
Automated Playtesting of Matching Tile Games
Luvneesh Mugrai

Game Innovation Lab
New York University
New York City, US

lm3300@nyu.edu

Fernando Silva
Independent Researcher
Rio de Janeiro, Brazil
fms2005@gmail.com

Christoffer Holmgård
modl.ai

Copenhagen, Denmark
christoffer@holmgard.org

Julian Togelius
Game Innovation Lab
New York University
New York City, US
julian@togelius.com

Abstract—Matching tile games are an extremely popular game
genre. Arguably the most popular iteration, Match-3 games,
are simple to understand puzzle games, making them great
benchmarks for research. In this paper, we propose developing
different procedural personas for Match-3 games in order to
approximate different human playstyles to create an automated
playtesting system. The procedural personas are realized through
evolving the utility function for the Monte Carlo Tree Search
agent. We compare the performance and results of the evolution
agents with the standard Vanilla Monte Carlo Tree Search
implementation as well as to a random move-selection agent.
We then observe the impacts on both the game’s design and
the game design process. Lastly, a user study is performed to
compare the agents to human play traces.

Index Terms—Procedural Personas, Monte Carlo Tree Search,
Genetic Evolution, Match-3

I. INTRODUCTION

When playing a game with a strategic element, players have
various approaches to go about trying to solve the level. Some
of these approaches include maximizing the overall score after
a certain number of moves, maximizing the number of possible
moves, prioritizing making moves in specific regions of the
game board, and prioritizing making a specific move type over
other currently available move types (e.g. making a horizontal
move over a vertical move). Specific player personas can then
be further categorized into groups such as a long term planner
and short term planner.

In this paper, we explore different methods of modeling
player personas through evolving standard Vanilla Monte
Carlo Tree Search (MCTS). We attempt to approximate differ-
ent styles that human players would have when playing Match-
3 games. Our objective of the experiments and paper is to
develop four procedural personas, which model four different
types of playstyles:

1) Trying to maximize score (Referred to as Agent MaxS)
2) Trying to minimize score (Referred to as Agent MinS)
3) Trying to maximize the available number of moves

(Referred to as Agent MaxM)
4) Trying to minimize the available number of moves

(Referred to as Agent MinM)
Agents MaxS and MinS mimic the long term planner and the
short term player, respectively, while Agent MaxM mimics the
persona of setting up the board for a multitude of possibilities.

Agent MinM can be seen as the counterpart to this persona
encompassed in Agent MaxM.

Being able to model human players and playstyles opens the
possibility of playtesting new levels, analyzing the approaches
and how players play various levels for Match-3 games.
Game designers would be able to gain further insights on
various interaction patterns and study how various categories
of players would respond within the Match-3 genre. The
approach can also open up the ability to then observe and
analyze the impacts of game design following the playstyle
perspectives from the different agents.

II. BACKGROUND

Matching tile games are a continuously popular game genre,
dating back to games as early as Chain Shot and Tetris in 1985,
and are currently now associated with the channel of casual,
downloadable games. Development of such games follows
a continuous process of sequential releases of games, with
new levels being released over time. For the purposes of the
experiments we will be focusing on games similar in nature to
that of Bejeweled, developed by PopCap Games, and Candy
Crush Saga, developed by King.

The approaches in this paper draw inspiration from
Holmgård’s work on Automated Playtesting with Procedural
Personas through MCTS with Evolved Heuristics [1] and on
Evolving Personas for Player Decision Modeling [2]. Per-
sonas as a concept originally refers to hand-coded models,
though procedural personas are often defined via evolution
or reinforcement learning based on logs of play data [1],
[3]. Previous work has shown the promising results of being
able to use evolutionary methods in conjunction with MCTS
to create personas for turn-based games [1] [2]. The idea of
procedural personas traces back to the term of play personas,
coined by Canossa and Drachen [4]. It is used to better define
personas in terms of how players chose to interact within
the space of a game [5]. Procedural personas built on this
idea but through computational, generative models. Generally,
a procedural persona is defined in terms of utility functions
and computational resources [1] [6]. These personas could be
implemented as agents to then re-create game-play interactions
similar to those of different human player types.

Monte Carlo methods are a class of algorithms that aim to
solve a problem by sampling random values and approximat-
ing the mathematical property behind said problem. They are

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

widely adopted in a wide range of domains. Most notably, this
technique is combined with tree search to form an algorithm
called Monte Carlo Tree Search (MCTS) [7], a method of
finding the optimal decision in a given domain by taking a
random sampling in the decision space and building a search
tree accordingly [7]. Browne (et al.) further went into detail
of explaining the Monte Carlo Tree Search, its variants and
applications.

Genetic programming has been used in conjunction with
MCTS for classic strategy games such as Othello and Dodgem,
as shown by Benbassat and Slipper [8]. They used each
individual of the evolutionary algorithm as a function to
evaluate a board position. This was then used during the roll-
out portion of MCTS to select the action that would maximize
the next board state in correspondence with the function [8].
Cazenave’s work explored evolving the UCB1 equation for GO
MCTS agents [9]. Their work showed off a significant increase
in performance, outperforming agents that utilized standard
UCB and alternatives UCB1s designed specifically for GO.
Similarly, Holmgård et al. successfully explored evolving
the MCTS UCB function to create procedural personas for
the game MiniDungeons 2 [1]. For our purposes, we did
not deploy the individuals in the fashion of Benbassat and
Slipper. Rather, we used the functions as a means to select the
promising node to expand and the action of the best immediate
child of the root node to return as shown in Holdgrd’s work
[1].

III. MATCH-3 FRAMEWORK

Match-3 games, a specific subset of the matching tile games
family, are focused on for the experiments. The custom Match-
3 framework, which is essentially a somewhat simplified
version of Bejeweled, is built in Python 3, supports forward
modeling, and uses a 7 by 7 game board.

A. Rules

The rules to play the custom Match-3 framework are similar
to the rule-sets of games in the Match-3 paradigm. Given a
board of N by M size, where N and M can be the same or
different, swap two orthogonally adjacent cells to create a line
of three or more identical cells. This is also referred to as a
match of size 3 or more. If a swap does not make a match
then the swap is undone, the board configuration is reset to
the previous state, and no points are awarded. If a swap leads
to a match, then the cells will be removed from the board,
the cells above will fall down to fill the now empty spaces
in the grid, as shown by Figure 1. A match can be made
either horizontally, vertically or both. The player is rewarded
a corresponding number of points. If, after the board is refilled,
another match of three or more identical cells exists then the
process is repeated. However, this and all other proceeding
matches from that single move are considered combos and
points are rewarded based on a multiplier. The multiplier will
be reset to 1 for each move the player makes. When a player
makes a match of size greater than 3, they are as such rewarded
a greater number of points. Further, for most Match-3 games,

if four or five cells match, an additional power-up cell will
be rewarded. For the purposes of the experiments, this last
rule was disregarded. Figure 2 shows different ways in which
matches can be made.

B. Points and Score

The fewest number of adjacent identical cells to trigger a
match is three. As such, making this will reward the lowest
number of points. 20 points are rewarded for each cell, and
since there are 3 cells in the match, a total of 60 points is
rewarded for the move that made the match of 3 identical
cells. Using this as the base standard, the value of a cell
increases by 10 for each additional cell in the match. The total
number of points rewarded would be equal to the value of a
cell multiplied by the number of value of a cell. To account
for the possibility of a combo being triggered an additional
variable is introduced, a score multiplier. The score multiplier
is initially equal to 1. Every time a combo is triggered the
score multiplier is incremented by one. It is reset back to 1
once the board no longer has any matches and the user has to
then make their next move.

IV. METHODS

Through MCTS, we were able to build an asymmetric un-
balanced tree with a bias towards visiting nodes that performed
to be more interesting based off the selection criteria and
heuristic. Rather than using the standard Upper Confidence
Bound 1 (UCB1) formula, we followed a strategy similar to
that of the work of Christoff Holmgård (et. al.): to use genetic
programming to evolve persona-specific evolution formulas
[1]. We replaced the standard node selection criteria in MCTS
for genetically evolved player persona utility functions.

A. Procedural Personas

Each procedural player persona agent had its own goal and
as such the fitness of each was calculated differently. Agents
1 and 2 used the overall score after making a total of 20 turns
as their fitness. Agent 1 looked to maximize the score, while
Agent 2 looked to minimize it. Agent 1 used the returned score
as the fitness of each individual in the population. Agent 2
took the score returned after playing 20 moves and negated
the score for the fitness of each individual. This allowed for the
strategy of obtaining an elitist, used later during the evolution
of individuals of a generation, who focused on minimizing
score. Agents 3 and 4 used the average length of legal available
moves to make after a total of 20 turns. Agent 3 tried to
maximize the overall average length while Agent 4 looked to
minimize this value. Agent 3, similar to Agent 1, set the fitness
of each individual equal to the average number of available
moves returned after playing 20 moves. A similar strategy as
used with Agent 2 was used with Agent 4 to minimize the total
number of available moves. For all agents, since 50 simulations
were played for each individual, the actual fitness is an average
of the returned values of the 50 simulations (played by using
the individuals associated equation as the replacement of the
standard UCB function).

(a) The white square shows a possible move a player can
make to create a match of size 3.

(b) Pieces, as shown by the white square, fall in to replace
empty spaces, and new pieces are introduced to keep the
board filled.

Fig. 1: Player makes a legal move to make a match of size 3

Fig. 2: A few possible scenarios to make matches by swapping the 2 pieces in any of the highlighted colored squares.

B. Monte Carlo Tree Search

As described above, MCTS is a tree search algorithm
that, through biased selection of promising nodes, creates
an unbalanced tree. For the purposes of our experiments we
visited the root node 250 times, performed a rollout of initially
20 moves, and each MCTS agent performed a total of 20 real
moves (aside from the simulations) on the actual game board.
There was a negative linear correlation between the rollout
length and the total number of moves the agent has made;
as the number of actual moves the agent makes increased, the
length of the rollout decreased. For example, if the agent made
4 real moves on the board, the rollout length when performing
simulations would be 20−4 or 16. To build the tree our agent
performed the following procedure [10] [7]:

1) Selection: The most promising node to expand based
upon the defined policy was selected, with a approach similar
to that as explained in ”Bandit Based Monte-Carlo Planning”

by Kocsis (et al.) [11]. For the vanilla MCTS agent, we used
the Upper Confidence Bound 1 (UCB1) formula:

UCB1 = Xi + C

√
2 ∗ lnNp

i

Ni
(1)

where Xi is the average number of times node i has won by
achieving the defined goal, Np

i is the number of times the
parent node has been visited, Ni is the number of times the
child node i has been visited, C is the exploration constant
and set to 1√

2
.

2) Expansion: When a promising node was selected it
represented a state in which other actions can still be taken
to further progress in the game. A child array was created for
the promising node holding all legal moves and corresponding
states from taking these moves. A child was then taken at
random to perform simulated rollout play.

3) Simulation: Once a child node was selected, simulated
play was performed on the node. The actions taken were
random and the number of actions taken, as described at the
start of this subsection, initially started at 20 and decreased
every time the search is performed.

4) Backpropogation: The results of the simulation step
were backpropagated up the tree to each node from the
selected child node for expansion to the root node.

For our experiments, we focused on replacing the standard
UCB1 equation during the selection of the most promising
node and when selecting the best action to take. We instead
used evolved mathematical formulas as explained in the pre-
vious section for the procedural persona agents.

C. Evolutionary Policy

Genetic programming evolved discrete structures; mathe-
matical formulas can be evolved by breaking down the repre-
sentation of an equation into a syntax tree. This was denoted as
the chromosome representation [10]. All the nodes of the tree
contained either a binary or unary mathematical operation. The
four binary functions were addition, multiplication, division,
and subtraction, though only the former three were utilized in
the actual equations for the experiments. The unary operator
square root was also one of the mathematical operations used
in the equations. All the leaf nodes were left to being either
some predefined variable or a constant. Constant values were
defined to be uniformly randomly generated floats within [0,
10]. Variables used include:
• number of times a child node of the current node has

won the game
• number of times a child node of the current node has

been visited
• number of times the current node has been visited
• total number available moves of the current child node

being evaluated
We utilized this approach to create an initial population

of 100 unique individuals, meaning there were no duplicates
when the equation for each individual was reduced and sim-
plified. For each individual, the chromosome representation
of the mathematical equation associated to the individual was
of minimum depth 2 and maximum depth 6. When mak-
ing the initial population, we first simplified the prospective
individual’s equation before checking it against all previous
individuals currently accepted in the population. If there
was a match then the prospective equation was disregarded,
otherwise it was added to the population. Equivalence of
two equations was defined as when two simplified equations
subtracted from each other evaluated to 0. For example x-
4 and -4+x would be equivalent as (x-4) - (-4+x) evaluates
to 0. In this case, the equation that came later would be
disregarded. When performing the MCTS, the UCB equation
was completely replaced by each individual’s equation as the
evaluation heuristic for selecting the promising node and the
move of the best immediate child of the root node.

After all 100 individuals finished playing 50 games each,
results for the population were formulated and saved. The

µ +λ evolution strategy for genetic evolution was performed
on the individuals in the following order: save the top 10%
of elitist, perform mutation and crossover on the remaining
population [10]. For our purposes the elitist population results
to the top 10 individuals based on their fitness and goal/criteria
of player personas of which they were modeling, as explained
previously. Of the remaining 90 spots, half was given for
mutating individuals and the other half, the remaining 45
spots, was given to crossover. Mutation was performed and
calculated first.

Mutation is defined as taking a random chromosome and
replacing it with another. A random sample of 45 individuals
was chosen and there existed a 50% chance of mutating a
constant for each selected individual. Then the Deap Evolu-
tionary Tools genetic programming mutUniform function1 was
used on each of the 45 individuals. Before an individual was
added to the population for the next generation, it was first
compared against all existing individuals in the next generation
population and disregarded if it was equivalent to any of those
individuals. The same standard of equivalence, as previously
defined, held. This process was repeated until a total of 45
possibly mutated individuals were added to the population
for the next generation. After the mutation, crossover was
performed to produce the remaining population.

Crossover is when two random chromosomes from 2 se-
lected individuals cross-over or swap to create two offspring.
Using the current population, we created a randomly shuffled
list of all possible pair combinations of individuals. Then while
the number of next generations population size was under
100, performed crossover on selected pairs. If an offspring
produced a duplicate of a preexisting individual using the
defined equivalence test, the child would be disregarded.

We used a strategy in which every generation tried to
out-perform the previous generation. It was that the highest
fitness from the previous generation was saved and set as the
goal for the next generation that was about to start playing
games, the one that was just recently created following the
given procedure. This strategy would progressively push each
generation to try and out-perform the previous as they tried to
reach a higher end goal within the Monte Carlo Tree Search,
until a global maxima/minima was reached. At which point
each generation would begin to score in roughly the same
range.

V. EXPERIMENTS

We ran a total of 4 experiments for the defined personas. For
each experiment we followed the approach to randomize and
save 50 seeds for each generation and use the same 50 seeds
for each individual in the population. Each individual in the
population would play a total of 50 games, 1 for each of the
50 seeds. For each game, the MCTS agent would make a total
of 20 turns and perform its tree search for the action to take
for each move. The fitness for each individual would be the
average score of the scores from the 50 total games played

1http://deap.readthedocs.io/en/master/api/tools.html#deap.gp.mutUniform

0 20 40 60 80 100

Generation

2000

2500

3000

3500

4000

4500

5000

5500

Sc
or

es
Maximizing MCTS, Vanilla MCTS, Random

Maximum
Minimum
Median
Vanilla MCTS
Random Agent

Fig. 3: Experiment 1. Maximizing score over 100 generations
with a population size of 100, 50 games per individual and 20
moves per individual.

0 20 40 60 80 100

Generation

1500

2000

2500

3000

3500

4000

Sc
or

es

Minimizing MCTS, Vanilla MCTS, Random

Maximum
Minimum
Median
Vanilla MCTS
Random Agent

Fig. 4: Experiment 2. Minimizing score over 100 generations
with a population size of 100, 50 games per individual, and
20 moves per individual.

by the individual. Then we re-used the seeds to have both
Vanilla MCTS and Random agent play out games with these
seeds and depending on the agent return different criteria. For
Agents 1 and 2, the Vanilla and MCTS agent returned their
final score which is then averaged for each generation of seeds.
For Agents 3 and 4, the Vanilla and MCTS agent returned the
average number of available moves also for 20 turns of game
play, which is then similarly averaged for each generation of
seeds .We then calculated the mean of all the generations for
the Vanilla MCTS and Random Agents and plotted those 2
values, one for the Vanilla MCTS Agent and the other for the
Random Agent, for Figures 3 through 6.

Figure 3 shows the results of the maximizing procedural
persona agent. Figure 4 shows the results of the minimizing
procedural persona. It is important to note that the lowest
possible score to achieve in the framework is 1200 points,
denoted as the straight pink line in the figure. Figure 5 shows
the results for an agent maximizing the average number of
available moves over 20 turns, while Figure 6 shows the results
for minimizing the average number of available moves.

In the following sections, we describe the results of the
experiments, comparing them to the standard UCB1 and
Random playing agents for each experiment, and to the results
of the user study.

0 20 40 60 80 100

Generation

4

6

8

10

12

14

16

18

M
ov

es

Maximizing Moves MCTS, Vanilla MCTS, Random

Maximum
Minimum
Median
Vanilla MCTS
Random Agent

Fig. 5: Experiment 3. Maximizing average number of moves
over 100 generations with a population size of 100, 50 games
per individual and 20 moves per individual.

0 20 40 60 80 100

Generation

4

6

8

10

12

14

16

18

20

M
ov

es

Minimizing Moves MCTS, Vanilla MCTS, Random

Maximum
Minimum
Median
Vanilla MCTS
Random Agent

Fig. 6: Experiment 4. Minimizing average number of moves
over 100 generations with a population size of 100, 50 games
per individual, and 20 moves per individual. The pink line rep-
resents the theoretically achievable lowest possible minimum
score after 20 moves.

VI. DISCUSSION

For all experiments, noise produced between generations
can be a result of fluctuations from individuals in the gen-
eration with the weakest fitness. Since we disregarded low
performing individuals during the evolution, there lies a high
probability a few of the new individuals introduced into the
next generation’s population perform drastically different from
the current generation’s lowest performing individuals.

Figure 3 reflects an overall increase in the agent’s perfor-
mance as the median quickly approaches the maximum for
each generation, to the point where it begins to level out with
some residual noise. The leveling off indicates that a maxima,
possibly local maxima, is reached for the performance of
trying to maximize the total score after making 20 moves per
game.

Figure 4 reveals there are ways to play the game in which
you perform worse than if you were to just play randomly.
The minimum and median for each generation begin to level
off roughly in the 1600 and 1700 point range, the possible
playable global minima. The 400 to 500 point gap between the
global minima and lowest possible number of points a player
can make, which is 1200, indicates that there are unavoidable
situations where a combo is forced to happen causing one to

gain more points than the bare minimum points for a single
turn.

Figure 6 shows that on average a player will have more than
1 move readily available. Figure 5 reveals the possibility for
players to conduct a strategy in which they try to maximize the
available number of moves in hopes of setting up the board.
This grants the user more freedom and choice when deciding
moves, and to focus on triggering combos by making one
match and having pieces fall into matches that follow.

When comparing the evolution of the score maximizing
agent from figure 3 with that of the moves maximizing agent
from figure 5 we can spot considerable differences, the main
one being the rate at which the different populations converge.
While maximizing score slowly and constantly improves,
maximizing moves peaks very early. This can be explained
due to the fact that maximizing moves is an objectively easier
strategy to execute than maximizing score. Increasing the
number of moves available resorts to selecting the move that
will create the highest number of possible moves on the next
turn. While the optimization of such a strategy still requires
multiple steps (e.g. thinking multiple steps ahead can help you
set up a bigger payoff over multiple turns) in favor of a one-
step look ahead, it does not rely on combos, opting to avoid
making moves that will create them instead. These moves are
arguably the hardest ones to optimize for, as well as the ones
that impact your score the most.

VII. USER STUDY

An online user study was conducted in which a total of 41
participants completed 6 rounds of the match-3 game. Each
round consisted of 20 moves. Of the 6 rounds, 3 rounds used
predetermined boards and falling pieces while the remaining
3 were completely randomized. The order of the 6 boards was
randomized for each user.

Before starting the study, participants were asked questions
regarding their profile. In our study, we had 41 participants:
29 males, 9 females, and 3 non-disclosed gender. 89.6% of
males and 66.6% of females fell in the age range of 18-24.
37.9% of males play games everyday and 37.9% of males play
games several times a week, 24% of males had never played
a match-3 game, 34.5% have played less than 10 matches of
a match-3 game. 44% of females play games once a month,
44% of females play games several times a week, 22% of
females have played less than 10 matches, 33% of females
have played between 10-19 matches, and 33% of females
have played over 100 matches of a match-3 game.

TABLE I: Result score statistics for users from user study for
the 3 preset boards and 3 randomly generated boards.

Board 1 Board 2 Board 3 Avg of 3 Random Boards
Average 4530.24 3042.93 2911.71 3275.64

Maximum 7680 5260 6440 7060
Minimum 2120 1740 1740 1700

Results for the user study are shown in Table 1. Results
for the agents playing the same three preset boards are shown

TABLE II: Agent results for preset boards. Agent MaxS and
MinS are the maximizing and minimizing score agents, while
Agent MaxM and MinM are the maximizing and minimizing
average number of available move agents, respectively. The
score from the top performer of the final generation playing
the boards is shown. In addition, the average number of moves
for agents MaxM and MinM are also shown in parenthesis.
Vanilla represents the Vanilla MCTS and Random represents
an agent choosing moves at Random.

Agent MaxS Agent MinS Agent MaxM Agent MinM Vanilla Random
Board 1 7080 1740 2640 (14.35) 2720 (4.65) 5240 2720
Board 2 6460 1380 1560 (12.5) 2120 (3.75) 4500 3840
Board 3 7040 1500 2160 (12.35) 1680 (3.25) 5840 2340

in Table 2. Players on average outscore every persona agent
but MaxS. The MinS agent manages to have a lower score
than even the lowest scoring user in all boards. Meanwhile,
MaxS agent outscores the highest scoring user in all but one
board, in which it comes very close. This leads us to observe
that using MaxS and MinS can provide a good score interval
for a stage, emulating high and low performance respectively.
Overall, Vanilla MCTS has a better performance than average
users, meaning it is still a powerful algorithm to playtest the
game with.

Another point to notice is the average scores between
different boards. Board 1 has higher scores in all scenarios, for
both players and persona agents, when compared to Boards 2
and 3. This indicates that it is an easier stage to play, which
is valuable information when trying to balance the game.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a procedure to formulate and
genetically evolve mathematical equations to represent various
play-styles for Match-3 games. We developed an agent that
mimics a long term human player who looks to strategically
optimize the maximum number of points that can be achieved
through a series of actions after a certain number of moves.
We additionally evolved an agent that aimed to minimize its
overall score. From this, it shows the possibility of being
able to perform worse than simply playing the Match-3 game
randomly and that receiving a combo is nearly unavoidable. By
deploying these agents into real world Match-3 games, it opens
up the ability to analyze level designs and the approaches taken
to play levels by various player perspectives.

By using such agents we were able to extract features from
pre-made stages. Our score maximizing and score minimizing
agents allowed us to evaluate and estimate the range of perfor-
mance for human players. Also, comparing the performance
of such agents across multiple boards aided in measuring what
can be perceived as their difficulty levels. These findings were
supported by the player data we collected in our user study.

For future work, we propose developing a reinforcement
learning algorithm that could use the collected user data
to simulate human behavior in decision making. Another
avenue to explore would be to modify the Match-3 engine to
include special pieces that form from different combinations

of matches greater than 3. We believe that introducing these
special candies will allow for a greater variation in skill based
on how they are utilized in the level. It would be interesting
to observe any changes in the performance of the four agents,
as they may perform and make decisions differently after the
introduction of these special pieces.

REFERENCES

[1] C. Holmgård, M. C. Green, A. Liapis, and J. Togelius, “Automated
playtesting with procedural personas through MCTS with evolved
heuristics,” CoRR, vol. abs/1802.06881, 2018.

[2] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Evolving
personas for player decision modeling,” in 2014 IEEE Conference on
Computational Intelligence and Games (CIG), Aug 2014, pp. 1–8.

[3] B. Tastan and G. Sukthankar, “Learning policies for first person shooter
games using inverse reinforcement learning,” in Proceedings of the
Seventh AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, ser. AIIDE’11. AAAI Press, 2011, pp. 85–90.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3014589.3014604

[4] A. Tychsen and A. Canossa, “Defining personas in games using metrics,”
in Proceedings of the 2008 Conference on Future Play: Research, Play,
Share, ser. Future Play ’08. New York, NY, USA: ACM, 2008, pp. 73–
80. [Online]. Available: http://doi.acm.org/10.1145/1496984.1496997

[5] A. Drachen and A. Canossa, “Patterns of play: Play-personas in user-
centred game development,” in Proceedings of DiGRA 2009. DIGRA,
2009.

[6] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Generative
agents for player decision modeling in games,” in Poster Proceedings of
the 9th Conference on the Foundations of Digital Games (FDG), 2014.

[7] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez Liebana, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games (TCIAIG), vol. 4:1, pp.
1–43, 03 2012.

[8] A. Benbassat and M. Sipper, “Evomcts: Enhancing mcts-based players
through genetic programming,” in 2013 IEEE Conference on Computa-
tional Intelligence in Games (CIG), Aug 2013, pp. 1–8.

[9] T. Cazenave, “Evolving monte-carlo tree search algorithms, dept,” Inf.,
Univ. Paris, p. 2007.

[10] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
Springer, 2018, http://gameaibook.org.

[11] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
in Machine Learning: ECML 2006, J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 282–293.

