 .98
Mana 1 .72 .69 .65 .68 .63 .67
Mana 2 .43 .38 .38 .39 .35 .41
Mana 3 .32 .30 .26 .26 .30 .29
Mana 4 .45 .44 .37 .37 .38 .40
Mana 5 .62 .62 .57 .65 .62 .66
Mana 6 .84 .82 .81 .84 .84 .83
Mana 7 .87 .94 .92 .92 .93 .94

Accuracy .61 .65 .62 .66 .65 .68
MRR .75 .76 .75 .77 .77 .79

TABLE IV
CLASS F1-SCORE, ACCURACY AND MRR FOR EACH TIME SPAN.

Of course, given the rather large span of time and the high
number of cards already printed, it becomes unfeasible to
promote a globalized human-based balancing approach. This
leads to developers mainly focusing on the recent past and in
popular traditional cards, which in turn leads to some degree
of power creep. Over the nearly three decades of its existence,
many of the design decisions have changed. New abilities
were introduced, new combinations of cards emerged and the
game became more dynamic. With this in mind, we propose
an analysis of Magic in intervals of time as shown in Table
IV. Each time split contains roughly the same amount of
cards. This leads to a far more reliable and concise analysis,
especially because the card distribution over the years is rather
different.

The color system is one of the game’s most fundamental and
iconic elements. It gives the game diversity in its cards, effects,
and play styles, while preventing any one deck from having
every tool in the game. Each of the five colors represents a set
of beliefs and principles [20]. A color’s philosophy explains
how it sees the world, what objectives it hopes to realize
and what resources and tactics a color has at its disposal.
Gameplay-wise, this dictates which card types and abilities
thematically fit within a color. With this in mind, we explore
creating different models for each of core Magic’s colors as
well as one for colorless cards and multi-colored ones.

“Magic: The Gathering 2011 player’s handbook” provides
an overview of each color. White comes from plains, mead-
ows and fields, they bring light and order. Blue comes from
islands and bodies of water, involving intellect and illusion.
Black comes from swamps and places of death. Black
magic is steeped in darkness and death. Red comes from
mountains and rocky places and call forth fire and passion.
Green comes from forests and jungles and conjure growth
and might. Colorless are unbound and can come from a
variety of places. Multicolored are flexible and encompass
all the philosophies from each of their colors.

We assume a learning scenario in which cards can be
mapped to context domains, associated with their color iden-
tities, enabling us to learn specific models for each color
domain. Our main hypothesis is that there are abilities that
might be more valuable in certain domains than in others. This
should be reflected by Magic’s design choice of associating
each color with a philosophy and a mechanic. For instance, if

Mana 0 .97 .96 .97 .96 .98 .95 .99
Mana 1 .67 .63 .65 .66 .69 .66 .66
Mana 2 .34 .32 .38 .36 .42 .43 .35
Mana 3 .29 .29 .32 .30 .34 .29 .42
Mana 4 .36 .47 .41 .41 .45 .45 .39
Mana 5 .59 .59 .60 .63 .64 .66 .65
Mana 6 .81 .80 .79 .78 .81 .87 .81
Mana 7 .91 .93 .90 .94 .89 .93 .93

Accuracy .62 .63 .62 .62 .64 .70 .78
MRR .75 .76 .75 .75 .76 .80 .85

TABLE V
CLASS F1-SCORE, ACCURACY AND MRR FOR EACH COLOR TYPE.

an ability is vastly present in some color but scarce in others,
it might be the case that it should be valued differently in each
context. Further, cards that have more than a single color or
no color at all are more flexible regarding their abilities and
strategies. It should be useful to address them separately from
other cards. Table V summarizes the experiment regarding
these assumptions.

C. Dealing with uncertainty
The output of LSTM-XGBoost is composed of a probability

distribution which indicates the most likely classes for each of
the input instances. From information theory, the more equally
distributed a probability distribution, the greater its entropy
and therefore the greater the uncertainty over the prediction
of the modeled random variable [21]. During training, the
models are optimized with the cross-entropy loss function in
an attempt to minimize uncertainty of the model’s output by
maximizing the likelihood of predicting the correct classes
while minimizing the likelihood of incorrect ones. Even so,
there are cases where the model presents considerable uncer-
tainty due to the design setting of superficially identical cards
having different mana costs.

We propose establishing a certainty threshold during the
evaluation step as the minimum probability that should be
associated with a single class to validate the proposed pre-
diction in RQ5. Indirectly, this modeling entails classifying
low entropy instances and abstaining from high entropy cases.
Under these constraints, the model presents a remarkable gain
in performance as shown in Figure 6 while still classifying
over half the validation instances.

D. Domain adaptation on hard classes
In order to answer RQ6, we explore a transfer learning

approach related to our problem. In particular, we first train
the model using all data samples and then perform domain
adaptation over the intermediary classes where the model
usually struggles. Table VI illustrates the new results in the
specialized classes, and an improvement can be seen. Table VII
shows the model performance including the remaining classes.
Although the performance for the specific specialized classes
improves, the model forgets how to handle the easier classes
and ends up with an overall worse performance. This leads us
to believe that domain adaptation in the most difficult classes
is not a suitable approach.



Confusion Matrix for LSTM-XGBoost (0.5 certainty)

Macro-ACC : 0.8011 Micro-ACC : 0.9012
Macro-MRR : 0.8692 Micro-MRR : 0.9385
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Fig. 6. LSTM-XGBoost Confusion matrix setting a certainty threshold of 0.5.
Since under this constraint each class presents a distinct amount of instances,
we opt to use the percentage of occurrences rather than their absolute values
for better visualization.

precision recall F1-score support
Mana 2 .51 .48 .49 3255
Mana 3 .38 .36 .37 3255
Mana 4 .45 .48 .47 3255
Mana 5 .64 .67 .66 3255

TABLE VI
BIDIRECTIONAL LSTM RESULTS AFTER DOMAIN ADAPTATION IN THE

MOST DIFFICULT CLASSES.

precision recall F1-score support
Mana 0 1.00 .11 .20 3255
Mana 1 .00 .00 .00 3255
Mana 2 .24 .49 .33 3255
Mana 3 .20 .37 .26 3255
Mana 4 .24 .48 .32 3255
Mana 5 .33 .68 .44 3255
Mana 6 1.00 .00 .00 3255
Mana 7 .98 .03 .05 3255

TABLE VII
BIDIRECTIONAL LSTM RESULTS AFTER DOMAIN ADAPTATION IN ORDER
TO SPECIALIZE IN THE MOST DIFFICULT CLASSES. THE MODEL FORGETS

HOW TO HANDLE THE ORIGINALLY EASY CLASSES AND HAS AN OVERALL
WORSE PERFORMANCE. ACCURACY OF 0.2693 AND MRR OF 0.4874.

E. Results and discussion

Among the first set of experiments, we can visualize the
impact of modeling sparse features as node-embeddings. We
can see an improvement in performance in all cases barred
the LSTM combined with MLP scenario. They are indeed
useful even though no node feature appear amongst the top
performer features. The data’s dimensionality reduction allows
the model to properly focus on more relevant features while
still pertaining information regarding the sparse ones.

Overall, the developed models present high performance
evidenced by their MRR. A desirable emergent behavior is
that when the model misclassifies the cost of some card, it’s

usually attributed to an arithmetically close mana cost. This
was verified during our analysis over the confusion matrix
which presents high values close to the main diagonal. It
leads us to believe that the LSTM-XGBoost does indeed learn
general useful features for a resource scale.

Other arguments corroborating with the proposed hypothesis
emerge from the SHAP analysis. We can see a strong influence
of features like power or toughness of a card, which was
expected, but we also see the presence of features related to
the text representation of a card. In particular, we observe
that some dimensions are more closely associated with some
classes than others. A couple examples include dimension
134 which is extremely important to cards with cost of 7 or
dimensions 13 and 131 which present strong ties with cards
of cost 6. We can also identify some dimensions that appear
to be useful to differentiate between cards of close mana cost,
like dimension 98 having considerable impact involving costs
4 and 5 or dimension 133 which is useful to costs 1 and 2.

Although we cannot explicitly state what each dimension
represents, it’s clear that there are ties between specific mana
costs and certain characteristics present in the text of each
card. The model learns to make these connections and provide
mana costs scale recommendations given the card’s features.
Take for instance the cards shown in Figure 7. Cancel and
Counter spell have same exact text but distinct mana costs.
Likewise, Lightning bolt and Shock have the same mana cost
but one does slightly more than the previous one. Our model
returns that Lighting Bolt should have a cost of two and Shock
is appropriate as is. Although the model miss classify the blue
cards, it provides consistent results, classifying the two equal
cards similarly and the stronger one is attributed a higher
cost. It is also able to understand the differences in similar
cards and correctly predict which is stronger, as shown with
Angel of Mercy and Aven Cloudchaser. Not only it’s able to
capture what similar cards have in common, but also what
they have that sets them apart. Cards with intermediary mana
costs compromise the majority of published cards as well as
the most common cards found in player’s decks. In a certain
way it’s natural that they are the ones with the largest variance.

A useful way to attempt to deal with this is to split the data
into more concise bins. We explore making this division based
on either release date or their color. We can observe that the
model trained upon the recent years is the performant while the
one trained on the oldest cards is the worst performer. Many
instances from cards with similar effects and divergent mana
costs arise from new cards being compared to old ones. We
could take advantage of this phenomenon and deploy models
based primarily on recent years. Regarding colors, we do not
see any improvement when dealing with regular colored cards.
However, we observe a great increase in performance when
dealing with both colorless and multicolored cards. This seems
to imply that cards from these two scenarios are significantly
different from the other ones. Further analysis is required, but
it might be the case that we should also focus on cards that are
exclusively of a color rather than simply considering if they
have that color in their identity.



Fig. 7. Some examples of “Magic: The Gathering” cards and their predicted mana costs.

By far, the largest gain in performance is when we allow the
model to abstain from giving a prediction. Most cases in which
the model performs a miss classification arise from the inher-
ent ambiguity of the input. When dealing only with instances
that the model has moderate certainty, we reach an MRR of
0.9385. Since some classes are easier than others, the model
naturally gives more predictions of these classes. Considering
macro MRR, we still maintain a good performance of 0.8692.
This serves as yet another argument in corroboration of our
hypothesis and in favour of the proposed approach.

VI. CONCLUSION

In this work we proposed a novel approach to dealing
with the task of recommending mana costs for “Magic: The
Gathering” cards. To our knowledge, this has never been done
before and, as such, we propose an in-depth analysis of the
peculiarities of the task at hand. Under usual circumstances,
the proposed model reaches a MRR of 0.8064 but we show
that, given some restrictions, this result can be improved upon.

Through our experiments, we present several arguments
that corroborate with the hypothesis that it is indeed possible
to learn useful general features that explain a card’s mana
cost. The instances that the model miss classify the inputs
might not be “true errors” given the ambiguity of mana costs
and how cards exist in the wild. It could be the case that
these cards are indeed unbalanced and the model is instead
proposing a suitable new mana cost for them. In order to
further validate our model, a simple yet effective method
would be a qualitative evaluation of its output. One approach
could be the creation of new synthetic cards which have
random attributes extracted from our database. Given the
model’s output for these new cards, we could ask the opinion
of seasoned Magic players regarding their mana cost and their
thoughts regarding its balance.

Aside from creating models for each studied scenario, some
directions for future work also include the usage of Generative
Adversarial Networks (GAN). In order to augment the under-
represented classes we simply created new permutations of a
card’s text. The main issue with this approach is that these
classes remain with a considerably smaller vocabulary. Using
GANs to perform data augmentation would allow us to have
a broader vocabulary for all considered classes.
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