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Abstract—Educational games offer significant potential for 

supporting personalized learning in engaging virtual worlds. 
However, many educational games do not provide adaptive 
gameplay to meet the needs of individual students. To address this 
issue, educational games should include game levels that can self-
adjust to the specific needs of individual students. However, 
creating a large number of adaptable game levels requires 
considerable effort by game developers. A promising solution to 
this problem is to leverage procedural content generation to 
automatically generate levels for educational games that 
incorporate the desired learning objectives. In this paper, we 
propose a multistep deep convolutional generative adversarial 
network for generating new levels within a game for middle school 
computer science education. The model operates in two phases: (1) 
train a generator with a small set of human-authored example 
levels and generate a much larger set of synthetic levels to augment 
the training data for a second generator, and (2) train a second 
generator using the augmented training data and use it to generate 
novel educational game levels with enhanced solvability. We 
evaluate the performance of the model by comparing the novelty 
and solvability of generated levels between the two generators. 
Results suggest that the proposed multistep model significantly 
enhances the solvability of the generated levels with only minor 
degradation in the novelty of the generated levels. 

Keywords—Educational Game, Procedural Content Generation, 
Generative Adversarial Networks 

I. INTRODUCTION  
 Digital games for learning have been recognized as a 
promising tool for education and training [1]. Educational 
games have been shown to enable the effective integration of 
problem solving and adaptive instruction, while promoting 
engaged learning [2]. They provide rich, virtual worlds for 
students to develop enhanced problem solving, critical thinking, 
and other twenty-first century skills [3][4]. A common design 

approach for educational games is to present students with a 
series of challenges incorporating progressively advanced 
learning objectives [5]. However, students who are unable to 
master prior learning objectives might either give up playing the 
game or resort to a trial-and-error approach to completing 
challenges. Likewise, students come to educational games with 
vastly different prior game-playing experience [6]. Providing 
students with an adaptive environment that presents a series of 
tailored challenges that directly build on their demonstrated 
competency with respect to educational outcomes and gaming 
skills has the potential to support mastery learning and 
engagement [7]. Instead of utilizing a static sequence of 
challenges, by presenting students with challenges that target 
specific learning objectives for which mastery has not been 
demonstrated, educational games could provide personalized 
learning experiences for all students [9]. However, this requires 
game developers to create vast libraries of challenges tailored 
to specific learning objectives and gaming skills, which is 
prohibitive from a development perspective. 

Procedural Content Generation (PCG) is automatically 
generating content (e.g.,  rules, levels, and stories) for games 
using algorithms requiring limited human input [10]. Because 
PCG enables the efficient generation of large volumes of 
content, it has received significant attention in the game 
industry as an approach to reducing development costs, while 
at the same time providing players with immense worlds to 
explore. Search-based and solver-based approaches to PCG 
have been widely used to generate new content for games via 
searching predefined content spaces [11][12]. PCG via Machine 
Learning (PCGML) is an emerging approach to generating 
novel game content using machine-learned models trained on 
existing content [13]. Unlike search-based and solver-based 
methods that generate content through searching a content 



space, PCGML methods generate content using a trained model 
directly. In parallel to these efforts, researchers have started 
exploring the application of PCG to educational games to 
reduce content development time as well as to adapt content to 
specific needs of students [5][14][15].  

 In this paper, we investigate a machine learning-based 
approach to generating novel levels in a game-based learning 
environment that supports middle school students in learning 
computer science concepts and practices. We present a 
multistep deep convolutional generative adversarial network 
(DCGAN) [16] for generating educational game levels with the 
ultimate goal of creating adaptable levels to meet individual 
student needs. We first train a DCGAN generator using a small 
set of solvable human-authored levels. This generator is used to 
generate a large set of training examples that are then filtered 
based on their solvability. These solvable levels are then used 
in combination with the human-authored levels to train another 
DCGAN generator with the objective of creating solvable 
levels. With only a small reduction in the novelty of the 
generated levels, the resulting generator exhibits significantly 
enhanced performance by generating a higher percentage of 
solvable levels compared to the generator trained only on 
human-authored levels.  

II. RELATED WORK 
Procedural content generation has been widely used in digital 

games. However, relatively little work has explored its use in 
educational games. In this section, we describe prior PCG work 
on level generation in games for entertainment as well as initial 
work exploring the use of PCG in educational games. 

A. Procedural Content Generation for Level Generation 
 PCG is an emerging area of technology for level generation 
within the platform game genre. Search-based PCG uses 
evolutionary or stochastic optimization algorithms to search for 
content within a predefined content space that has certain 
desirable properties. These methods generally follow a 
generate-and-test approach that applies domain-specific 
evaluation functions to the generated content and tests if it 
exhibits the desired properties [17]. Togelius et al. used search-
based PCG to automatically generate maps for a real-time 
strategy game, StarCraft, using a fitness function that evaluated 
characteristics of the map (i.e., playability, fairness, skill 
differentiation, interestingness) [18]. Smith and Mateas 
proposed Answer Set Programming as a domain-independent 
PCG approach that explicitly represents the design space with 
logical representations of the rules used for generating content 
[12]. Although these search-based approaches have had success 
in generating novel content for games, authoring the 
representation of the content space often requires significant 
expertise [19]. To address this issue, machine learning 
approaches that generate content directly from  trained models 
have been an active area of PCG research [13]. Dahlskog et al. 
[20] examined n-gram models, which were further extended by 
Summerville et al. using Monte Carlo Tree Search [21]. 
Snodgrass and Ontañón suggested various types of Markov 
models, multidimensional Markov chains, hierarchical 

multidimensional Markov chains, and Markov random fields, 
to generate tile-based Super Mario Bros. levels by learning 
patterns from a training corpus [22][23]. Summerville and 
Mateas investigated using long-short term memory recurrent 
neural networks that leveraged information about player paths 
through levels to generate better tile-based Super Mario Bros. 
levels [24]. Most recently, variations of generative adversarial 
networks (GANs) [25], a generative method that has produced 
significant results in the computer vision field [16], have started 
to be applied to level generation [26][27]. An important aspect 
of this method is its ability to learn the implicit structure of 
levels through multiple levels of abstraction supported by deep 
neural networks. Giacomello et al. used GANs to generated 
DOOM levels [26]. Volz et al. proposed a deep convolutional 
generative adversarial network (DCGAN) using Wasserstein 
distance [28] to generate tile-based Super Mario Bros. levels 
and evolve a latent vector space to select better input noise for 
the generator using an evolutionary method (CMA-ES) [27]. 
Our approach builds on this DCGAN work [27], and introduces 
a multistep DCGAN approach to generating high-quality levels 
with enhanced solvability.     

B. Procedural Content Generation in Educational Games  
 Applying PCG for level generation within an educational 
game is challenging because it requires the generated content to 
not only be creative and solvable, but also to exercise the 
intended learning objectives. As a result, there has been limited 
work to date on using PCG in educational games. Most of the 
prior work has focused on generating content from human-
authored content spaces or following a set of human-authored 
rules [5][15]. Hooshyar et al. introduced a data-driven PCG 
approach using SVMs to construct a genetic algorithm fitness 
function for generating content adaptable to individual students 
in an English-learning educational game [8]. Dong and Barnes 
proposed a template-based puzzle generator for an educational 
puzzle programming game designed to teach loops and 
functions [5]. The generator helps reduce the time required to 
create new puzzles, while producing more creative content. 
However, the input template used by the generator must be 
human authored with respect to the desired learning objectives. 
Valls-Valgas et al. proposed a PCG approach utilizing a rule-
based graph grammar for generating new levels in a parallel 
programming educational game [29]. The system is designed to 
work with a player model that targets individual player’s needs. 
It is designed to generate a complete solution based on the 
desired complexity and concepts, and it then removes some 
elements based on the desired difficulty level. In contrast to this 
work, we aim to generate levels for an educational game using 
a multistep machine-learned model trained on a small corpus of 
human-authored levels that implicitly incorporate the desired 
learning objectives and level design characteristics.   

III. GAME-BASED LEARNING ENVIRONMENT  
 Over the past few years, our lab has been developing 
ENGAGE (Fig. 1), an educational game for middle school 
students (ages 11-13) focused on helping them learn computer 
science concepts and practices [30]. ENGAGE is built with the 



Unity game engine. The curriculum underlying ENGAGE’s 
narrative is derived from the AP Computer Science Principles 
course developed in the United States by the College Board 
with support from the National Science Foundation [31].  

 In ENGAGE, students play the role of the protagonist who 
has been sent to an undersea research facility to determine why 
all communication with the station has been lost. Unbeknownst 
to them, the facility has been taken over by a rogue scientist.  
As students explore the station, they must progress through 
multiple areas consisting of a series of connected rooms. Each 
room presents players with a set of computational challenges 
they must solve using a block-based programming interface to 
control devices within the room in order to advance to the next 
area. The overarching narrative is advanced through cinematics 
and character dialogue (Fig. 1, Left) while student learning is 
scaffolded with onscreen hints and short animated vignettes. 

ENGAGE’s visual programming interface (Fig. 1, Right) is a 
tool for constructing programs for devices in the game using a 
block-based programming language similar to Scratch and 
other visual programming languages [32]. The interface 
consists of three sub-panels: Devices, Blocks, and Program. 
The Devices panel displays the currently paired devices, the 
Blocks panel displays the available programming blocks for the 
selected device, and the Program panel provides a space for 
writing a program for the selected device.  

 To illustrate, in a sample program for a platform device 
(Fig. 1, Right), the player has dragged four Move Forward 
blocks and a Wait One Minute block onto the Program panel. 

When the program executes, this will instruct the platform to 
move forward four times and wait until one minute has passed. 
When constructing the program, if a block is placed near 
another block, they will snap together, and the circular 
connectors between the blocks will display a locking animation. 
These animations help students easily manipulate the blocks 
and also provide visualizations indicating which blocks are 
connected together. 

 The first part of ENGAGE introduces players to the game’s 
controls, block-based programming environment, and initial 
programming tasks. One room in this part of the game requires 
students to pair with a platform device to program it to move 
across a water-filled obstacle (Fig. 2, Left). In this room, 
students can solve the computational challenge by creating a 
program that instructs the platform to move forward four times 
and wait one minute to give the player time to walk off the 
platform on the other side of the room before the platform resets 
to its original position. For the work presented in this paper, we 
focus on generating levels in this type of room, and we vary the 
gaming skill and computational concepts required by the 
challenge. We authored a set of 132 training levels by making 
variations of this original room that require the use of loops and 
conditions as well as various degrees of navigation and 
platforming skills. We use a two-dimensional tile-based 
representation of the room to investigate our proposed 
framework. The room presented from a top-down view in Fig. 
2, Right is the basis for all of the authored training data used in 
this work. Details of the 2D tile-based representation of the 
levels are given in Section 4.  

         

Fig. 2. In game 3D view of platform device room (left) and top-down view of platform device room (right). 

         

Fig. 1. The ENGAGE game-based learning environment (left) and its block-based programming language interface (right). 



IV. METHOD  
In this section, we describe our approach to representing 

levels and level categories, our proposed multistep DCGAN 
framework, and metrics to evaluate the solvability and novelty 
of levels generated by the trained models. 

A. Level Representation 
A key preliminary step to train generative models for PCG 

is devising a method to represent levels in a trainable format. 
Our approach is inspired by the 2D tile-based representation 
used for Super Mario Bros. level generation [23][27]. In our 
work, each level consists of 392 tiles in a 14 by 28 grid, where 
each tile is characterized by a specific type. We use eight types 
of tiles (Table I), which were designed to construct platform 
navigation levels in ENGAGE. Among the eight tile types, four 
tile types represent significant locations within the level: 
Starting Point, Exit Point, Moving Platform, and Pairing Point. 
Before programming the moving platform, players must 
navigate to the pairing point to register the device with their in-
game portable computer. Two of the other tile types, Barrier 
and Conditional Barrier, encourage the use of loops and 
conditions in the programs developed to solve the challenge to 
facilitate students’ learning of these concepts. The final two 
types of tiles are the Ground and Water tiles, which indicate 
where the player can walk and where the moving platform can 
move. With this specification of tile types, we created the 132 
training levels as illustrated in Fig. 3, Left. These levels serve 
as our training data. To accommodate DCGAN model training 
for these categorical tile types, each tile type is converted using 
one-hot encoding, which is an encoding process that produces 
a bit vector whose length is the number of possible tile types 
(i.e., 8), where only the associated bit is 1 while all other bits 
are 0. 

B. Categories of Levels 
 Levels are classified into 12 categories based on the 
combination of three degrees of gaming skills required to solve 
the level (i.e., High, Medium, Low) and four variations of two 
learning objectives (i.e., Loop, Conditional), which are key 
concepts for Algorithms and Programming in the K-12  
Computer Science Framework [31]. The four variations consist 
of (1) Basic level, which only require basic programming 
blocks to operate the moving platform (e.g., Move Forward and 
Rotate), (2) Loop level, in which students should write a loop 
statement (e.g., Repeat) in addition to basic blocks, 
(3) Conditional level, in which students should write a 
conditional statement (e.g.,. If-else) in addition to basic blocks,  

TABLE I.  TILE TYPES IN TILE-BASED REPRESENTATION OF ENGAGE  

Tile Type Symbol Visualization 
Ground -  
Water .  
Barrier B  
Moving Platform M  
Pairing Point P  
Exit Point E  
Starting Point S  
Conditional Barrier C  

and (4) Loop & Conditional level, which requires 
implementation of both the Loop and Conditional concepts to 
solve the level.   

Gaming skills refer to the degree of navigation and platforming 
skill needed by the player to solve the level. While some 
students who are familiar with playing games may feel more 
engaged and motivated as they encounter levels requiring more 
complex character controls and navigation, others with less 
game experience may be more likely to struggle in such a level. 
This could lead to negative learning experiences for less skilled 
students. Thus, based on students’ pre-survey of their game 
experience, producing varied gaming skill levels that are 
adaptive to individual players is an important functionality for 
PCG to provide effective, personalized game-based learning 
experiences. 

 To introduce gaming skill variations in levels in the training 
data, we adjust tile types in the ground area. The ground area 
consists of ground and water tiles. Players can freely navigate 
on the ground tiles, while they need to jump to get across small 
holes filled with water. This area is distinguished from the 
larger area of water where the player must use the moving 
platform to navigate to the other side. Low game skill levels do 
not require the player to jump (i.e., no holes in the ground area), 
while Medium and High game skill levels contain progressively 
more holes requiring more sophisticated character controlling 
to successfully navigate. 

 To encourage the use of certain programming constructs in 
solving a level, we configure tiles in the area where the player 
must use the moving platform to navigate. Within the game, the 
learning objective focus of a level for a specific student is 
determined by the student’s competency that can be measured 
by knowledge assessment models (e.g., [30]). For example, 
while some students might struggle with the conditional 
concept (e.g., If-else), others may have mastered the conditional 
concept but struggle with the iteration concept (e.g., Repeat), as 
observed in their programming pattern of using only basic 
programming blocks only even when an iterative pattern could 
be used. It is important for PCG to provide content tailored to 
individual students’ competency level for each programming 
concept thereby helping remediate their knowledge. 

 To introduce training data that included each of the 
programming concepts, we authored levels that included 
additional obstacles the moving platform had to navigate 
around within the large water area (shown in blue in the middle 
of Fig. 3, Right). The water area consists of Water tiles (.), the  

                        

Fig. 3. Example authored level in text (left) and visual representation (right).  



Moving Platform (M), Barrier tiles (B), and Conditional Barrier 
tiles (C). We introduce iteration and conditional concepts by 
using variations of the Barrier (B) tile, where the moving 
platform (M) cannot navigate, and the Conditional Barrier (C), 
which encourages students to master the conditional concept, 
by forcing them to check if the Conditional Barrier is active 
prior to moving to the corresponding location. Fig. 3 shows an 
example of a level containing both iteration and conditional 
concepts. After going through the Conditional Barrier (C) 
(shown in orange), students encountered a repetitive pattern that 
encourages the use of iteration. 

C. Multistep Deep Convolutional Generative Adversarial 
Network  
The PCG models in this work are based on generative 

adversarial networks (GANs) [25]. A GAN is a type of zero-
sum game in which a generator and a discriminator are trained 
to outdo the other. For each training phase, the generator takes 
a random noise vector as input and generates synthetic data that 
looks similar to real data with the goal of deceiving the 
discriminator about the source of the data. The discriminator 
takes as input either real data or fake data and determines if the 
given input is real (i.e., the source of the data is from the real 
dataset) or fake (i.e., the source of the data is from the generator). 
The goal of training a GAN is to improve the generator’s 
performance to the level that even a well-trained discriminator 
cannot distinguish the generator-created synthetic data from 
real data. 

DCGANs (deep convolutional generative adversarial 
networks) are a variant of GANs [16]. DCGANs have been 
extensively used in the generation of synthetic images. 
DCGANs use (1) deep convolutional neural networks with 
feature transposed convolutions for the generator, where the 
generator takes a noise vector as input and converts it into 
synthetic data, and (2) deep convolutional neural networks with 

normal convolutions for the discriminator, where it takes an 
image as an input and predicts whether the input is real or fake. 

In our work, a multistep DCGAN approach is utilized for 
level generation. We train two DCGANs: The Training 
Augmentation DCGAN performs a data augmentation function 
(i.e., creating more training data via the generator) and the 
Enhanced Solvability DCGAN supports generation of levels 
with higher solvability compared to ones generated by the 
Training Augmentation DCGAN. Our multistep DCGAN 
model is adapted from [27], the generators use ReLU activation  
for all transposed convolutional layers and the discriminators 
use Leaky ReLU activation for all convolutional layers. Both 
the generator and discriminators are trained with RMSprop [33] 
for 1,000 iterations with a batch size of 32 and a learning rate 
0.00005. The dimension of noise vectors used for the generators 
is set to 32, while each feature in the noise vectors are initialized 
following a normal distribution range from 0 to 1. 

Fig. 4 presents the multistep DCGAN-based PCG 
framework. The Training Augmentation DCGAN is used to 
generate levels for augmenting the training dataset using a 
limited set of hand-crafted training data. The augmentation 
process is performed as follows: 1) we train the generator 
through the Training Augmentation DCGAN model, and save 
the model every 50 epochs between 50 epochs and 1,000 epochs; 
2) each candidate model generates 1,000 levels whose novelty 
and the solvability scores are computed to choose the best 
performing model 3) each of the generated levels from the 
chosen model is examined with a Solver, described below, 
which checks whether each level is solvable or not; and 4) only 
solvable levels are combined with the original training levels as 
a process of dataset augmentation. 

Then, we train another generator (i.e., Enhanced Solvability 
DCGAN) using the augmented dataset. Although only a small 

 

Fig. 4. Overview of the proposed Multistep DCGAN Framework  



portion of the training data is human-authored data and the 
remaining data was created by the Training Augmentation 
DCGAN, it should be noted that all levels in this augmented 
training set are solvable. Our multistep DCGAN-based PCG 
approach enables the Enhanced Solvability DCGAN’s 
generator to produce more solvable levels than the Training 
Augmentation DCGAN’s generator that is more likely to 
generate levels that are unsolvable. The multistep DCGAN-
based PCG framework was implemented with the PyTorch deep 
learning toolkit [34], building upon the DCGAN-based PCG 
library written by Volz and colleagues [27].  

D. Evaluation Metrics   
The performance of the two DCGANs’ trained generators are 

evaluated with respect to their ability to generate levels that are 
both solvable and novel. We adopt these two metrics, since 
generating valid, solvable levels is one of the primary goals for 
PCG and also generating novel levels will help promote user 
engagement. First, we developed a Solver module, which 
determines if a given level is solvable. The solver checks the 
following five constraints: 1) the starting point, pairing point, 
moving platform, and exit point should be unique within the 
level, 2) there should be a path from the starting point to the 
pairing point, 3) there should be a path from the pairing device 
to the moving platform, 4) there should be a path for the moving 
platform to follow to reach the other side of the level, 5) there 
should be a path from the moving platform to the exit point of 
the level. The solver is implemented with Dijkstra’s algorithm 
[35] to find the shortest path between two tiles, checking 
whether the generated levels satisfy the five described 
constraints. 

To measure the novelty of the generated levels, we used the 
novelty measure from novelty search [36]. The novelty 𝜌 for 
level x is given by: 

𝜌(𝑥) = 	 '
(
∑ 𝑑𝑖𝑠𝑡(𝑥,(
/0' 𝜇/) (1) 

where 𝜇/ is the ith nearest neighbor drawn from the real dataset 
of level x with respect to the domain-specific distance metric 
dist. The dist measure evaluates how novel a generated level is, 
compared to one of the original levels. We set the number of 
nearest neighbors to consider (k) to 20 and adopt the heuristic 
function introduced in Liapis et al. [37], in which the distance 
between two tile-based levels is defined as the number of 
mismatched tiles at the same coordinates between the generated 
level and the original level over the total number of tiles in the 
original level.  

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 	
∑ ∑ 3(45,6	,75,6)

8
69:

;
59:

<∗>
	  (2)  

The function f is defined as follows: 𝑓(𝑥/,@	, 𝑦/,@) 	=
0	(𝑖𝑓	𝑥/,@ = 𝑦/,@)	, 1	(𝑖𝑓	𝑥/,@ ≠ 𝑦/,@), where i and j are the row 
and column indices in the level, respectively. Finally, r and c 
denote the total number of rows and the total number of 
columns in the level, respectively.  

V. EVALUATION 
We evaluate the multistep DCGAN PCG framework on the 

novelty and solvability of the levels it generates. The top graph 
in Fig. 5 shows changes in the novelty score of the Training 
Augmentation DCGAN’s generator, as the number of epochs 
increases. Generated samples that are more distinct from real 
data have higher novelty scores. As shown in Fig. 5, Top, the 
novelty scores trend downwards and starts decreasing slowly 
after 450 epochs, indicating that the Training Augmentation 
DCGAN’s generator starts generating samples very similar to 
the original dataset. The bottom graph in Fig. 5 shows changes 
in the percentage of solvable levels out of 1,000 generated 
levels produced by the trained Training Augmentation 
DCGAN’s generator as the number of epochs increases. The 
solvability rises steeply until 250 epochs and converges.  

We test three Training Augmentation models that are saved 
at 250, 350, and 450 epochs for the Training Augmentation 
DCGAN to augment the training dataset, with which the 
Enhanced Solvability DCGAN model is trained. The rationale 
behind this decision is the Training Augmentation DCGAN 
models are stable enough to generate solvable levels after 250 
epochs, while the novelty score converges after 450 epochs (i.e., 
models at 450 epochs and any models using a higher number of 
epochs are not differ significantly with respect to the novelty). 

The number of epochs for the Enhanced Solvability DCGAN 
model matches with the number of epochs used to train each 
Training Augmentation DCGAN model. After training the 
corresponding Enhanced Solvability DCGAN, we compare the 
enhancement in a pairwise manner (e.g., comparing novelty and 
solvability of the Training Augmentation DCGAN trained 
using 250 epochs and the Enhanced Solvability DCGAN 
trained using 250 epochs). Table II shows the comparison of the 
performance between the Training Augmentation DCGAN’s  

 

Fig. 5. Change in Novelty and Solvability by the number of epochs 

 



TABLE II.  COMPARISION OF NOVELTY AND SOLVABILITY. 

# of 
Epochs 

Novelty (𝝆) Solvability  

Training 
Augmentation 

Enhanced 
Solvability 

Training 
Augmentation 

Enhanced 
Solvability 

250 0.075 0.069 0.930 0.999 
350 0.072 0.063 0.946 0.973 
450 0.071 0.620 0.919 0.986 

generator and the Enhanced Solvability DCGAN’s generator 
based on 5,000 levels created by each model across the different 
number of epochs. The results show a significant enhancement 
is achieved by the Enhanced Solvability DCGAN models with 
respect to the solvability, while sacrificing only a small degree 
of novelty. In particular, the Enhanced Solvability DCGAN 
model trained using 250 epochs generated only 7 unsolvable 
levels out of 5,000 generated levels (a solvability of 99.86%).   

VI. DISCUSSION AND LIMITATIONS 
The results show that the multistep DCGAN-based PCG 

framework enables the Enhanced Solvability DCGAN’s 
generator to create a high percentage of solvable levels to 
significantly outperform the Training Augmentation DCGAN’s 
generator with respect to solvability. This is achieved by having 
the multistep DCGAN model use the Dijkstra’s algorithm-
based solver to select synthetic solvable levels. The Training 
Augmentation DCGAN’s generator generates synthetic levels 
that are a mixture of solvable and unsolvable levels, the solver 
checks if each generated level is solvable based on the five 
constraints, only solvable synthetic levels are integrated into the 
original dataset (i.e., dataset augmentation), and the Enhanced 
Solvability DCGAN’s generator generates more solvable 
synthetic levels without significantly sacrificing novelty. 

Examples of solvable (Fig. 6b) and unsolvable (Fig. 6c) 
levels were generated by the Enhanced Solvability DCGAN 
model using 250 epochs. The water area, the middle blue-
colored regions of all levels are complex and creative compared 
to the original levels shown in Fig. 6a. However, the generated 
levels also contain undesirable elements. The level in Fig. 6b, 
Left has many barriers but only require the platform to move 
forward across the water area. In Fig. 6c, Right, the left-side 
ground area (shown in purple) requires challenging moves with 
holes while the right-side ground does not require any 
challenging moves.       

As discussed, we utilize solvability and novelty to evaluate 
the generated levels. Each of the measures has limitations. First, 
the novelty heuristic function (Eq. 1) performs a tile-level 
comparison between a generated level and k-nearest neighbors 
in the original dataset. Although this heuristic function 
measures the difference between two levels, similar patterns 
observed in slightly different areas within the two levels might 
not be fully captured by this metric. Second, the solvability 
function uses an algorithm to find the shortest path between two 
tile positions. However, other levels designed in ENGAGE or 
more complex levels in other games will likely require different 
approaches for measuring solvability. Lastly, this work 
examines one data augmentation step, which achieves enhanced 

solvability, while more augmentation steps have potential to 
further enhance the performance. While these limitations call 
for further research to design more generalizable functions to 
measure solvability and novelty of the levels, the multistep 
DCGAN PCG framework paves the way toward approaches 
that significantly improve solvability relative to a single-step 
DCGAN.  

VII.  CONCLUSION 
Because procedural content generation has proven effective 

for entertainment games, it holds considerable potential for 
dramatically increasing adaptivity and replayability for 
educational games, while simultaneously significantly reducing 
development effort. The multistep DCGAN model presented 
here shows promise for achieving the goal of generating 
solvable levels by augmenting human-authored training data 
with synthetic training data. Evaluation of the multistep 
DCGAN model shows that it significantly enhances the 
solvability of the generated levels with minor degradation in the 
novelty of the generated levels. In this work, we investigated a 
multistep DCGAN model, and the model is extendible to 
additional steps. These results suggest promising directions for 
future work, including exploring if introducing additional steps 
yield further improvements to the generated levels. It will also 
be important to investigate the impact of incorporating 
additional constraint checkers into the solver to explore how the 
generated levels address specific learning objectives. One 
approach is to use conditional GANs [38] to adaptively create 

    

 (a) Original levels 

     
                      𝝆 = 0.096                                           𝝆 = 0.089 

 (b) Generated solvable levels 

    

                      𝝆 = 0.075                                          𝝆 = 0.081 

(c) Generated unsolvable levels 

Fig. 6. Examples of original and generated levels. (a) Original levels (b) 
Generated solvable levels from the Epoch 250 model with Novelty (ρ) > 0.08.  
(c) Unsolvable generated levels from the Epoch 250 model with Novelty (ρ) > 
0.07 (Left) The moving platform can only move one step forward and cannot 
escape from the barrier. (Right) There is no way to go forward after the moving 
platform navigates the iterative path. 



levels requiring a specific set of gaming skills and learning 
objectives, as conditioned on the input of the generator. Using 
this conditional GAN approach, the set of conditions can be 
extended to cover other objectives of interest in educational 
games, in addition to the gaming skills and learning objectives. 
Another direction for future work is to explore the benefits of 
incorporating a self-attention GAN model [39] that has the 
ability to better track patterns with long-range dependencies.  
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