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Abstract—The analysis of games or game content, e.g. in the
context of AI-assisted game design and search-based PCG, is
often based on playthroughs that are generated by simulating
human decisions using AI players. With this paper, we hope to
encourage more systematic analyses of uncertainties and errors
potentially introduced by simulating human decisions in this
context. To this end, we conduct a case study on StarCraft II
to demonstrate the potential effects of these uncertainties. We
construct two usecases from an analysis of existing approaches
in research that employ simulations of human decisions through
game AI. We are able to demonstrate large impacts of the
simulations and finally discuss how the resulting uncertainties
can be controlled in future work.

Index Terms—Simulated Human Decision-Makers, Game
Analysis, PCG, AI-assisted Game Design, StarCraft II

I. INTRODUCTION

In many real-world problems, human decision-makers are
a part of the system under investigation. This is true, for
example, for optimising public transport or stock market
strategies. Many of the state-of-the art approaches employ
simulations to provide data for natural computing methods
to approach these problems. Simulations are often used in
applications where actually evaluating potential solutions is
prohibitively expensive or even dangerous. However, relying
on simulations obviously introduces an error and its effects on
the fitness landscape and thus on the computed solutions are
not clear. These effects should be investigated further, which
we intend to do with this paper with an application to games.

In research on game analysis, artificial intelligence (AI)
agents are commonly used to simulate human players taking
actions in a game. The simulations are for example used to
train and test AI agents (self-play), as well as for evaluat-
ing games and their content in the context of AI-assisted
game design. For instance, AI agents have been used to
identify patterns and problems in game design [2] as well
as to evaluate search-based procedurally generated content
[13]. Furthermore, Google DeepMind has achieved publicly
acclaimed success on games such as GO and StarCraft II with
their game-playing AI agents that were trained through self-
play [11, 15].

However, it is also apparent that for results based solely
on AI agent playthroughs, it is difficult to draw conclusions

for games with human players. While the game-playing AIs
developed by Google DeepMind are demonstrably able to
beat professional human players, they do exhibit behaviour
very unlike human players.1 This means that playing patterns
can potentially differ significantly between human and AI
players. However, these patterns are often the sole source of
information of research in game analysis, mainly due to the
lack of data on human players (cf. survey in [17]). Natural
computing methods based on such AI simulations (e.g [18])
can thus be misled indefinitely.

Therefore, with this paper, we hope to encourage more
systematic analyses of uncertainties and errors potentially
introduced by simulating human decisions in the context of the
analysis of games (content). To this end, we first present two
usecases in section II that we use to explore these uncertainties
and errors in a clear and quantifiable fashion. The usecases
further provide context and thus motivation for this analysis.
We also conduct a review of literature employing simulation of
human decisions in games in section III. We give an overview
over the various applications of such AI simulations and find
that their effects are rarely investigated. Following this, we
detail several experiments based on the usecases that serve as
a first investigation into the impact of AI simulations in section
IV. As expected, we find that these effects are considerable and
conclude in section V that their analysis is crucial when using
AI simulations. We finally discuss several directions for future
research regarding simulating human decisions and controlling
its effects.

II. STARCRAFT II WIN PREDICTION: USECASES

In the following, we present two usecases that we use to
demonstrate the effects of simulating human decisions in game
analysis in this paper. Both usecases are related to win predic-
tion in StarCraft II, a real-time strategy (RTS) game described
in more detail in section II-A. StarCraft II was chosen as an
example application due to its considerable complexity and
the availability of suitable datasets and analysis software. The
experiments are based on an extensive dataset of StarCraft II
replays, from human as well as AI players detailed in section

1See for example the plot on Actions Per Minute (APM) in [15]
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Fig. 1. Protoss base with multiple units and buildings.

II-B. We describe both usecases along with their separate
motivations in sections II-C and II-D, respectively.

A. StarCraft II

StarCraft II2 is a popular RTS game with a science-fiction
theme released in 2010. It was designed as an E-Sport and
has a massive following, regular tournaments (e.g. World
Championship Series) and professional players.

StarCraft II features 3 playable races (Terran, Protoss, Zerg),
3 types of resources (minerals, vespene gas and food/supply),
and several game modes (1v1, 2v2, 3v3, 4v4 and campaign),
but this paper will focus exclusively on 1v1, the most popular
game mode. Figure II shows a Protoss base with several
buildings and units at an early stage of a game.

The player who successfully destroys all their opponent’s
buildings wins the game. The game also ends if a player
concedes or a stalemate is detected by the game. Players have
to carefully balance resource gathering efforts (economy), pro-
duction of military units (army), and upgrades (technology).
This balancing act is often called macromanagement, whereas
the control of singular units is called micromanagement.

StarCraft: Brood War, an earlier release in the same series,
has been used extensively in research as a benchmark and
competition framework for AI agents [14]. More recently, in
2017, the StarCraft II Learning Environment (SC2LE) [16]
was published. It provides an interface for AI agents to interact
with a multi-platform version of StarCraft II and supports the
analysis of previously recorded games. Moreover, it offers an
interface, through which a large set of gamestate observations3

can be tracked for every game tick in real-time. It also allows
the analysis of replays, which are files that store complete
games. Software for accessing the data is publicly available4.

Google DeepMind recently organised a demonstration
showing impressive progress in the challenge of developing
proficient AI players for the game [15].

B. Datasets

1) Data Mining: In this paper, we are using three replay
datasets for our analysis, which are described in the following:

• LADDER: 4955 1v1 ladder games (human vs. human)
randomly sampled from publicly available replay packs.

2https://starcraft2.com
3https://github.com/deepmind/pysc2/blob/master/docs/environment.md
4for more information check https://github.com/deepmind/pysc2/blob/

master/docs/environment.md, https://github.com/deepmind/pysc2, and https:
//github.com/Blizzard/s2protocol

Ladder games count towards a player’s ranking, which
one generally seeks to improve.

• WCS: 419 1v1 games (human vs. human), played during
the World Championship Series (WCS) tournament in
Leipzig, Germany, January 26th-28th 20185.

• AI: 651 1v1 games (AI vs. AI) from the StarCraft II AI
ladder6

It is important to note that, while the players whose games
are contained in the LADDER dataset are not absolute begin-
ners, their proficiency is expected to differ significantly from
the (semi-)professional players in a WCS tournament. (Non-
cheating) AI players were considered to be less proficient than
most human players until the recent successes of AlphaStar
[15]. However, StarCraft AI competitions and the SC2LE
still continue to have traction as several challenges, especially
related to macromanagement, are still open.

2) Features: For each of the games in the datasets, we
collect several features that describe player progress. The
features we were able to collect and use for further analysis
are listed along with their interpretation in the following.

General features (metadata)
Map name unique identifier of map
Race Protoss, Terran, Zerg
Result win, loss, tie, undecided
APM actions per minute
Game duration number of game ticks

The collected features contain some general information like
the name of the map the match was played on, and how many
game ticks it lasted. Additionally, the assigned race and result
of both players are saved along with the APM statistic.

Resource features (stats)
collection rate resources collected per minute
current number of unspent resources
used number of spent resources (total)
killed enemy units, buildings destroyed by player
lost own units, buildings destroyed
friendly fire own units, buildings destroyed by player

All resource features are available for both minerals and
vespene gas separately and measured in these resource units.
They describe the collection status of the respective resource,
as well as building and units expressed in terms of their
resource costs as an aggregated measure. The last four features
are divided into three more categories (economy, army and
technology) that indicate the type of building or unit the
resource was spent on. Expert players are often able to identify
player strategy and progress based on these resource features.
We thus assume that this data contains enough information to
train win prediction models on.

3) Preprocessing: As our goal is to find a generic character-
isation of these real-world datasets, it is important to remove
outliers and data artefacts in order to minimise misleading
signals. An important example of such artefacts are games

5https://wcs.starcraft2.com/en-us/tournament/3895/
6http://sc2ai.net/



where players were away from their keyboard, and games
where players lose on purpose. While such behaviour might
result in an interesting characteristic, it is extremely unlikely to
occur in AI or tournament games. Since the goal of this paper
is to compare models across different datasets, we remove the
corresponding replays from the datasets.

Following recommendations from previous work [19], we
thus remove games

1) where at least one player performed 0 actions per
minute,

2) that lasted 30 seconds or less,
3) where at least one player spent less than 50 minerals

and already destroyed one of their own buildings.
After preprocessing, we are left with 4410 LADDER games,
419 WCS games and 651 AI games.

C. Usecase I: Map Balance

As StarCraft II is an E-Sport, it is of course important that
maps played in tournaments and leagues are balanced, i.e. no
race or playing style is severely favoured or disadvantaged.
For example, maps with few choke points are often said to
favour Zerg, as players of this race often rely on large armies
with light units that can swarm the opponent7. At the same
time, maps should also be diverse enough to encourage varied
playing experiences.

Map imbalance issues in tournaments are usually mitigated
by playing multiple games in each match-up, as well as
allowing players to veto maps. Despite these provisions, the
selection of maps is usually heavily criticised when introduced
at the start of each season. It is thus of great interest to ensure
the balance of all newly introduced maps. As extensive play-
tests with human players are usually expensive, the question
we pose in this usecase is: Can map balance in StarCraft
II be predicted based on simulations of human decisions?

Similar usecases have been investigated in related work,
such as in [6] where data from AI players is collected
to support the creation of balanced maps in a shooter. AI
simulations have also been used to optimise balance in decks
for the card game TopTrumps in [18].

D. Usecase II: Embodied Win Prediction

Analysing games is not only important in the context of
game design, but many state-of-the-art game AI approaches
rely on the ability to assess how promising a given situation in
a game is. This is why predicting the outcome of a game given
observations of the game state is a popular topic in games
research, including for StarCraft II (cf. [19]). This is especially
true for embodied win prediction models, i.e. models that only
rely on observations available to the player during the game.

The central question of this usecase is: Can win prediction
models trained on data from AI simulations be applied to
games against human players? This is interesting because
game AIs are usually trained through self-play, i.e. by sim-
ulating human decisions, but are then pitted against human

7https://liquipedia.net/starcraft2/Choke Point
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Fig. 2. Schematic overview of AI simulations in game analysis research.
Direct approaches are depicted in red, where the output of a simulation is used
directly. Model-based approaches (depicted in blue) use these simulations as
training data to construct a model, whose predictions become the output.

players (cf. [15]). To answer this question, we will mainly
be relying on previous work on embodied win prediction in
StarCraft II published in [19]. For the examples in this paper,
we only consider the values at the very last game tick.

III. SIMULATING HUMAN DECISIONS IN GAMES

A. Overview

In the following subsections III-B and III-C, we present
a literature review of research that involves the analysis of
games. Most of these publications are in the field of procedural
content generation (PCG) or AI-assisted game design, where
simulations are used for the automatic evaluation of games
or game content. Most analysis approaches aim at finding
explanations for how a given output variable changes based
on an input. In StarCraft II, for example, a potential topic
of analysis is the relationship between the winrates of Zerg
players and the map played (see usecase I, section II-C).
Answering this question could greatly help when identifying
balancing issues in newly designed maps.

In the literature survey, we identified two main approaches
of using AI simulations in game analysis research:

• Direct: The results of the simulation are used directly in
the analysis

• Model-Based: The simulation results are used as training
data for a machine learning model trained with supervised
learning techniques.

The different approaches are also visualised in figure 2, where
the direct approach is depicted in red and the model-based one
in blue. Circles represent data objects, while squares refer to
processes. The type of input and output data used of course
depends on the question that is investigated in a given instance.
This also holds true for the choice of AI players and the
machine learning approach.

Both of the identified approaches rely on the assumption that
observations made from AI playthroughs can be generalised to
human gameplay. Continuing the example from above; a high
winrate for AI Zerg players does not necessarily translate to
a general Zerg advantage. Another possible explanation could



be that the implemented AI players are simply more proficient
with Zerg gameplay, e.g. due to abusing their super-human
micromanagement capabilities. In addition, if simulation data
is used to train a model on win prediction (see usecase II,
section II-D), different game-playing behaviour would result
in different distributions of input data. This would be a
considerable challenge for training a suitable machine learning
model. Unfortunately, in most game analysis applications, it is
not immediately clear whether generalisations as described are
valid. In the following, we describe how the generalisability
assumption for simulating human decision in games is handled
in related work.

It is important to note that generalisability is not the only
type of assumption regularly found in literature on game
analysis. One underlying assumption, for example, is that
complex abstract concepts such as strategic depth can be
extracted from playthrough data and interpreted correctly (see
e.g. [7]). Further examples of uncertainties are discussed
in [17] in the context of a benchmark consisting of game
problems. As discussed there, an additional complexity is that
the various uncertainties are difficult to estimate and non-
symmetric. They likely also interact in a cumulative fashion.
More work is required towards investigating uncertainties in
the game context, e.g. using benchmarks as suggested in [17].

In order to be able to provide a clear focus, we restrict the
literature overview and discussions in the following sections to
the generalisability assumptions caused by simulating human
decisions with AI players.

B. Direct Approaches

There are a variety of publications that use AI agents to
evaluate abstract concepts like the ones mentioned above.
Among other metrics, [4] and [18] evaluate closeness, i.e.
how close the game ended, using AI agents. In [12], the
enjoyability of Pacman ghost teams is expressed as a weighted
sum of several measures that express challenge and spatial,
as well as behavioural diversity, based on gameplay data. In
[2], performance along with further behavioural statistics such
as frequency of specific actions, are analysed based on AI
playthroughs for the board game Ticket to Ride.

While some of the publications listed above are mainly
based on observations and previous experiences of a designer,
several concept are also developed using formal theories, such
as the theory of fun [9]. Relative performance profiles and
learnability are both approaches that are based on this prin-
ciple. According to the theory, human players enjoy learning
new patterns, information and strategies.

It is assumed that the degree to which a given game
allows and supports this learning progress can be approximated
via its ability to differentiate between the performances of
players in terms of in-game reward. Relative performance
profiles measure this differentiation. They have been used to
evaluate video games in context of the General Video Game
Playing platform (GVGAI)8 in [8]. Lantz et al. use relative

8gvgai.net

performance profiles as a way to measure strategic depth in
[7]. Isaksen et al. simulate varying player skill by adding
randomised reactionary delays to their AI playing Flappy Bird
and use the resulting score distribution to determine the level
difficulty in [3].

There also exist more systematic frameworks that seek to
support the usage of AI simulations for game analysis and
evaluation. One such framework is restricted play, which
was proposed by A. Jaffe for his work on game balancing.
The concept of restricted play was later extended in [5]
and constitutes evaluating game features by evaluating win
probabilities of agents that are limited in specific ways. For
example, if the impact of a certain action A is supposed to be
evaluated, the win probabilities of an agent that is restricted
in the sense that it is not allowed to execute A against an
unrestricted agent are measured. In this case, if the win rate is
around 50%, A would be shown to have no observable impact.

While some of the publications described above rely on
theoretic models, it is not immediately clear whether results
from AI simulations are transferrable to the actual games
played by humans. To ensure that, the AI would need to
be implemented in such a way that it behaves human-like.
However, finding accurate and generalisable player models is
still an unsolved problem in research on player modelling.

C. Model-Based Approaches

Model-based approaches, where the models are trained from
generated data are less ubiquitous. One example is the work
in [6], where a neural network is trained on a large amount of
data generated through AI simulations. The resulting model
is used to guide an algorithm for automated level design.
This is done in order to save computational effort that would
otherwise be necessary to evaluate each level design consid-
ered. In [10], a model employing neuroevolutionary pairwise
preference learning and automatic feature selection is trained
to predict engagement, frustration and challenge based on
recorded gameplay data. However, basing models exclusively
on simulated data also assumes that the datasets the models
are trained on and applied to are similarly distributed.

In order to avoid errors in this regard, some researcher also
integrate human gameplay data. One example is [20], where
the authors propose an active learning method to automate
playtests intended to tune low-level parameters. They test
their approach on a shoot-’em-up game. In their paper, Zook
et al. train regression and classification models to predict the
value of a game metric or subjective response from game
design parameters as an input. These models are trained on
information from playtests by human players. The authors
intend to minimise the number of playtests required to generate
training data by using active learning methods to efficiently
select game setups for human playtests.

However, approaches like this one bear another set of
difficulties. First of all, enough appropriate data from human
playtests needs to be available. This is made difficult because
games in general combined with human nature make for a very
noisy testbed. This means that each data point would need to



consist of multiple playthroughs, ideally of different people
with different interests, playing styles and skill sets. In case
there is not enough data, especially if we are investigating a
multi-dimensional search space of game configurations, this
method will extrapolate from the obtained knowledge. In
addition, it is often unclear whether interpolating between
observed data points such as levels creates meaningful results.
Defining suitable distance measures is similarly complicated.
As a result, modelling assumptions might be violated.

IV. EXPERIMENTS

In the following, we first compare our artificially generated
dataset called AI with our main real-world dataset, LADDER,
using a descriptive analysis in section IV-A. The purpose of
this analysis is to test whether the generalisability assumptions
(described in section III-A) are likely to hold for the datasets
used for our experimental analysis (see section II-B). Follow-
ing that, we describe the results for both usecases described
in sections II-C and II-D and discuss the observed effects of
replacing human decisions with AI simulations.

A. Descriptive Analysis

All experiments are performed on data only and using
a Kolmogorov-Smirnov test [1]. We are using the standard
confidence level of α = 0.05 for all tests. The results are
supported visually by histograms and barplots in figure 3. The
figures plot the value distribution of a specific feature dis-
played on the x-axis (i.e. used vespene technology in figure
3, 3rd row left). Only relative frequencies are displayed to
allow a comparison between datasets of different sizes. The
different datasets visualised in the figures are colour coded
(blue: LADDER, red: AI) and can overlap, resulting in a purple
colouring.

While the plots show the complete datasets, i.e. feature
values for both players in a game for the sake of com-
pleteness, the tests are done only on feature vectors where
the corresponding player won the game. This ensures that
the data is independently distributed as is assumed by the
Kolmogorov-Smirnov Test. It should also make the values
of the features more comparable, especially since there are
considerably more undecided or tied games in the AI datasets
that produce outliers, especially in terms of game duration.

As both usecases addressed in this paper relate to win
predictions (see sections II-C and II-D), in this section, we
specifically analyse the distribution of features that are com-
monly associated with player success during a game (game
duration, resource statistics), as well as with player skill
(APM). The results are visualised in figure 3.

We observe that, while human players seem to play the races
about equally (with slightly more Terran players, cf. figure 3
top left), research seems to focus on Zerg players. There is
also a striking difference in terms of game result, since 20%
of AI games end without a winner (cf. figure 3 top right),
which is very unusual for games played by humans (LADDER
as well as WCS). It is interesting to see that APM does not
translate to proficiency in case of AI players (cf. figure 3

2nd row left). They perform worse than human players from
LADDER, but achieve a much larger APM.9 While AIs are of
course not limited by human reaction times, the agents seem
to be performing a great number of actions that are either not
meaningful or possibly counterproductive. This behaviour is
especially true for exploratory algorithms.

With only very few exceptions, the resource-related features
from the AI and LADDER datasets are significantly differently
distributed. In figure 3, we show some examples of differently
distributed features, namely mineral collection rate (2nd row
right), vespene gas used for technology and minerals used for
economy (3rd row left and right, respectively) as well as min-
erals used for technology (bottom left). As a counterexample,
we also added vespene gas lost by economy (bottom right).

The observations described above from the visual compar-
ison of distributions presented in figure 3 are also strongly
supported by the corresponding p-values received from a
Kolmogorov-Smirnov test. The hypothesis that both datasets
share the same cumulative distribution function is rejected in
almost all cases. Typical p-values received were 9.592 · 10−14

for the chosen race, or less than 2.2 ·10−16 for APM, minerals
collection rate, vespene gas used for technology, and minerals
used for technology. As expected, the hypothesis was accepted
for economy lost measured in vespene gas (bottom right in
figure 3) with a p-value of 0.7116.

Based on the above descriptive analysis, we thus conclude
that the LADDER and AI datasets follow different distributions.

B. Usecase I: Map Balance

For this usecase, we investigate the different datasets in
terms of observable patterns regarding the correlations be-
tween map and race choice and the resulting winrate for the
player in question. To do this, we select from the LADDER
and AI datasets those maps that occur in both (M1: Abyssal
Reef LE, M2: Ascension to Aiur LE, M3: Interloper LE, M4:
Mech Depot LE, M5: Odyssey LE). WCS is not used in the
following experiments, as the map pool for the tournament was
completely different. For each of those maps and datasets, we
compute the respective winrates of players of all three races.
The results are presented in table I, with a colour gradient
used as a visual aide to spot patterns.

It is quite striking that based on the LADDER data, all maps
seem relatively balanced with respect to race. All of the races
have a winrate of around 50%. In contrast, the AI dataset seems
to show that Terran has a clear disadvantage on most maps
(except for M5: Odyssey LE). From this simple comparison,
it is already evident that the data obtained from the AI dataset
could not be used to predict map balance for human league
games. This is because none of the observed patterns in the
data is reflected in the LADDER dataset.

A potential source of this lack of correlation is the different
distributions of the data as described in the previous section. AI
games end in ties or as undecided far more often than LADDER

9The APM distribution of Goolge DeepMind’s AlphaStar AI is also very
different from that of its human pro-player opponents [15].
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Fig. 3. Comparison of features in LADDER and AI. Dataset LADDER is displayed in blue, AI in red. Features displayed from left to right, top to bottom are
assigned race, result, APM, mineral collection rate as well as minerals spent on army, economy and technology, respectively. The last graphic in the lower
right corner shows economy lost measured in vespene gas.



TABLE I
WINRATES BY RACE ON DIFFERENT MAPS FROM THE LADDER AND AI

DATASETS. COLOUR GRADIENT ADDED AS VISUAL AIDE.

Map LADDER AI
Protoss Terran Zerg Protoss Terran Zerg

M1

M2

M3

M4

M5

games (see figure 3 top right). In addition, the distribution
of data on the different races is also imbalanced for the AI
dataset (see figure 3 top left). Another issue are the different
magnitudes of the datasets: There were only between 210-224
samples for each map in the AI dataset, while the LADDER
dataset contains between 1153-1542 samples per map.

C. Usecase II: Embodied Win Prediction

For our second usecase, we train several machine learning
models for embodied win prediction following previous re-
search in [19]. The models are trained on different data sets
and we investigate their performance in the following.

We thus train a simple Artificial Neural Network (ANN -
1 hidden layer, 10 neurons) to predict the winner of a match
given the remaining features as input. We report the mean
and standard deviation of the prediction accuracies observed
in 30 independent tests. For a baseline, we first trained such
a predictor separately on each of the datasets using cross-
validation and a 90/10 split. Results are presented in table
II. The obtained mean accuracies are very high, with a small
standard deviation. This was expected, as the data describes
the gamestate at the end of the game and no generalisation is
required.

TABLE II
WINNER PREDICTION ACCURACY FOR BASELINE EXPERIMENT:
PREDICTOR TRAINED ON EACH DATA SET SEPARATELY. MEAN

PREDICTION ACCURACY (MEAN) AND STANDARD DEVIATIONS (SD) ARE
PROVIDED.

dataset mean SD
LADDER 0.939531 0.008019
AI 0.975128 0.014095
WCS 0.920238 0.035114

However, in the usecase described in section II-D, the model
would be trained on artificially generated data, but applied to
predict the winner of human vs. human matches, or vice versa.
We thus conduct a second set of experiments, where we train
the ANN on one data set and test it on a different one. In table
III, we list the different combinations of training and test set in
the first two columns, as well as the obtained mean prediction
accuracy and standard deviation in the last two columns.

We observe that in the experiments involving both LADDER
and AI (rows 1-2), the trained predictors achieve accuracies
of around 0.5. For the LADDER dataset, this is barely better

TABLE III
WINNER PREDICTION ACCURACY FOR GENERALISATION EXPERIMENT:

DIFFERENT DATASETS FOR TRAINING AND TESTS. MEAN VALUES (MEAN)
AND STANDARD DEVIATIONS (SD) ARE PROVIDED.

trained on tested on mean SD
LADDER AI 0.529391 0.059723
AI LADDER 0.510401 0.011530
LADDER WCS 0.950040 0.006451
WCS LADDER 0.869531 0.019162

than chance, as there are almost no undecided or tied games.
However, the baseline experiment already demonstrates that
much better prediction accuracies are achievable (cf. table II).
The models are thus clearly not able to generalise well.

In order to investigate further whether the generalisation
issues stem from the fact that AI simulations are used as a
source for the data, we repeat the experiment with the WCS
dataset instead of AI. The players in the WCS are much more
experienced and should behave significantly differently than
players in LADDER, including using different strategies.

The results in table III (rows 3-4) show that generalisation
works significantly better in this case. The prediction accuracy
on the WCS dataset was even improved when compared to the
baseline experiment. This might be due to the small number
of games in WCS. This conjecture would also be supported
by the fact that the WCS predictor has the highest standard
deviation in table II. Even the predictor trained on WCS data
is able to achieve 86% accuracy on the LADDER dataset.

V. LESSONS LEARNED

The analysis of games or game content, e.g. in the context of
AI-assisted game design and search-based PCG, is often based
on playthroughs generated via simulations of human decisions
using AI players. With this paper, we hope to encourage
researchers to investigate more systematically what effects
these simulations have on the results of a given application.

To this end, we investigate existing literature that relies
on such AI simulations and identify two main approaches of
using the generated data: direct and model-based (see section
III-A). We find that the main source of potential errors is
the assumption of generalisability. We develop two usecases
related to StarCraft II win prediction that represent these
approaches and motivate them in sections II-C and II-D. We
investigate these usecases experimentally based on 3 datasets.

The descriptive analysis of the data already indicates a
stark difference between behaviour of human players and AI
agents. We thus conclude that the generalisability assumption
was incorrect. In the experiments related to the usecases, we
were able to demonstrate clear effects of simulating human
decisions on the results we obtained in our case study.

Since we were not able to test a multitude of different
settings and games, we cannot generalise our findings to all
approaches based on data from AI simulations. Additionally,
the behaviour of the AlphaStar AI is arguably more similar to
the strategies developed by human players than previous AIs in
the bot ladder. If replays from the AlphaStar internal league
would be made available publicly in sufficient quantity, the
resulting dataset should be included in the above experiments.



Nevertheless, our usecases provide counter-examples to the
generalisability assumptions often made in literature. We thus
strongly recommend that any methodology that relies on
generalisation of patterns observed in simulated data should be
carefully tested in terms of the error this approach introduces
into the results. This is true for applications in AI-assisted
game design and search-based PCG, as well as game AI
relying on self-play.

One potential way of mitigating these errors is through
applying more sophisticated player modelling approaches as
mentioned in section III-B. However, many open research
questions still remain, including how to quantify the dif-
ferences between two observed player strategies, and how
to ensure test coverage, i.e. that a suitable range of player
strategies is represented.

Another way of controlling errors from the generalisation
assumption could be to create mapping functions that are able
to translate features observed in one dataset to another. The
mapping function (e.g. a transition matrix) could be specified
using an EA that minimises the multivariate statistical distance
between the mapped AI data and the target data (e.g. Energy
distance). However, depending on the application, such a func-
tion does not necessarily exist and would introduce another,
albeit measurable, source of error.

Furthermore, the error introduced by model-based ap-
proaches, as discussed in section III-C, can be controlled by
testing the models on data from human players, if available.
Concerted efforts regarding collecting and sharing suitable
datasets should be made in the community to facilitate these
efforts. In addition, more research on the analysis of general
patterns of data generated from AI simulations could support
the choice of modelling approach. Finally, more interdisci-
plinary research approaches on surrogate modelling and uncer-
tainty quantification in optimisation seems to be a worthwhile
future step10 in order to (a) reduce the number of data samples
required and (b) understand the effects of the multiple sources
of uncertainties present in game analysis problems.
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