
Policy Based Inference in Trick-Taking Card Games
Douglas Rebstock∗, Christopher Solinas†, Michael Buro‡ and Nathan R. Sturtevant§

Department of Computing Science
University of Alberta
Edmonton, Canada

Email: ∗drebstoc@ualberta.ca, †solinas@ualberta.ca, ‡mburo@ualberta.ca, §nathanst@ualberta.ca

Abstract—Trick-taking card games feature a large amount
of private information that slowly gets revealed through a
long sequence of actions. This makes the number of histories
exponentially large in the action sequence length, as well as
creating extremely large information sets. As a result, these
games become too large to solve. To deal with these issues many
algorithms employ inference, the estimation of the probability of
states within an information set. In this paper, we demonstrate a
Policy Based Inference (PI) algorithm that uses player modelling
to infer the probability we are in a given state. We perform
experiments in the German trick-taking card game Skat, in
which we show that this method vastly improves the inference
as compared to previous work, and increases the performance of
the state-of-the-art Skat AI system Kermit when it is employed
into its determinized search algorithm.

Index Terms—Game AI, Inference, Card Game, Neural Net-
works, Policy Learning, Skat

I. INTRODUCTION

Determinized search algorithms allow for the application
of perfect information algorithms to imperfect information
games. While this may not always be a good idea, in some
cases it represents the current state-of-the-art. These algo-
rithms are composed of two steps: sampling and evaluation.
First, a state is sampled from the player’s current information
set; informally, an information set is a set of states that a
player cannot tell apart given their observations. After a state is
sampled, it is evaluated using a perfect information algorithm
such as minimax.

Inference is a central concept in imperfect information
games. It involves using a model of the opponent’s play
to determine their hidden information based on the actions
taken in the game so far. Because the states that constitute
the player’s information set are not always equally likely,
inference plays a key role in the performance of determinized
search algorithms.

While counter-factual regret (CFR) techniques have pro-
duced super-human AI in Poker [1], [2], they have not proven
useful for trick based games. This is due to the extremely large
size of the information sets, the long length of bidding and
cardplay sequences, and the difficulty in creating expressive
abstractions. While these long sequences make the game too
large to solve, they also slowly reveal the private informa-
tion of the other players, thus making inference a desirable
approach.

In this paper, we show how an opponent model can be used
for inference in trick-taking card games. In particular, we train
policies on supervised human data and use them to infer the
private information of opponents and partners based on each
of their previous actions. This leads to improvements over the
previous state-of-the-art techniques for inference in the domain
of Skat.

The rest of this paper is organized as follows. First, we
explain the basic rules of Skat and then work related to infer-
ence in trick-taking card games. Next, we outline an algorithm
for performing inference in trick-taking card games using an
opponent model trained on data from a diverse set of human
players which we term Policy Inference (PI). This algorithm
assumes a policy of the opponents, and directly estimates the
reach probability of a sampled state by computing the product
of all probabilities of the actions in the history conditioned
on that sampled state. We evaluate this algorithm empirically
in Skat and show that it significantly outperforms previous
work both in tournament settings and at selecting the true
underlying state. Finally, we conclude the paper and provide
ideas for future research.

II. BACKGROUND

Trick-taking card games, like Contract Bridge, Skat, and
Hearts, are imperfect information games in which information
set sizes shrink rapidly due to hidden information being
revealed by player actions. Long et al. [3] explain why this is
an appropriate setting for determinized search algorithms such
as Perfect Information Monte Carlo [4] and Information Set
Monte Carlo Tree Search [5]. These algorithms are considered
state-of-the-art in several trick-taking card games, including
Bridge [6] and Skat [7].

After sampling, states are evaluated using perfect informa-
tion evaluation techniques, but this can be problematic. In
perfect information game trees, the values of nodes depend
only on the values of their children, but in imperfect informa-
tion games, a node’s value can depend on other parts of the
tree. This issue, called non-locality, is one of the main reasons
why determinized search has been heavily criticized in prior
work [8], [9]. Inference helps with non-locality by biasing
state samples so that they are more realistic with respect to
the actions that the opponent has made. This seems to improve
the overall performance of determinized algorithms. However,
the gains provided by inference come at the cost of increasing
the player’s exploitability. If the inference model is incorrect

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

or has been deceived by a clever opponent, using it can result
in low-quality play against specific opponents.

A. Related Work

Previous applications of determinized search in trick-taking
card games acknowledge the relationship between inference
and playing performance. The first successful application of
determinized search in a trick-taking card game was GIB [6] in
Contract Bridge. The author suggests that only deals consistent
with the actions taken so far are sampled for evaluation. More
specific details are not provided. WBridge5 [10] and Jack
[11] have had recent success in the World Computer Bridge
Championship [12], but their implementation details are not
readily available.

In Skat, Kermit [7], [13] used a table-based technique to
bias state sampling based on opponent bids and declarations.
This approach only accounts for a limited amount of the
available state information and neglects important inference
opportunities that occur when opponents play specific cards.
This inference will be referred to as Kermit Inference (KI)
for the rest of the paper. Solinas et al. [14] extend this
process by using a neural network to make predictions about
individual card locations. By assuming independence between
these predictions, the probability of a given configuration was
calculated by multiplying the probabilities corresponding to
card locations in the configuration. This enables information
from the card-play phase to bias state sampling. While this
method is shown to be effective, the independence assumption
does not align with the fact that for a given configuration, the
probability that a given card is present is highly dependent on
the presence of other cards. For instance, their approach cannot
capture situations in which a player’s actions indicate that their
hand likely contains either the clubs jack or the spades jack,
but not both. The Policy Inference approach presented in this
paper captures this context by estimating a state’s probability
based on the exact card configuration of that state. In this way,
more precise inference is possible even though both techniques
use the same body of data. The major upside of the Card
Location Inference (CLI) is that it runs much faster than the
Policy Inference.

In other domains, Richards and Amir [15] model the op-
ponent’s policy using a static evaluation technique and then
perform inference on the opponent’s remaining tiles given
their most recent move in Scrabble. Baier et al. [16] leverage
policies trained from supervised human data to bias MCTS
results; this is similar to our approach in that it uses human
data to train an opponent model, but this model is not used
to infer opponent hidden information. Sturtevant and Bowling
[17] build a generalized model of the opponent from a set of
candidate player strategies. Our use of aggregated human data
could be viewed as a general model that captures common
action preferences from a large, diverse player base.

B. Skat

Our application domain for this paper is the game of Skat. It
is a 3-player trick-taking card game that originates in Germany

TABLE I: Game Type Description

Base Soloist Win
Type Value Trumps Condition

Diamonds 9 Jacks and Diamonds ≥ 61 card points
Hearts 10 Jacks and Hearts ≥ 61 card points
Spades 11 Jacks and Spades ≥ 61 card points
Clubs 12 Jacks and Clubs ≥ 61 card points
Grand 24 Jacks ≥ 61 card points
Null 23 No trump losing all tricks

TABLE II: Game Type Modifiers

Modifier Description
Schneider ≥90 card points for soloist
Schwarz soloist wins all tricks

Schneider Announced soloist loses if card points < 90
Schwarz Announced soloist loses if opponents win a trick

Hand soloist does not pick up the skat
Ouvert soloist plays with hand exposed

in the 1800s and is played competitively around the world.
Skat is played using a 32 card deck where cards 2 through 6
from each suit are removed from the standard 52 card deck.

Play starts after each player is dealt 10 cards; the two that
remain are called the “skat”, and are placed face down in
the middle. After observing their cards, players engage in the
bidding phase to see which of them play against the other
two in the subsequent cardplay phase. In the bidding phase,
players alternate making successively higher bids based on
their hand and the highest-valued game they believe they could
win. This value is dependent on the game type (see Table I)
and a multiplier that is based on the cards in the player’s own
hand and the outcome of the game (see Table II).

Once the highest bidder is determined, that player has the
option of picking up the skat and discarding any two cards
from their hand. The same player declares a game type, which
determines the specific rules used in the upcoming cardplay
phase — including the win condition and which suit will be
trump.

As in other trick-taking card games, the cardplay phase
revolves around winning tricks. Tricks start with the trick
leader playing a card and proceed in clockwise order. Players
must play a card from the same suit as the card that was
initially played by the leader if they have one. Otherwise, any
card can be played. After every player has played a card, the
highest ranked card of either the led suit or the trump suit (if
a trump was played) wins.

All game types involve the “soloist” (the player who won
the bidding) playing against a team of “defenders” (the other
two players). In suit and grand games, both parties receive
points for winning tricks containing certain cards. The soloist
is required to amass at least 61 out of the possible 120 points
to win the game. In null games, the soloist must lose every
trick to win. The soloist’s score is either increased by the game
value if the game was won, or decreased by double the game
value if it was lost. Players play a sequence of 36 hands and
keep a tally of the score over all hands to determine the overall
winner in the competitive setting.

III. INFERENCE

To determine the probability of a given state s in an
information set I , we need to calculate its reach probability
η. If we can perfectly determine the probability of each
action that leads to this state, we can simply multiply all the
probabilities together and get η. Each s in I has a unique
history h, the sequence of all previous s and a that lead to
it. h · a represents the history appended with the action action
taken at that state. Thus, there is a subset of h, containing all
the h · a for a given s. Formally:

η(s|I) =
∏

h·avs

π(h, a) (1)

For trick-taking card games, the actions are either taken by
the world (chance nodes in dealing), other players’ actions,
and our actions. Transition probabilities of chance nodes can
be directly computed since these are only related to dealing,
and the probability of our actions can be taken as 1 since we
chose actions that lead to the given state with full knowledge
of our own policy. This leaves us with determining the move
probability of the other players. If we have access to the
other players’ policies, we can use Equation (1) to perfectly
determine the probability we are in a given state within
the information set. If we repeat this process for all states
within the information set, we can calculate the probability
distribution across states. If we can perfectly evaluate the
value of all the state-action pairs, we can select the action
that maximizes this expected value which provides an optimal
solution.

There are two main issues with this approach. The first is
that we either do not have access to the other players’ policies,
or they are expensive to compute. This makes opponent/partner
modelling necessary, in which we assume a computationally
inexpensive model of the other players, and use them to
estimate the reach probability of the state. The second problem
is that the number of states in the information set can be
quite large. To get around this, we can sample the worlds and
normalize the distribution over the subset of states. Because in
Skat the information set size for a player prior to card-play can
consist of up to 2.8 billion states we employed sampling. We
use Algorithm 1 to estimate a state’s relative reach probability.
When we do not sample, this becomes an estimate of the states
true reach probability.

While we have access to the policy of the current strongest
Skat bot, using its policy directly would be computationally
intractable because it uses an expensive search based method
that also performs inference. Also, it is the goal of this
research to develop robust inference that is not based upon
the play of a single player. Thus, we decided to use policies
learned directly from a large pool of human players. These
policies are parameterized by deep neural networks trained
on human games [18]. The features for the pre-cardplay
networks are a lossless one-hot encoding of the game state
while considerable feature engineering was necessitated for
the cardplay networks. Separate networks were trained for

EstimateDist(InfoSet I , int k, OppModel π)
S ← SampleSubset(I, k)
for s ∈ S do

η(s)← 1
for h, a ∈ StateActionHistory(I) do

η(s)← η(s) ∗ π(h, a)
end

end
return Normalize(η)

Algorithm 1: Estimate the state distribution of an informa-
tion set given an opponent model and the actions taken so
far.

each distinct decision point in the pre-cardplay section, and
for each game type for the cardplay networks. More details
on the training and the dataset can be found in [18].

The decision points in pre-cardplay are bidding, picking
up or declaring a hand game, choosing the discard, and
declaring the game. The decision points in the cardplay section
are every time a player chooses what card to play. While
inference would be useful for decision-making in the pre-
cardplay section, we are only applying it to cardplay in this
paper. As such, we can abstract the bidding decisions into the
maximum bids of the bidder and answerer in the bid/answer
phase, and the maximum bids of bidder and answerer in
the continue/answer phase. For these maximum bid decision
points, we only observe the maximum bid if the player passes.
For the cases in which the intent of maximum bid is hidden,
the probability attached to that decision point is the sum of
all actions that would have resulted in the same observation,
namely the probability of all maximum bids greater than the
pass bid. The remaining player decision points are pickup or
declare a hand game, discard and declare, and which card to
play. As these are not abstracted actions, the probability of
the move given the state can be determined directly from the
appropriate trained network.

The current state-of-the-art Skat bot, Kermit, uses search-
based evaluation that samples card configurations. A card
configuration is the exact location of all cards, and thus doesn’t
take into account which cards where originally present in
the soloist’s hand prior to picking up the skat. Depending
on the game context, there are either 1 or 66 (12 choose
2) states that correspond to a card configuration during the
cardplay phase. Two variants of inference were explored. The
first variant samples card configurations. Decision points are
ignored for inference if there are multiple states with the same
card configuration but different features (input to the network).
The second variant samples states directly, thus avoiding this
issue. For our implementation, the need to distinguish states
that share a configuration only occurs when a player does
inference on the soloists actions prior to picking up the two
hidden cards in the skat. Sampling card configurations will be
treated as the default approach for PI. When states are sampled
instead, the inference will be labelled PIF, for Policy Inference

Full.

IV. EXPERIMENTS

In this section, we test the quality of the inference directly
and indirectly through the players’ performance in a tourna-
ment setup. The baseline players are all versions of Kermit,
with the only difference being the inference module used.
These inference modules are the original Kermit Inference (KI)
[13], card-location inference (CLI) [14], and no inference (NI).

A. Direct Inference Evaluation

To measure the inference quality directly, we measured the
True State Sampling Ratio (TSSR) [14] for each main game
type, separately for defender and soloist. TSSR measures how
many times more likely the true state will be selected than
uniform random.

TSSR = η(s∗|I) / (1/|I|) = η(s∗|I) · |I| (2)

η(s∗|I) is the probability that the true state is selected given
the information set I , and |I| is the number of possible
states. Since the state evaluator of Kermit does not distinguish
between states within the same card configuration, we will
slightly change the definition to measure how many more
times likely the card configuration (world) will be sampled
than uniform random.

Since the players tested use a sampling procedure when the
number of worlds is too large, the TSSR value cannot be
easily computed directly as this would require all the world
probabilities to be determined. We therefore estimate it em-
pirically. Since sampling was performed without replacement,
we use the given inference method to evaluate η given that
the true world was sampled k times. We can combine these
values to get the combined probability that the true world is
selected:

TSSR = |I| · ΣkBinDist(k, p) · k · η(s∗|I, k) (3)

where BinDist is the probability mass of the binomial
distribution with k successes and probability of sampling the
true world p which is 1/|I|. Terms of the summation were
only evaluated if the BinDist(k, p) value were significant,
which we cautiously thresholded at 10−7.

When the number of worlds is less than the set threshold
parameter specific to the player, we sample all worlds and
can directly compute the value. For the sake of the TSSR
experiments, null games were further subdivided into the two
main variants, null and null ouvert. Null ouvert is played with
an open hand for the soloist, thus making the inference quite
different from that of regular null games from the perspective
of the defenders. For each game in the respective test set, the
TSSR value was calculated for each move for the soloist, and
one of the defenders. The test set was taken from the human
data, and was not used in training. The number of games in
the test sets were 4,000 for grand and suit, 3,800 for null, and
13,000 for nul ouvert.

Figure 1 shows the average TSSR metric after varying
number of cards have been revealed. The inference variants
tested are PI20, PIF20, PI100, CLI, and KI. NI was not tested
because it will always have a value of 1. PI20 and PI100
sample 20,000 and 100,000 card configurations respectively,
while PIF20 samples 20,000 states. CLI samples 500,000 card
configurations, and KI samples 3200 card configurations in
soloist, and a varying number in defense. CLI inference was
not implemented for null ouvert.

TSSR is higher on defense, with the exception of null
ouvert. This is likely due to there being many more possible
worlds in the defenders information set because of the hidden
cards in the skat. Also, the defender can use the declaration of
the soloist for inference, which is a powerful indicator of the
soloist’s hidden cards. Null ouvert does not follow this trend
because there are only 66 possible worlds at most in defense
while there are 184,756 for the soloist. This allows for higher
TSSR values for the soloist.

PI20, PIF20, and PI100 all achieve significantly higher
TSSR values than the other methods, across all game-types
and roles. KI performs better than CLI at the beginning of
games, but surpasses KI once more cards are played.

PI100 appears to consistently perform better in defense than
the other Policy Inference variants, while PIF20 appears to
perform slightly better than PI20 in the first half of defender
games, but not significantly so. All TSSR values trend down to
1 at the endgame, as the number of possible worlds approaches
1.

One common feature across all games is the spiking of
TSSR values, which is best exemplified in suit games. The
spiking is consistent between players within the same game
type and role graph. However, between graphs it is not
consistently occurring at the same number of cards played.
We do not see an obvious reason for this. However, these tests
were done on human games and thus we are not controlling
for inherent biases in the distribution. Further investigation is
needed to determine why these spikes occur.

It is clear from these results that the Policy Inference ap-
proach provides larger TSSR values, since the error envelopes
are completely separated in the figure. It also should be noted
that perfect inference would not result in the upper bound
TSSR value which is equal to the number of worlds. Even
with perfect knowledge of the opponents’ policies, uncertainty
is inherent and thus a player with perfect TSSR value is not
possible.

B. Cardplay Tournament

To test the performance of PI in cardplay, we played 5,000
matches for each of suit, grand, and null games against
baseline players in a pairwise setup. Only the cardplay phase
of the game is played, while the bidding and declaration is
taken directly from the human data-set. These games were
held out from the policy training set. In a match, each player
will play as soloist against two copies of the opponent, as
well as against two copies of itself. The baseline players are
all versions of Kermit, with the only difference being the

Soloist Defender

(a) Grand

(b) Suit

(c) Null

(d) Null Ouvert

Fig. 1: Average TSSR after Card Number cards have been played. Data is separated by game type and whether the player to
move is the soloist (left) or a defender (right).

inference module used. These inference modules are KI, CLI,
with the addition of no inference (NI). This experiment is
designed to see if (a) the performance of the player improves
as measured by its play against opponents and (b) to determine
the extent to which the defender and soloist performance is
responsible for this difference.

For each match-up we report the average tournament points
per game (TP/G) for the games in which the players played
against each-other. The games in which the player played
against a copy of itself were used to determine the difference
in the effectiveness of the defenders and soloists.
AvBB denotes a match-up in which the soloist is of type

A while the defenders are both of type B. The value of the
game AvBB is in terms of the soloist score, therefore it is the
sum of the soloist’s score and the negation of the defenders’
score. In this notation, the performance of player A relative
to player B is given as

∆TP/G = [AvBB −BvAA]/3 (4)

The value is divided by 3 since it is enforced that a player
is soloist 1/3 the time in the tournament setup. To directly
compare the performance of the defenders, we can measure
the performance difference between scenarios where the only
difference is the change in defenders.

∆Def/G = [(AvBB+BvBB)− (AvAA+BvAA)]/6 (5)

A negative value for ∆Def/G indicates A performs better
than B in defense. The same concept can also be applied to
directly compare the efficacy of the soloist.

∆Sol/G = [(AvAA−BvAA) + (AvBB −BvBB)]/6 (6)

A positive value for ∆Sol/G indicates A performs better
than B as the soloist.

The results for the tournament match-ups are shown in
Table III. All ∆ values reported have a ∗ attached if they are
not found to be significant at a p value of 0.05 when a paired
T-Test was performed. The general trend is that PI performs
the best, followed by CLI, then KI, then NI. This fits with the
expectation that better TSSR values seen in Figure 1 would
translate into stronger game performance. Another interesting
result is that the majority of the performance gain seems to
be from the defenders, as demonstrated by the ∆Def values
being consistently larger than the ∆Sol values. The most
interesting match-up is PI : CLI since it roots the previous
state-of-the-art skat inference against the new policy-based
method. PI outperforms CLI by 2.32, 0.64, and 1.57 TP/G
in suit, grand, and null, respectively. The grand result did not
provide statistical significance.

The major drawback of the PI inference is the runtime.
When combined with evaluation, PI20 takes roughly 5 times
longer to make a move than CLI.

Further experiments were conducted to test the effect of
increasing the number of sampled worlds to 100,000 (PI100)

and sampling states instead of card configurations (PIF20). In
addition, a cheating version of Kermit was introduced (C) in
which it places all probability on the true state. All programs
were tested against CLI with only the mirrored adversarial
setup used. The rest of the experimental setup was identical.

The results in Table IV indicate that PI100 performs
stronger than the other PI variants in suit and grand, when
playing against CLI, however, only the grand result is signif-
icant. The opposite is true for null, in which PI20 performs
strongest out of the PI variants. This result contradicts the
idea that a higher TSSR value necessarily corresponds to better
cardplay performance. Cheating inference performs worse than
CLI in all but null games. This is interesting because it puts
all the probability mass on the true world, but still plays worse
than a player that is not cheating. This result in conjunction
with the worse null game score for PI100 indicates that further
investigation into the exact role inference quality has within
the context of PIMC is required. Also, PI20 outperforms PIF20
over all game types, showing that there can be benefits to
sampling card configurations instead of states when there is a
limited sampling budget.

One further experiment was performed to determine whether
performance gains would be present with mixed defenders.
This is interesting since it is possible the gain would only be
present if the partner’s inference was compatible with their
own. For the sake of time, this was only done for the CLI and
PI20 matchup. The added arrangements are AvAB, AvBA,
BvAB, and BvBA. With these added, we now have six games
for each tournament match. The results for this match-up are
included in Table IV. PI is consistently stronger than CLI (the
grand result is not significant), but the effect size is smaller.
This is expected because PI is now defending against PI in
the mixed setup games. To further analyze the the relative
effectiveness of the players as soloist against only the mixed
team defenders, we can calculate:

∆Sol = [(AvAB −BvAB) + (AvBA−BvBA)]/6 (7)

∆DefB measures the difference in effectiveness of a mixed
defense (A and B) and a pure defense of A’s. It is calculated
by averaging the effect of swapping in player B into defense
for all match-ups that included two A’s on defense. The reverse
can be done to find the effect of swapping in A to form a
mixed defense. A positive value for ∆Sol means that PI is
more effective than CLI as soloist in the mixed setting. A
positive value for ∆DefPI means defense improved when it
was added, and same for ∆DefCLI .

While all the values in Table V show the same trends of
PI performing better on defense and soloist across all game
types, the effect is only statistically significant for ∆Sol and
∆DefCLI in the suit games. These tests were done using
pairwise TTests with a significance threshold of p=0.05.

V. CONCLUSION

Policy Inference (PI) appears to provide much stronger
inference than its predecessors, namely Kermit Inference (KI)

TABLE III: Tournament results for each game type. Shown are average tournament scores per game for players NI (No
Inference), CLI (Card-Location Inference), PI (Policy Inference), and KI (Kermit’s Inference) which were obtained by playing
5,000 matches against each other, each consisting of two games with soloist/defender roles reversed. The component of ∆TP
attributed to Def and Sol is also indicated

Game Type Suit Grand Null
Matchup TP ∆ TP ∆ Def ∆ Sol TP ∆ TP ∆ Def ∆ Sol TP ∆ TP ∆ Def ∆ Sol

KI : CLI 17.62 : 20.81 -3.19 -2.76 0.42∗ 37.02 : 38.98 -1.96 -1.85 0.11∗ 17.22 : 19.83 -2.61 -2.70 -0.09∗

KI : PI 16.48 : 21.61 -5.13 -4.22 0.91 36.44 : 39.56 -3.12 -2.30 0.83 17.29 : 19.66 -2.37 -2.93 -0.56∗

NI : CLI 16.14 : 24.12 -7.98 -7.36 0.62∗ 36.56 : 40.45 -3.89 -3.44 0.46∗ 16.01 : 22.46 -6.45 -6.55 -0.10∗

PI : CLI 19.50 : 17.18 2.32 1.64 -0.68∗ 37.87 : 37.23 0.64∗ 0.19∗ -0.45∗ 18.84 : 17.27 1.57 1.14 -0.43∗

KI : NI 23.29 : 18.64 4.65 4.53 -0.12∗ 39.71 : 38.36 1.35 1.30 -0.05∗ 21.65 : 17.81 3.84 3.85 0.01∗

NI : PI 14.59 : 25.02 -10.43 -9.07 1.36 36.46 : 40.01 -3.55 -3.14 -0.42∗ 15.77 : 22.10 -6.33 -6.84 0.51∗

TABLE IV: Tournament results for each game type. Shown are average tournament scores per game for players CLI (Card-
Location Inference), PI20 (Policy Inference with 20,000 card configurations sampled), PIF20 (Policy Inference with 20,000
states sampled), PI20 (Policy Inference with 100,000 card configurations sampled), and C (Cheating Inference) which were
obtained by playing 5,000 matches against each other, each consisting of two games with soloist/defender roles reversed.

Game Type Suit Grand Null
Matchup TP ∆ TP TP ∆ TP TP ∆ TP

PI : CLI 19.50 : 17.18 2.32 37.87 : 37.23 0.64∗ 18.84 : 17.27 1.57
PIF20 : CLI 19.30 : 17.65 1.65 37.67 : 37.20 0.47∗ 18.01 : 17.66 0.35∗

PI100 : CLI 19.55 : 16.69 2.86 38.19 : 36.09 2.10 18.13 : 17.10 1.03
C : CLI 14.75 : 18.00 -3.25 29.97 : 38.46 -8.49 20.80 : 10.99 9.82

PI : CLI (6way) 19.06 : 17.82 1.24 37.64 : 37.27 0.38* 18.31 : 17.74 0.57

TABLE V: Tournament results for each game type in the 6-way match between CLI and PI20. 5,000 matches were played for
each game type.

Game Type ∆Sol ∆DefCLI ∆DefPI

Suit 1.00 -1.06 0.59*
Grand 0.38* -0.02* 0.16*
Null 0.18* -0.59* 0.55*

and Card Location Inference (CLI) as demonstrated by the
TSSR value figures. Across the board, the higher TSSR values
translate into stronger game-play as demonstrated in card-play
tournament settings. PI20 outperforms CLI by 2.32, 0.64, and
1.57 TP/G in suit, grand, and null games, respectively. Also, it
seems that increasing the number of states sampled increases
the performance of PI, however, this did not translate into the
null game type. Further investigation into this null game result
is needed. We would expect that when substantially increasing
the sampling threshold, the state sampling employed by PIF20
would be more effective. But under this limited sampling
regimen, sampling card configurations is more effective than
sampling states.

Future work related to inference in trick-taking card games
should focus on the relationship between opponent modelling
and exploitability. In order to investigate the robustness of our
approach, we could try learning a best response to it. Likewise,
adjusting player models online could enable us to better exploit

our opponents and cooperate with teammates.
Another direction is to experiment with heuristics that allow

our algorithm to prune states that are highly unlikely and stop
considering them altogether. This could help us sample more
of the states that are shown to be realistic given our set of
human games and possibly improve the performance of the
search.

ACKNOWLEDGMENT

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC).

Cette recherche a été financé par le Conseil de recherches
en sciences naturelles et en génie du Canada (CRSNG).

REFERENCES

[1] M. Moravčı́k, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard,
T. Davis, K. Waugh, M. Johanson, and M. Bowling, “Deepstack: Expert-
level artificial intelligence in heads-up no-limit Poker,” Science, vol. 356,
no. 6337, pp. 508–513, 2017.

[2] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-limit
poker: Libratus beats top professionals,” Science, vol. 359, no. 6374,
pp. 418–424, 2018.

[3] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding
the success of perfect information Monte Carlo sampling in game tree
search,” in AAAI, 2010.

[4] D. N. Levy, “The million pound Bridge program,” Heuristic Program-
ming in Artificial Intelligence, 1989.

[5] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information set Monte
Carlo tree search,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 4, no. 2, pp. 120–143, 2012.

[6] M. L. Ginsberg, “GIB: Imperfect information in a computationally
challenging game,” Journal of Artificial Intelligence Research, vol. 14,
pp. 303–358, 2001.

[7] T. Furtak and M. Buro, “Recursive Monte Carlo search for imperfect
information games,” in Computational Intelligence in Games (CIG),
2013 IEEE Conference on. IEEE, 2013, pp. 1–8.

[8] I. Frank and D. Basin, “Search in games with incomplete information:
A case study using Bridge card play,” Artificial Intelligence, vol. 100,
no. 1-2, pp. 87–123, 1998.

[9] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[10] WBridge5, “WBridge5,” http://www.wbridge5.com/, 2019. [Online].
Available: http://www.wbridge5.com/

[11] K. . K. Software, “Jack,” http://www.jackbridge.com/eindex.htm, 2019.
[Online]. Available: http://www.jackbridge.com/eindex.htm

[12] W. B. Federation, “World Computer Bridge Championship,”
https://bridgebotchampionship.com/, 2019. [Online]. Available:
https://bridgebotchampionship.com/

[13] M. Buro, J. R. Long, T. Furtak, and N. R. Sturtevant, “Improving state
evaluation, inference, and search in trick-based card games,” in IJCAI,
2009, pp. 1407–1413.

[14] C. Solinas, D. Rebstock, and M. Buro, “Improving search with super-
vised learning in trick-based card games,” 2019.

[15] M. Richards and E. Amir, “Opponent modeling in Scrabble.” in IJCAI,
2007, pp. 1482–1487.

[16] H. Baier, A. Sattaur, E. Powley, S. Devlin, J. Rollason, and P. Cowling,
“Emulating human play in a leading mobile card game,” IEEE Trans-
actions on Games, 2018.

[17] N. Sturtevant and M. Bowling, “Robust game play against
unknown opponents,” in Autonomous Agents and Multiagent
Systems (AAMAS). ACM, 2006, pp. 713–719. [Online]. Available:
http://www.cs.du.edu/ sturtevant/papers/softmaxn.pdf

[18] D. Rebstock, C. Solinas, and M. Buro, “Learning policies from human
data for skat,” in 2019 IEEE Conference on Games (CoG). IEEE, 2019.

