
A Local Approach to Forward Model Learning:
Results on the Game of Life Game

Simon M. Lucas, Alexander Dockhorn, Vanessa Volz, Chris Bamford, Raluca D. Gaina, Ivan Bravi,
Diego Perez-Liebana, Sanaz Mostaghim, Rudolf Kruse

Abstract—This paper investigates the effect of learning a
forward model on the performance of a statistical forward
planning agent. We transform Conway’s Game of Life simulation
into a single-player game where the objective can be either to
preserve as much life as possible or to extinguish all life as quickly
as possible.

In order to learn the forward model of the game, we formulate
the problem in a novel way that learns the local cell transition
function by creating a set of supervised training data and
predicting the next state of each cell in the grid based on its
current state and immediate neighbours. Using this method we
are able to harvest sufficient data to learn perfect forward models
by observing only a few complete state transitions, using either
a look-up table, a decision tree, or a neural network.

In contrast, learning the complete state transition function is
a much harder task and our initial efforts to do this using deep
convolutional auto-encoders were less successful.

We also investigate the effects of imperfect learned models
on prediction errors and game-playing performance, and show
that even models with significant errors can provide good
performance.

Index Terms—Forward Model Learning, General Game Play-
ing/Learning, Neural Networks, Decision Tree, Rolling Horizon
Evolutionary Algorithm

I. INTRODUCTION

Learning forward models or world models is a major
challenge for AI that is currently receiving significant attention
in the research community.

Forward models are immensely powerful tools. They enable
the use of Statistical Forward Planning (SFP) algorithms (such
as Monte Carlo Tree Search and Rolling Horizon Evolution)
and may be used to generate instant intelligent behaviour for
a wide range of games. They can also be used to generate
vast quantities of experience data for reinforcement learning
algorithms, which can be combined with SFP algorithms to
generate even stronger intelligence [1]. In addition to the
strength of the decision making, forward models also lead
to more explainable AI, as the likely future system states can
be observed.

Recent work has made significant progress in learning
forward models, more of which will be described in Section II.

Simon M. Lucas, Vanessa Volz, Chris Bamford, Raluca D. Gaina, Ivan
Bravi and Diego Perez-Liebana are with the School of Electrical Engineering
and Computer Engineering, Queen Mary University of London, London, UK.

Alexander Dockhorn, Sanaz Mostaghim and Rudolf Kruse are with the
Computational Intelligence Research Group, Otto von Guericke University,
Magdeburg, Germany.

Much of this work has used Deep Neural Networks to learn
forward models in the form of entire state transition functions.

However, we take a fundamentally different approach in this
paper, which works well for 2D cellular automata. The approach
involves two methods that simplify the learning problem:
• We learn local update rules rather than the entire state

transition function. Clearly this is well suited to the
problem at hand, but it provides a relatively simple way
to study the effects of model inaccuracies. We investigate
this by using models that are trained only on a subset of
the possible local transitions.

• For these experiments we separate out the simulation
model from the player’s actions. This further simplifies
the learning problem.

Learning the local transition function for 2D cellular au-
tomata is an easy problem due to two facts: the underlying
model is a good fit with the simulation model, and the
transitions are fully observable.

An important question that we have only started to answer
is how well this approach will work for more complex games,
the next step up being 2D arcade games such as Atari 2600 [2]
and General Video Game AI (GVGAI) [3] games.

In cases where the forward model is locally learnable, we
note that the approach leads to a relative abundance of training
data. Consider the Game of Life (GoL) [4] on an N ×N grid.
The conventional complete state transition learning approach
generates 1 training pattern for an encoder architecture per
state transition, learning a mapping from an N ×N input to
an N ×N output. Contrast this with the local approach which
creates N ×N training patterns per state transition, each one
mapping an L× L input to a single output. Clearly the local
approach vastly simplifies the learning problem: consider a
30×30 grid for the GoL, which has a 3×3 local neighbourhood.
When learning the entire state transition function, we have one
900 7→ 900 I/O pair to learn for each observed state transition,
compared to 900 pairs of 9 7→ 1 patterns for the local case.

A key aspect to this is what the learner is able to observe.
In some games most of the game-state is directly observable.
In other cases, we may have access to the object graph of each
game state (similar to a JSON representation of the game state)
then we may be able to learn good forward models from this,
since in many games the intricate game-play is an emergent
feature of simple object interaction rules. This is made explicit
in the Video Game Description Language used in GVGAI.

This paper has several novel contributions. The first is to
formulate the problem of forward model learning as one of

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

learning a local transition function. This is applied to each
element of a state instead of attempting to learn complete state
transition functions. Secondly, we show how the player actions
can be decoupled from learning the forward model, by applying
them independently of the model. This further simplifies the
learning problem, and can be likened to learning the laws of
physics independently of the actors in an environment. Thirdly,
in order to demonstrate the difference this can potentially
make we made a game by adding player actions and a scoring
function to Conway’s Game of Life. Though we do not explore
it further here, games based on 2D cellular automata may have
significant strategic depth and may perhaps also be fun for
people to play. Finally, we compare the results of local versus
global learning on the Game of Life Game. We also include
initial results on further applications of the method on 2 GVGAI
games, Aliens and Missile Command, showing examples where
this local learning does not work, but suggesting ways in which
it might be developed for better performance.

II. LITERATURE REVIEW

One of the main benefits of having access to a forward model
is the ability to use planning methods such as Monte-Carlo Tree
Search (MCTS) and Rolling Horizon Evolutionary Algorithms.
We use the term Statistical Forward Planning (SFP) to describe
such algorithms due to the way they make decisions based on
the statistics of rollouts (sequences of potential actions made in
a copy of the game state). These evaluations are then used to
choose the actions which have high likelihood of increasing the
score of the agents. Compared to conventional reinforcement
learning algorithms, SFP methods have the great benefit of
providing (in many cases) instant intelligent behaviour without
the need for any learning (Silver [5] refers to MCTS as transient
learning). However, in many environments, the forward model
is unknown or it cannot be accessed. In these scenarios the
forward model can be approximated or learned.

Deterministic forward models in some cases can be learned
by tabular methods [6] [7]. These methods learn the exact state
transition functions by building a look-up table, similar to the
Exact Learner we use here (though a key aspect of this paper
is to apply the look-up table learning method at a local rather
than a global level). Tabular methods are very accurate, but
are limited to problem domains that have relatively small and
discrete state and action spaces when applied globally.

To solve the problem of estimating the state transition
function of high dimensional or continuous state spaces, several
rule-based heuristic methods have been proposed.

In [8], Hierarchical Knowledge Bases are used to build a
rule-based representation of the several games in the GVGAI
framework. These estimated forward models are then used in
conjunction with MCTS and Breadth First Search in order to
plan the next best moves. Even when only modelling a small
set of features, learned models were able to improve the agent’s
performance despite the limited accuracy of predicting the next
game state. Models with higher prediction accuracy were based
on ensembles of decision trees, but made use of pre-filtered
feature sets [9]. Similarly in [10], rule-based methods are used

to create a forward model of combat models in StarCraft. These
rule based methods have the benefit of learning very compact
representations, sometimes only consisting of a few hundred
rules to encompass the dynamics of a single game. Due to the
minimal representations, they also can have very fast inference
times. However, these methods also require knowledge of the
environment in order to engineer features such as sprite types
and unit properties.

Deep Neural Networks (DNN) can also be used to predict
game states simply by observing the pixels of frames and
learning the state transition model to the next frame. DNN
models of environments tend to contain the following compo-
nents: an encoder that encodes the state into a latent variable
space, a decoder that takes the latent variable space and outputs
the next state, a way of encapsulating the action or actions
from a single time frame, and a recurrent component that
can track time-dependent internal variables. This architecture
is used in [11] and [12] in order to predict the next frames
of several Atari games in the Arcade Learning Environment
(ALE). Both of these methods are able to predict hundreds
of states into the future, but eventually the simulated state of
the game diverges from the actual state. This means that using
simulation methods such as MCTS that require roll-outs have
to limit roll-out length, as larger lengths are less accurate. This
issue can be detrimental in games where rewards are sparse and
any rewards could only be observed in very long roll-outs. An
attempt to decouple time from individual time-steps is proposed
in [13], where a novel temporal difference auto-encoder is used
to predict environmental states at arbitrary time-steps.

A particularly relevant use case for forward models is
modelling planning through imagination. Imagination in this
context is the process of learning an internal model of the
environment it is in and then using that model to plan
trajectories or interpret the results of many possible trajectories.
In [14] and [15] models of the environments are initially
generated using supervised learning. These models are then
used to generate possible new trajectories, the trajectories are
then interpreted using another neural network feeding into the
policy of the agent. [14] also shows that agents with access
to models without perfect accuracy are still able to perform
better than agents using algorithms such as MCTS.

III. MAKING A GAME FROM THE GAME OF LIFE

Despite the name, Conway’s Game of Life (GoL) is not
actually a game in the conventional sense since there are
no player actions. The GoL simulation has been studied from
many viewpoints; although several applications involving player
actions exist1, the impact of user interaction has not been
thoroughly studied, as far as we know. Additionally, even
versions which allow for user input do not include reward
functions or win/loss identification.

GoL involves a 2D grid of cellular automata where the state
of each cell at time t+1 depends only on its current state and
the state of its eight immediate neighbours. There are many

1One example of GoL allowing user input: http://chromacon.surge.sh

Fig. 1. Sample game state trajectories for GoL (top) and CG (bottom).

possible update rules that involve only this neighbourhood. The
cell states are binary, so given the 9 cells there are 29 = 512
possible local patterns. Every possible update rule can therefore
be expressed as a truth table with 512 rows, and each output
(next cell state) can be either 0 or 1. Hence there are 2512

possible update rules, though some of these are equivalent
to each other under reflection, rotation and inversion. GoL is
therefore one highly studied update rule in a large space of
possible update rules.

In this paper we consider both GoL and also a rule that has
recently been used for Procedural Content Generation (PCG),
in particular to generate cave-like structures [16] - we’ll call
this rule CG for Cave Generator.

The GoL update rule is presented in Equation 1, where X
is the current cell being updated and N is the current number
of neighbours of this cell which are alive.

X =

1, if X = 1 and (N = 2 or N = 3)

1, if X = 0 and (N = 3)

0, otherwise
(1)

Equation 2 presents the CG update rule, where X is
the current cell being updated, N is the current number of
neighbours of this cell which are alive, and T is a threshold
(here, as in [16], T=4).

X =

{
1, if N > T

0, otherwise
(2)

We select these two rules because they have some inherent
interest and because they differ significantly in their complexity
and how hard they are to learn for a classifier. See Figure 1
for example trajectories for the 2 distinct update rules.

We can transform GoL into a game by adding player actions
and a reward structure. At each time step a player may do
nothing, or select any cell on the grid to flip the state of that
cell (so a 0 becomes a 1 and vice versa). The simulation is
then updated as before. At each time step, the game score is
calculated by counting the number of cells which are alive
(have a value of 1). The game is then to either nurture as
much life as possible by aiming to maximize the score, or to
eliminate all life and hence achieve a minimum score of zero.
We can apply this to any 2D cellular automata simulation.

IV. METHODS

A. Evaluation

There are two distinct methods under test: the conventional
complete state transition function learner, and the local learner.

We consider three evaluation methods:
1) Supervised training. From a set of random start grids,

run the system forward using the true model to observe
a set of state transitions. This gives a set of input/output
training pairs. The complete (global) state learner gets as
input just one large vector pair per state transition, while
the local learner obtains N ×N per transition. The local
learner has a single output to predict, while the complete
learner has to predict all N ×N outputs. In each case,
we report the average hamming distance between the
target output and the learned model’s output.

2) N-step prediction test. Once a model has been trained,
we can then run it forward, again from a set of random
start states, and predict T steps into the future. Here we
used T = 30, which we observed to be long enough to
distinguish perfect models from near-perfect ones. This
depends on the update rule, with highly non-linear rules
such as GoL often diverging quickly (it depends on the
initial state and on which truth table entries differ).

3) Game playing performance. We play the game using a
Rolling Horizon Evolutionary Algorithm (RHEA) from a
set of 100 random start grids and play the game for 100
steps. The RHEA agent uses the learned model instead
of the true one.

From the perspective of developing strong game AI, the
final evaluation is the most important, as it focuses on how
well the learned model works with the SFP agent. As we’ll
see, we can also tune agents to cope better with erroneous
models. Furthermore, we know from other cases that models
can be woefully inaccurate and still lead to good game play
performance in an SFP agent. The key insight is that if a
model’s errors do not change the rank order of the estimated
action values, then they have no effect on the decisions made.

In the case of 2D cellular automata, the local learning
approach enables some more efficient ways to estimate per-
formance. Since the model can be completely described using
a truth-table with just 512 entries, we can compute the truth
table for the learned model (irrespective of the nature of the
learned model).This enables us to compile the learned model
into a truth table, which we then use in the SFP agent with
identical results. The advantage of doing this is two-fold. Firstly,
it is much faster. Secondly, we can analyze the relationship
between truth table differences and performance differences.
See Figure 2 for a visualization of truth table errors plotted
against the game score and number of prediction errors, for
both GoL and CG update rules.

In the rest of this paper, we focus on the GoL update rule
as it contains more complex dynamics than the CG update
rule, though in future it would be interesting to compare how
different update rules affects the ability of learning algorithms
to generalize from small samples of the local transition data.

Fig. 2. Number of truth table errors (± sd) plotted against game score after
100 ticks (solid lines) and against the number of prediction errors after 5 ticks
(dashed lines). Results using the Game of Life update rule are depicted in
blue, while orange corresponds to the Cave Generator update rule.

B. Game Playing Agent

For the game-playing agent, we used a Rolling Horizon
Evolution agent based on a 1 + 1 EA. This is a simple and
fast agent that has proven to be effective across a range of
games. It was used in [17] to compare the performance of
model-based hyper-parameter optimization algorithms on the
game Planet Wars. In [18], this RHEA agent was tuned using
the N-Tuple Bandit Evolutionary Algorithm (NTBEA) for two
games: Asteroids and Planet Wars. A more complex population-
based RHEA agent was shown to achieve high performance
on range of GVGAI games as well [19]. The version we use
here is extended from [17]. It evolves a single action sequence
by repeatedly mutating it. The original is replaced with the
mutated sequence if, after simulating through the sequence,
the heuristic value of the final state reached is better than
the original solution. One action sequence may be evaluated
nEvals times, to reduce noise. A shift buffer may be used to
keep the final solution evolved in one tick to the next (instead
of starting from a new random action sequence), by removing
the first action in the sequence and adding a new random
action at the end, in order to keep a constant length. They key
extension in this work is the addition of a mutation transducer.
When creating a mutated copy of a sequence, this operator can
either copy an action from the parent sequence, insert a random
action (with probMutation probability), or copy the previous
action of the new sequence (with repeatProb probability).
This provides a soft form of macro-actions. During mutation,
the algorithm may be forced to mutate at least one action in
the sequence. All of these settings and all parameter possible
values are presented in Table I.

Since the algorithm should be evaluated at the best of
its capabilities, we used NTBEA to tune RHEA under two
circumstances: using a model with all 512 patterns (perfect
model) and one with only 480 (near perfect model). For these
experiments we used the exact learner (see below), noting
that we can obtain the equivalent results for other learning
algorithms applied to the locally sampled data by compiling
them into truth tables.

For each condition we run the algorithm 100 times. For
each execution, NTBEA was given a budget of 100 evaluations

TABLE I
RHEA HYPER-PARAMETERS.

ID Parameter Type Legal values
φ0 flipMinOneV alue boolean false, true
φ1 probMutation double 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7
φ2 sequenceLength integer 1, 3, 5, 10, 20
φ3 nEvals integer 1, 3, 5, 10, 25
φ4 shiftBuffer boolean false, true
φ5 mutationTransducer boolean false, true
φ6 repeatProb double 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7
φ7 discountFactor double 0.999, 0.99, 0.9, 0.8

to search the space of 28800 configurations. The fitness of a
configuration is given by the number of cells alive at the end
of a single game. NTBEA was configured with k = 300 and
ε = 0.5, see [18] for details.

C. Local Learning Methods

1) Exact Learner: The exact learner memorizes the output
for each set of inputs. If it has not seen a pattern before, it
returns the a priori most likely output, which for GoL is 0.

Using this type of learner provides insight into how the per-
formance of the agent varies with respect to model inaccuracy,
as we know the model will be perfectly accurate for all the
patterns it has seen, and will output a default value for all
unseen patterns. This learner does not assume any regularity
in the structure of the function to be learned. In this sense it
provides a good contrasting baseline for other classifiers that
do attempt to generalize.

2) Decision Tree: A decision tree classifier [20] is a fast
and reliable classifier that should be able to replicate the game
of life patterns reasonably well. While playing the game, every
observed pattern is added to the training set of the decision
tree. Since the decision tree is trained to completely fit the
observed training examples (no pruning), it is able to learn the
environment’s dynamics after several game ticks.

Due to the fast learning time, the agent builds a new decision
tree every time a new game state transition was observed
(adding N × N observations to the training set, though the
number of unique patterns (512) quickly saturates for the
current experiments). Experiments have shown that the built
model is able to quickly generalize from the seen examples,
which lets the agent predict previously unseen patterns and
learn a perfect model.

3) Neural Network: Initial experiments were made using a
neural network with a single hidden layer to learn the local
patterns. It was also able to learn a perfect model. More work
is needed to see whether neural networks are able to learn
in a more sample-efficient way than decision trees or other
supervised learning methods when applied to the local patterns.

Recently Gilpin [21] has also used a similar local learning
approach for training neural networks, and observed similar
rapid learning when testing on many random CA rules.
Interestingly, Gilpin observed that simpler rule tables led to
deeper neural networks than complex rules.

Fig. 3. Results of hyper-parameter tuning of the RHEA agent with two
different amounts of learned patterns. The box plot shows the true fitness
distribution of the configuration suggested by 100 independent NTBEA runs.

Fig. 4. Distribution of the sequence length parameter values when using
480 (orange) or 512 (blue) patterns learned.

D. Complete State Transition Function Learning

An alternative to local learning is to learn the complete state
transition function using a Deep Convolutional Auto-Encoder
(DCAE). Learning complete state transition functions is the
more conventional approach within forward model learning.

So far we have only made some preliminary experiments,
but clearly learning a complete state transition function is much
harder than learning local transitions in cases where the local
transitions can accurately capture the true model.

Several experiments were run on grids of size 10x10 and
20x20. The auto-encoder was able to reconstruct the state
with high accuracy from a latent state space of 256 and 512
neurons respectively after 100, 000 state transition observations.
However this architecture was sample inefficient and unstable to
train. Difficulty of training increased significantly with respect
to the grid size, meaning that a 30x30 grid could only be trained
to low accuracy given our experimental setup. The reason for
this difficulty is likely to be that an auto-encoder network
tries to generalize across the entire image space and may be
trying to memorize all the state transitions instead of learning
the local rules. The linear latent layer in state-space models
such as this would have to be able to accurately encode and
correctly transition all 2900 possible states of the grid. Further
work would be needed to make the training stable enough to
function reliably on larger grid sizes such as a 30x30 grid.

V. RESULTS

The outcome of the hyper-parameter tuning experiments
is shown in Figure 3. We can clearly see how providing a
less accurate forward model significantly degrades RHEA’s
performance even when its parameters are tuned. Mining

the configurations returned for the two conditions, we could
highlight an interesting feature: when the forward model is
imprecise, it is better to evolve shorter sequences in order
to reduce the noise in RHEA’s fitness signal. In fact, the
prediction error accumulates as the length increases, causing a
more noisy evaluation of action sequences. In Figure 4, the two
distributions can be observed as skewed towards shorter and
longer lengths, respectively, for the 480 and 512 case. The final
configuration used for the rest of the experiments is the best
resultant from tuning with a perfect model: φ0=true, φ1=0.3,
φ2=20, φ3=25, φ4=true, φ5=false, φ6=0.2, φ7=0.8.

Figure 5 shows the relation of the achievable agent perfor-
mance and the number of known patterns. For each model
trained, 15 games were simulated for 100 game ticks. This
process was then repeated 50 times, the results averaged per
game tick. All lines include a visualization of ± the standard
deviation in a lighter colour (which is mostly low and thus only
faintly visible). The plots also include baseline comparisons
with the DoNothing and Random agents.

For the chosen RHEA configuration, the number of predic-
tion errors decreases approximately linearly with the increase
in known patterns, except for a slight increase when very few
patterns are known (see Figure 5 bottom left). In contrast, we
see a slow increase in game score until approximately 80% of
possible patterns are known, whereafter the agent performance
increases rapidly (see Figure 5 top left).

RHEA performance is consistently better than that of the
baseline agents for the whole run-time of the game (see figure
5 top right). However, the plot also shows that before the
rapid performance increase after 80% of patterns are known,
all agents lose points until they are able to stabilize. This
stabilization could also be helped by the fact that the number
of distinct patterns seems to decrease with run-time of less
proficient players, thus also reducing the number of prediction
errors (see figure 5 bottom right).

In contrast to tuning a model before playing the game, we
analyzed the agent’s playing performance while training a new
model at every game tick. Figure 6 compares the performance
of a RHEA agent using a Decision Tree model with a random
agent and an agent that does nothing. As the comparison shows,
the agent using a Decision Tree quickly learns to predict the
environment and can effectively keep the population alive.

VI. FURTHER APPLICATIONS

The approach presented in this paper has shown a very high
proficiency in the GoL game, as the section above shows. It is
well suited to the local forward model approximation used in
the proposed algorithm, due to the dynamics of the game from
state to state. Therefore, it is worth questioning how well this
approach scales to more complex and diverse games.

An appropriate benchmark to test the generality of this
approach would be the General Video Game AI (GVGAI)
framework, which includes more than 150 games of various
types [3]. Compared to the GoL game, GVGAI games are
significantly more complex, although most interactions happen
at a local level as well. Some global interactions do exist (such

Fig. 5. Visualizations of game score (top row) and number of prediction errors (bottom row) with relation to the number of known patterns (left column) and
game tick (right column).

as the presence of resources that can be picked up to use later),
which would not allow a strictly local pattern learning method
to succeed. One example could be Race Bet, a game in which
a race happens between certain sprites; the avatar, placed far
away from the race, needs to step on a tile with the matching
colour of the sprite which is going to win. Interactions in this
case are not local: one racer reaches a goal on one point of
the screen, while the avatar must move in another area. Other
games also pose problems of partial observability, such as Kill
Bill Vol 1 and Eighth Passenger, which may introduce noise
into the system.

There are, however, quite a few games with local patterns
for which we believe this approach can provide good results.
We have run a preliminary study in two GVGAI games: Aliens
and Missile Command. The former is a stochastic game, a
variant of Space Invaders, in which the player controls a ship
moving at the bottom of the screen (action set: left, right and
shoot) aiming to kill all the enemies before they reach the ship.
Missile Command, a port of the game with the same name, is
a deterministic game where the player controls a ship which
is free to move in all 4 directions and create an explosion in
the direction the avatar is facing. Several missiles drop from
the top of the screen in the direction of several cities on the
ground. The player needs to prevent all cities from being hit

by destroying the missiles before they reach them. The player
wins if at least one city is saved, and loses if all cities are
gone or if the ship itself gets hit by a missile.

One thing to note is that, even if games with local interactions
only are used, the process of encoding the game rules,
terminations, scoring and pattern validation is not trivial.
Ideally, a learning system should learn not only transitions
between states, but also reward functions, win/loss identification
methods, illegal situations and effects of the avatar actions
(currently actions are manually inserted into a game state
before learning the state transitions S 7→ S′).

Both games are fairly similar in concept and difficulty for
a vanilla RHEA agent (100% win-rate in both, first level
only considered for Missile Command) [22]. However, their
complexity in terms of local patterns does differ. In Aliens,
there are 7 possible values a cell in a pattern might take, if
we consider all sprites relevant for interactions (empty, avatar,
missile, alien bomb, protective base, alien or end of screen),
which leads to over 40 million (79) possible patterns. Many
of these are not valid within the game’s rules, however: for
example, there cannot be more than 1 avatar in a pattern. Such
simple counting rules can reduce the space to just over 2
million. On the other hand, there is an upper bound on the
number that can be observed of (T ×W ×H) given T state

Fig. 6. (top) Performance comparison of a RHEA agent using a decision tree
model learned while playing the game, an agent behaving randomly, and an
agent that does nothing. (bottom) Average number of observed and correctly
predicted patterns by the decision tree. The left hand part of the graph shows
that the correctly predicted patterns grows much more quickly than the number
of observed patterns, showing that the decision tree is generalizing to unseen
patterns.

transitions of a game grid of dimension (W ×H).
In our experiments, agents can observe a maximum of 2300

patterns (summed across 1000 games played). Figure 7(a)
shows the average number of patterns discovered per tick
during 100 games. It is interesting to observe the shape of the
curve, with several patterns being discovered quickly, while
the progress slows down about a third into the game.

In Missile Command there are 6 sprites to be considered
in a pattern (empty, wall, city, missile, explosion or avatar),
for a total of 10 million total patterns. These can be further
reduced in a similar way as before, with simple sprite counting
rules, to 4 million. However, agents discover only a maximum
of 2800 patterns in 1000 games played. Figure 7(b) shows
the average number of patterns discovered per tick during
100 games. Although the total number is much lower than in
Aliens, so is the average game length, which gives the agent
less data points to learn from; the curve also appears it would
continue to grow if given more game time, different to the
plateau observed in Aliens.

Current results using a RHEA agent with a learned model
on these two games are not satisfactory, showing a player
strength at or below random. The main complexity in modelling
the Aliens game rules comes from the uncertainty about the
movement of the aliens. These could be moving either left or
right, but this information is not captured in a local 3x3 pattern.
This could be solved by encoding additional information,
stacking frames, or increasing the pattern size, to reduce the
negative impact of incorrect simulations. A further complexity
imposed by Missile Command is the legal movement of the
avatar outside of the screen: the player’s ship may leave the

(a) Aliens (b) Missile Command

Fig. 7. Average number of patterns discovered per game tick by a random
player, over 100 runs of a game. The shaded area indicates standard deviation.

game area and return later, which would signal a game loss
to game rules coded based on the grid observed by the agent
playing the game.

An immediate point for future work is to investigate how
learning local patterns can be enhanced to accommodate for
more complex environments like these GVGAI games. Our
findings suggest that more efficient generalization techniques
should be used when predicting unknown transitions (rather
than assuming that nothing changes). Although the agents
do not discover many of the possible patterns when playing
GVGAI games, it’s possible that those that are discovered
contain key rules which can be applied in similar, even if
not identical, scenarios. A possible way forward would be to
use attention techniques [23] to learn patterns over 2 or more
convolutional kernels, each one of them centered in different
and relevant locations of the game.

VII. CONCLUSIONS AND FUTURE WORK

We have seen two extreme examples of performance of the
proposed local learning approach: success in the Game of Life
Game, and initial failure on two GVGAI games. In the Game
of Life Game, the local model is a perfect fit for the true model
of the game. The Exact Learner (a simple approach which
simply stores all patterns observed and their corresponding
transition, with no generalization) was able to learn a perfect
forward model after observing only 20 state transitions. The
Decision Tree method was able to learn perfect local forward
models even more quickly.

It was further able to learn a model accurate enough for good
performance when used within a Rolling Horizon Evolutionary
Algorithm (RHEA) after observing a single state transition:
much better than random and around 80% of performance
given a perfect forward model. Similarly, a RHEA agent using
a Decision Tree learner can very quickly correctly predict the
environment and greatly outperform a random player. Thus, a
powerful feature of local transition function learning is that we
only need to observe a few simulation ticks in order to sample
the majority (perhaps even all) of the possible patterns.

In contrast, our initial attempts to learn a complete state
transition function for 30× 30 grids were not successful here,
even after training on 100, 000 state transitions. Learning the
complete state transition function is clearly a much harder
problem. On the other hand, while learning local models is
much easier when it is possible, there may be scope for hybrid

approaches that capture aspects of local learning while going
beyond it only when necessary.

We presented preliminary results of a direct and rather
simplistic application of the method (using only 3x3 local
patterns in the current frame and not accounting for further
game complexities) to two GVGAI games, Aliens and Missile
Command. This led to models that were pathologically bad,
showing worse than random performance when used within
a Rolling Horizon Evolution agent instead of the game’s true
forward model. However, on closer inspection, this need not
be too concerning: we believe that local models can still work
well for these games, providing they are given enough context
in which to make good predictions. This context would be
provided in the form of an extended feature vector: for example,
providing a larger than 3x3 window or using frame stacking
to be able to determine sprite directions.

It will be interesting to investigate whether these features
can be made in a general way for a wide class of 2D games or
need to be engineered or evolved for each game. Future work
will thus look at learning more than simple state transitions
and incorporate reward functions, pattern validation and action
effects in the knowledge learned by the system, for a complete
and general learner.

Finally, when using an SFP agent such as RHEA with any
forward model, be it imperfect or perfect, the parameters should
be tuned to optimize performance not only for the problem at
hand but also for the learned forward model. For example, we
noted that smaller values for the sequence length parameter
were consistently selected by the NTBEA optimizer when using
imperfect forward models.

ACKNOWLEDGMENT

This work was partially funded by the EPSRC CDT in
Intelligent Games and Game Intelligence (IGGI) EP/L015846/1.

REFERENCES

[1] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm,” Annals of Clinical and
Translational Neurology, vol. 5, no. 1, pp. 92–97, dec 2017. [Online].
Available: http://arxiv.org/abs/1712.01815

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade
Learning Environment: An Evaluation Platform for General Agents,” J.
Artif. Intell. Res.(JAIR), vol. 47, pp. 253–279, 2013.

[3] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and
S. M. Lucas, “General Video Game AI: a Multi-Track Framework for
Evaluating Agents, Games and Content Generation Algorithms,” CoRR,
vol. abs/1802.10363, 2018.

[4] M. Gardner, “Mathematical Games: The fantastic combinations of John
Conway’s new solitaire game ‘life’,” Scientific American, vol. 223, pp.
120–123, 1970.

[5] D. Silver, R. S. Sutton, and M. Müller, “Sample-based learning and
search with permanent and transient memories,” in Proceedings of the
25th international conference on Machine learning. ACM, 2008, pp.
968–975.

[6] H. Attias, “Planning by Probabilistic Inference,” AISTATS, 2003.
[7] R. S. Sutton, “Dyna, an Integrated Architecture for Learning, Planning,

and Reacting,” SIGART Bull., vol. 2, no. 4, pp. 160–163, jul 1991.
[8] A. Dockhorn and D. Apeldoorn, “Forward Model Approximation for

General Video Game Learning,” in Proceedings of the 2018 IEEE
Conference on Computational Intelligence and Games (CIG’18), 2018,
pp. 425–432.

[9] A. Dockhorn, T. Tippelt, and R. Kruse, “Model Decomposition for
Forward Model Approximation,” in 2018 IEEE Symposium Series on
Computational Intelligence (SSCI), 2018, pp. 1751–1757.

[10] A. Uriarte and S. Ontanón, “Automatic Learning of Combat Models for
RTS Games,” in Eleventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 2015.

[11] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-Conditional
Video Prediction using Deep Networks in Atari Games,” in Advances in
Neural Information Processing Systems, 2015, pp. 2863–2871.

[12] S. Chiappa, S. Racaniere, D. Wierstra, and S. Mohamed, “Recurrent
Environment Simulators,” arXiv, apr 2017. [Online]. Available:
https://arxiv.org/abs/1704.02254

[13] K. Gregor, G. Papamakarios, F. Besse, L. Buesing, and T. Weber,
“Temporal Difference Variational Auto-Encoder,” arXiv, jun 2018.
[Online]. Available: https://arxiv.org/abs/1806.03107

[14] S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. J. Rezende,
A. P. Badia, O. Vinyals, N. Heess, Y. Li et al., “Imagination-Augmented
Agents for Deep Reinforcement Learning,” in Advances in Neural
Information Processing Systems, 2017, pp. 5690–5701.

[15] L. Buesing, T. Weber, S. Racaniere, S. M. A. Eslami, D. Rezende,
D. P. Reichert, F. Viola, F. Besse, K. Gregor, D. Hassabis, and
D. Wierstra, “Learning and Querying Fast Generative Models for
Reinforcement Learning,” arXiv, feb 2018. [Online]. Available:
https://arxiv.org/abs/1802.03006

[16] L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular Automata for
Real-Time Generation of Infinite Cave Levels,” in Proceedings of the
2010 Workshop on Procedural Content Generation in Games. ACM,
2010, p. 10.

[17] S. M. Lucas, J. Liu, I. Bravi, R. D. Gaina, J. Woodward, V. Volz,
and D. Perez-Liebana, “Efficient evolutionary methods for game agent
optimisation: Model-based is best,” arXiv preprint arXiv:1901.00723,
2019.

[18] S. M. Lucas, J. Liu, and D. Perez-Liebana, “The N-Tuple Bandit
Evolutionary Algorithm for Game Agent Optimisation,” in 2018 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2018, pp. 1–9.

[19] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Rolling Horizon
Evolution Enhancements in General Video Game Playing,” in 2017 IEEE
Conference on Computational Intelligence and Games (CIG). IEEE,
2017, pp. 88–95.

[20] M. R. Berthold, C. Borgelt, F. Höppner, and F. Klawonn, Guide to
Intelligent Data Analysis, ser. Texts in Computer Science. London:
Springer London, 2010.

[21] W. Gilpin, “Cellular automata as convolutional neural networks,” arXiv,
2018. [Online]. Available: https://arxiv.org/abs/1809.02942v1

[22] R. D. Gaina, J. Liu, S. M. Lucas, and D. Pérez-Liébana, “Analysis of
Vanilla Rolling Horizon Evolution Parameters in General Video Game
Playing,” in European Conference on the Applications of Evolutionary
Computation. Springer, 2017, pp. 418–434.

[23] V. Mnih, N. Heess, A. Graves et al., “Recurrent Models of Visual
Attention,” in Advances in Neural Information Processing Systems, 2014,
pp. 2204–2212.

