
Teaching on a Budget in
Multi-Agent Deep Reinforcement Learning

Ercüment İlhan, Jeremy Gow and Diego Perez-Liebana
School of Electronic Engineering and Computer Science

Queen Mary University of London
London, United Kingdom

{e.ilhan, jeremy.gow, diego.perez}@qmul.ac.uk

Abstract—Deep Reinforcement Learning (RL) algorithms can
solve complex sequential decision tasks successfully. However,
they have a major drawback of having poor sample efficiency
which can often be tackled by knowledge reuse. In Multi-Agent
Reinforcement Learning (MARL) this drawback becomes worse,
but at the same time, a new set of opportunities to leverage
knowledge are also presented through agent interactions. One
promising approach among these is peer-to-peer action advising
through a teacher-student framework. Despite being introduced
for single-agent RL originally, recent studies show that it can
also be applied to multi-agent scenarios with promising empirical
results. However, studies in this line of research are currently
very limited. In this paper, we propose heuristics-based action
advising techniques in cooperative decentralised MARL, using
a nonlinear function approximation based task-level policy. By
adopting Random Network Distillation technique, we devise a
measurement for agents to assess their knowledge in any given
state and be able to initiate the teacher-student dynamics with
no prior role assumptions. Experimental results in a gridworld
environment show that such an approach may indeed be useful
and needs to be further investigated.

Index Terms—multi-agent, reinforcement learning, deep q-
networks, action advising, teacher-student

I. INTRODUCTION

Reinforcement Learning (RL) [1] is a prominent framework
for solving sequential decision-making tasks. In recent years,
the success of deep learning has led to the emergence of a
new set of techniques called deep RL that achieved important
breakthroughs, reaching super-human level of play in many
complex domains, including Atari games [2], the game of Go
[3] and StarCraft II [4]. However, modern RL methods suffer
from sample inefficiency and long training times, resulting
in limited scalability and applicability in practical situations.
Furthermore, in the cases of having multiple RL agents
interacting in a shared environment, which is referred to as
Multi-Agent Reinforcement Learning (MARL), these problems
are further intensified due to the domain inherent challenges
such as non-stationarity and curse of dimensionality introduced
by multi-agent dynamics.

One natural solution to accelerate learning in deep RL
through overcoming sample inefficiency is knowledge reuse. A
considerable amount of methods to leverage past knowledge
are proposed to this date [5]. On the one hand, they are mostly
limited to single-agent RL due to the difficulties of MARL.

On the other hand, agent interactions in MARL present unique
opportunities of knowledge reuse.

As shown in [6], various classes of methods are proposed to
take advantage of multiple agents for this purpose, such as im-
itation learning, inverse RL, and learning from demonstrations.
Action advising, which involves agents exchanging advice in the
form of actions between each other to drive their exploration
is one of the most flexible approaches among these. The only
requirement it has for the agents is to have a common action
space and be able to access their local observations through
observing or communicating at the time they need an advice.
It has a strong track record in single-agent RL and seems to
be a promising direction to investigate in MARL.

As Section II shows, the research on applications of action
advising techniques in MARL is currently in its early stages
and the methods are very limited. In this study, we aim to
investigate the performance of heuristic-based teacher-student
framework in cooperative MARL with agents employing
nonlinear function approximation representations in their task-
level policies. The problem setting we address does not hold any
assumptions of student-teacher roles for agents, is completely
decentralised in training and execution stages, and assumes that
the communication between agents is limited; which we believe
is realistic. To the best of our knowledge, this is the first study
to utilise classical action advising approach in conjunction with
deep MARL, and we hope to shed a light on advantages and
shortcomings to determine further research directions.

The paper is structured as follows: Section II provides a
review of related work. Afterwards, the background information
regarding the studied techniques are provided in Section III.
Section IV describes the game environment used in this project
and Section V details the proposed approach. Section VI
presents the experimental setup and Section VII the results
obtained. Finally, Section VIII concludes the paper and outlines
directions for future work.

II. LITERATURE REVIEW

A. Advising Methods in Single-Agent Reinforcement Learning

The idea of peer-to-peer knowledge sharing via advising
has its roots in single-agent RL. [7] is one of the first studies
to adopt this method, in a form of student-initiated advising,
in which the learning agent is assisted by an expert agent
whenever it asks for advice to make a decision. In [8], it

978-1-7281-1884-0/19/$31.00 ©2019 IEEE



was shown that it is possible for one of the peers to be a
human and provide feedback to accelerate the learning of the
agent. Later on, [9] proposed the teacher-student framework.
According to this method, an expert teacher constantly monitors
a student agent’s learning process and provides it with action
advices at appropriate times, limited with a budget, considering
the practical concerns regarding attention and communication.
Addressing the challenge of when to advise became more
crucial with the introduction of a budget in this line of research.
Following this work, [10] treated the optimal way of spending
this budget in terms of student’s learning performance as an
RL problem and attempted to learn how to teach. In [11], a
new approach called jointly-initiated is presented. As opposed
to the previous methods in which advising occurs with student
[7] or teacher [9] initiation, they claim that their approach
discards the need for student agent to be constantly monitored,
making these techniques more feasible for human-agent settings.
[12] extended teacher-student framework to take advantage
of getting advice from multiple teachers by combining the
advices using a voting based selection. Moreover, the case of
getting suboptimal advices when student surpasses teacher’s
performance is also addressed. Even though this improvement
relaxed the requirement of expert teachers, it still assumes
them to follow fixed policies that are good enough to provide
advice. Finally, [13] made further investigations in learning to
teach concept based on [10], and distinguished the qualities of
being an expert and being a good teacher, claiming that best
performers are not always the best teachers.

All of these previously mentioned studies are based on agents
that operate in isolated single-agent environments. In MARL,
multiple agents simultaneously learn in the same environment
while affecting each others’ policies, rendering it non-stationary.
Due to this, even if we have expert agents, they can no longer be
guaranteed to follow a fixed policy. Moreover, the assumption
of teacher and student roles within agents are not applicable in
MARL, especially with large number of agents. Despite being
challenging to adapt on, these properties reflect a more natural
and realistic way of peer-to-peer knowledge sharing.

B. Advising Methods in Multi-Agent Reinforcement Learning

The application of action advising methods in MARL is
a challenging and a fairly new subject. [14] was the first
to propose a teacher-student framework that is suitable with
multi-agent settings. They extended the heuristics from [9] by
introducing several metrics based on the number of state visits
to measure confidence in a given state, in order to overcome
the challenge of having no fixed roles of student and teacher.
They tested their methods in a cooperative team of agents
utilizing SARSA(λ) with linear function approximation as
task-level policies. In [15], teaching in MARL is approached
as advising-level meta-learning problem. They proposed a
centralised training and decentralised execution procedure using
multi-agent actor-critic for teaching-level policies and tabular
Q-learning for task-level policies. Following this work, [16]
extended the idea of teaching to agents that use deep neural
networks in their task-level policies and act in environment with

continuous state and action spaces. Despite having promising
results, both of these learning based approaches are currently
limited with 2 agents only.

III. BACKGROUND

A. Multi-Agent RL

We are interested in a cooperative multi-agent setting
where agents get local observations and act in a decentralised
fashion. Decentralised partially observable Markov decision
process (Dec-POMDP)[17], which is a generalisation of
Markov decision process (MDP) for problems with multiple
decentralised agents with local observations, is a suitable
formalisation for this purpose. A Dec-POMDP is defined by a
tuple 〈I,S,A, T ,R,Ω,O, γ〉 where I is the set of n agents,
S is the set of states, A = ×i∈IAi is the set of joint actions,
T is the state transition probabilities, R is the reward function,
Ω = ×i∈IΩi is the finite of set of joint observations, O is the
set of conditional observation probabilities, and γ ∈ [0, 1) is
the discount factor. At each timestep t in a state s′, each agent
i perceives observation oit determined by O(o|s′,a), where
a = 〈a1, · · · , an〉 is the joint action that caused the state
transition from s to s′ according to T (s′|a, s), and receives
reward ri determined by R(s,at). In fully-cooperative case,
which is the setup we are interested in, every agent gets
the same shared reward as ri = · · · = rn. In our problem
framework, agents are able to observe each other at any time
and infer their local observations. However, they still receive
local observations individually from environment.

B. Deep Q-Networks

Deep Q-Networks (DQN) [18] is a deep RL algorithm which
employs deep neural networks to represent environment states
and learn approximations of state-action values similar to Q-
learning in an end-to-end fashion. It overcomes the limitations
present in tabular and linear function approximation methods
(like tile coding) which struggle to generalise across states
and deal with large state spaces. At each timestep t, an
action at is selected randomly (depending on the exploration
technique) or greedily according to maxaQ(ot, a;ω) based
on state observation ot, where ω are the parameters of the
neural network. The transition information ot, at, rt+1, ot+1

is then stored in a buffer D, called replay memory. Using
minibatches of samples drawn from D, the network parameters
ω are trained periodically with gradient descent to minimise
the loss (rt+1 + γmaxa′ Q(ot+1, a

′)−Q(ot, at))
2.

There has been many improvements on DQN over the
years [19], and some of them became essential parts of
the algorithm as they greatly improve convergence with no
significant drawbacks. In this paper, we utilize double Q-
learning, prioritised replay, dueling networks and noisy nets
enhancements among these.

C. Random Network Distillation

Random Network Distillation (RND) [20] is a technique
built to provide an intrinsic curiosity reward for RL agents to
enhance their exploration capabilities in complex environments.



It involves usage of two neural networks alongside the actual
task-level RL algorithm, namely target and predictor networks,
denoted by differentiable functions G and Ĝ respectively. These
networks are identical in structure, which is defined arbitrarily,
and are able to map observations to embeddings as in G : O →
Rk and Ĝ : O → Rk. They are initialised with different random
weights, and they produce different embeddings for identical
inputs in their initial state. Over the course of training, samples
used in task-level RL algorithm are also used to train predictor
network Ĝ using gradient descent to minimise the mean squared
error ‖G(x)− Ĝ(x; θ)‖2. By doing so, the predictor network
becomes more accurate at matching target network’s outputs
for the samples it observes more, which is referred to as
distilling a randomly initialised network. The error between
target and predictor are expected to be higher for type of states
that are seen less frequently and it acts as a natural indicator
of state novelty. The authors of [20] state that, due to its
simplicity, this method does not have to deal with error types
generated by environment stochasticity, model misspecification
and learning dynamics, unlike its counterparts that try to predict
state transitions.

D. Teaching on a Budget

The teacher-student framework [9] is a peer-to-peer knowl-
edge transfer procedure originally developed for two agents,
namely the teacher and the student. While the student is learning
to perform a single-agent task, the teacher provides action
suggestions to assist its exploration whenever it is appropriate.
These advices are expected to accelerate the student’s learning.
Teacher agents also have a form of budget bgive which is the
number of advices they can provide to limit the amount they
can exchange to reflect realistic scenarios. The challenge of
this framework comes from distributing advices in the most
efficient way to accelerate the student’s learning progression.

For this purpose, several heuristics are proposed to determine
when to advise in teacher-initiated strategy:
• Early advising: The intuition is that the earlier states

are generally more important in learning, and advice is
better taken early on. Following this idea, student is given
advice by teacher in the first bgive states.

• Importance advising: Even though earlier states are
usually more important, not all of them may worth to be
given advice in. Therefore, a budget is better spent on the
states that are determined to be more important. In this
method, importance of a state s is computed as:

I(s) = max
a

Qteacher(s, a)−min
a
Qteacher(s, a) (1)

Advice is provided in a state s if bgive > 0 and I(s) is
greater than the importance threshold τimp.

IV. THE GAME ENVIRONMENT

Our experiment domain is a gridworld game with discrete
space and time, in which the agents must spread and cover
the landmark positions cooperatively to maximise their shared
rewards. The grid is sized 10 × 10 and consists of 3 agents

Fig. 1. Two frames of the game used for this study. On the left, the initial
game state, with three landmarks (grey) and three agents (green, blue and red).
On the right, the terminal state with all agents over the landmarks. Agents’
trajectories are shown as a shaded colour.

and 3 landmarks. The objective of the agents is to move
as quickly as possible to cover all the landmarks of the
level. While the landmarks are stationary, the agents can
navigate around the grid by using a discrete set of actions
A = { Do Nothing, Move Up, Move Down, Move Left,
MoveRight }. Movement actions executed by an agent change
its position on the grid by 1 tile in the corresponding direction.
At each timestep, the agents observe the relative positions of
the other agents and landmarks in form of x-axis and y-axis
values, plus the current timestep. All values are normalised
to [−1, 1] using the maximum distance and game duration,
respectively. Agents also receive a common reward in [0, 1],
determined by how many of the landmarks have an agent
covering it. The game’s reward is calculated as:

1

|L|

|L|∑
l=1

1
(
∑|I|

i=1 1‖dli‖=0)
> 1 (2)

where I is the set of agents, L is the set of landmarks, 1
is the indicator function, and dli is the Manhattan distance
between landmark l and agent i. In other words, in order
to act optimally and maximise the total reward, the agents
must determine the lowest cost (in terms of distance) of the
agent-landmark pair set and move to the appropriate landmark
following the shortest path. Since the agents have no access to
a forward model, they are expected to learn these strategies
through interactions.

Despite this environment’s representational and mechanical
simplicity, it still is capable of presenting complex behavioural
challenges for MARL. Therefore, we decided to conduct
experiments in this setting to focus on behavioural learning
while keeping the computational expense at minimum.

We tuned the environment complexity in terms of size and
reward sparsity, in order to ensure that the environment is
solvable at least sub-optimally by independent DQN agents,
and there remains to be some exploration challenge to keep
the knowledge of the peers valuable to the agent.

V. PROPOSED METHOD

Our approach aims to accelerate learning of a cooperative
team of agents in a multi-agent environment with a teacher-
student action advising approach. The problem setting we
take into consideration is fully observable, completely decen-
tralised in every stage, and most importantly, assumes that



the environment is too complex for tabular or linear function
approximation methods to be successful, unlike the majority
of related work. In this settings, every agent operates with a
local observation, however they are able to observe each other
and infer any other agent’s local observations. Additionally,
they can exchange action advising requests and responses in
forms of actions. We take the budget constraints in inter-agent
interactions into consideration as introduced in [9], and we want
to achieve acceleration while keeping the agent interactions
at minimum, since we believe that such behaviour will be the
most useful in practical applications.

The general structure of our proposal can be expressed in two
parts: a task-level policy and the teacher-student framework,
which we explain in the following sections.

A. Task-Level Policy

At task-level learning and decision making, agents are de-
signed to employ a nonlinear function approximation according
to the target problem structure. Our agents employ DQN along
with its well-established improvements of double Q-learning,
prioritised replay, dueling networks and noisy nets. In our
framework, maybe the most important of these is prioritised
replay as it helps with sampling transitions produced by advices
which are likely to have larger temporal-difference error more
frequently.

The network structure is a multilayer perceptron (MLP),
which is the archetypal form of the deep learning models [21],
with a single hidden layer formed by 256 units. All layer
connections are dense and noisy. This addition removes the
need to follow an explicit exploration policy such as ε-greedy
while learning, which we think is more suitable for an action
advising approach.

As the multi-agent learning strategy, we follow independent
learners approach in which each agent treats other agents
as part of a non-stationary environment and behaves by
taking only its own actions into account. This is the simplest
approach in MARL without requiring the algorithm to have
any specialisations for multiple agents. Therefore, we keep
DQN as it is without any further modifications in this regard,
which is referred to as independent DQNs. Despite having no
theoretical convergence guarantees in multi-agent environments,
independent DQNs were able to exhibit promising empirical
results in previous studies and are often used as a baseline for
further improvements [22][23].

B. Teaching on a Budget

We adopt action advising in the form of the teacher-student
framework to perform inter-agent knowledge transfer. This
method requires only a common action set and minimal
similarity between agents. In addition, considering commu-
nication costs, exchanging actions instead of episodes or policy
parameters is more preferable especially when task-level policy
employs a complex model like DQNs. In our approach, agents
can broadcast requests for advices when they need it, and can
also respond to requests for advices from other agents. They
have separate budgets of asking bask and giving bgive advices,

which determine the total number of times they can perform
these interactions following either early advising or importance
advising heuristics.

Despite its simplicity, adapting the teacher-student framework
to MARL with deep RL task-level policies is not straightfor-
ward. First of all, in our problem setting, every agent is learning
simultaneously and no longer have fixed policies. Moreover,
they now have different levels of knowledge about the task,
and have no information on each other’s expertise since they
can not have any access to internal information and they hold
on assumptions about roles of being teacher or student. In
order to overcome this, we follow a jointly-initiated advising
strategy [11]. Every time an agent requests an advice from
another agent, the agent in the position of teacher executes this
interaction if it thinks that it can take this role. Furthermore,
as agents have no fixed roles or knowledge levels that are set
previously, they must be capable of determining if they need
an advice based on the state they are, or if they are experienced
enough to give advice. In [14], they rely on number of visits to
measure an agent’s certainty in a given state. However, this is
not applicable when state space is large and nonlinear function
approximation is used to represent states. We propose to use
RND technique as a metric to measure agents’ uncertainties as
an alternative for nonlinear function approximation. Every time
an agent uses a sample of state observation to train its internal
task-level policy, this sample is also used to distill its predictor
network Ĝ. Consequently, it will be able to measure how
uncertain it is in a state with observation o by measuring the
error ‖Ĝ(o; θ)−G(o)‖2 when determining if it needs advice
or is capable of giving it. This approach can be treated as
number of visits in nonlinear function approximation regime.

At each timestep, each agent i chooses its action according to
teacher-student augmented action selection procedure defined
in Algorithm 1. If it has a remaining asking budget bask, it
measures its uncertainty µ using its internal models G and Ĝ;
if µ is higher than a predefined asking threshold τask the agent
broadcasts its advice requests to other agents as described in
Algorithm 2. Agents who have any remaining advice giving
budget bgive attempt to respond to this request. If agent receives
any advice, it determines which one to follow by using majority
voting (ties broken at random), to then execute such action.
Otherwise, if no advice is received, it continues exploring by
following its own policy.

Responding to an advice request happens as described in
Algorithm 3. Upon getting a request, the agent first checks if it
has any remaining giving budget bgive. If so, it then determines
its expertise by using its internal G and Ĝ, computing ‖G(o)−
Ĝ(o)‖2. It then compares this value with threshold τgive to
decide to proceed or not. Finally, if it is set to follow the Early
Advising heuristic, it broadcasts an action advice according to
its policy; if the heuristic is set to Importance Advising, it also
checks if the state is important enough to give advice for by
using Equation 1.

The general learning flow of an agent with DQN policy and
action advising mechanism is shown in Algorithm 4. As can
be seen, the task-level policy can easily be isolated from these



Algorithm 1 Teacher-student augmented action selection
Require: state observation o

1: procedure SELECTACTION
2: a← None
3: if bask > 0 then
4: µ← ‖G(o)− Ĝ(o)‖2 . Determine uncertainty
5: if µ > τask then
6: a← ASKFORADVICE(o)

7: if a = None then
8: a← π(o)
9: else

10: bask ← bask − 1

11: return a

Algorithm 2 Advice seeking
Require: state observation o

1: procedure ASKFORADVICE
2: a← None
3: A← ∅
4: for every other agent i do
5: aadvice ← i.ADVISE
6: if aadvice 6= None then
7: add aadvice to A
8: if A 6= ∅ then
9: a← perform majority voting in A

10: return a

Algorithm 3 Respond to advice request
1: procedure ADVISE
2: a← None
3: if bgive > 0 then
4: os ← observe student’s state.
5: µ← ‖G(os)− Ĝ(os)‖2 . Determine uncertainty
6: if µ < τgive then
7: switch teaching method do
8: case Early Advising
9: a← π(o)

10: bgive ← bgive − 1

11: case Importance Advising
12: io ← maxaQ(os, a)−minaQ(os, a)
13: if io > τimportance then
14: a← π(o)
15: bgive ← bgive − 1

16: return a

enhancements except for its action selection policy. Therefore,
it can be changed for any other policy as long as it satisfies the
assumption of computing state-action values, for importance
advising to be applicable.

VI. EXPERIMENTAL SETUP

The objective of the evaluation is to understand if and
how the proposed modifications can enhance the learning
performance. We conducted experiments through multiple

Algorithm 4 Training of task-level policy (DQN) with teacher-
student framework

1: procedure TRAIN
2: Initialise DQN model
3: Initialise replay memory
4: Initialise G and Ĝ
5: for all training episodes do
6: o← initial observation
7: for all episode steps do
8: a← SELECTACTION(o)
9: Execute a and get reward r and observation o′

10: Store transition (o, a, r, o′) in replay memory
11: o← o′

12: Sample a minibatch from replay memory
13: Train DQN with minibatch
14: Train Ĝ with minibatch

learning sessions, each one consisting of a set fixed number
of different game episodes which are initialised with random,
yet non-overlapping, agent and landmark positions.

The performance of the agents is assessed as a team
through a learning session. They are evaluated every 100
episodes in a predefined set of 50 evaluation levels. During
evaluation, learning and teaching procedures are disabled,
and the levels used are fixed across all learning sessions.
An evaluation score is calculated by normalising the average
episode rewards obtained across 50 levels with the maximum
possible total reward (determined by a set of hand-crafted
expert agents), giving a score in [0, 1], where 1 indicates the
optimal performance.

The performance of the proposed methods can be assessed
by looking at the evaluation scores across a learning session,
according to the following two metrics:
• Asymptotic performance: This is measured directly by

looking at the evaluation scores values, and represents
how good the agents are at solving the game.

• Learning speed: This is measured by looking at area
under the curve of evaluation scores against the number
of training episodes graph.

For agents to be able to benefit from knowledge transfer,
there must be some form of knowledge heterogeneity within
the team. In MARL, such heterogeneity tends to arise when the
agents explore different parts of the state space, use different
task-level policies in terms of complexity and representation,
and are in different stages of training. Since our environment
is fully observable, and we use identical agents, only the latter
is applicable in our setting.

One objective of this study is to determine how the proposed
methods work in different types of knowledge heterogeneity.
Therefore, we design the following 2 scenarios:
• Scenario I: we train a team of agents in levels from a single

distribution of levels; then, we take agents from different
stages of pre-training to form a team to be evaluated.

• Scenario II: we train 3 sets of agents in 3 different
level distributions, in which landmarks and initial agents



Fig. 2. Level structure types in terms of possible regions for initial positions
of agents (gray) and landmarks (red).

locations are strictly limited to predefined regions (see
Figure 2). Then, we take one agent with moderate
performance arbitrarily from each level type to form a
team to evaluate. Note that the learning sessions used to
pre-train agents are generated with different seeds than
the ones where we run the final evaluation.

The following is a list of the different types of agents used
in this study. These agents are trained in the levels first to
acquire some knowledge, and then picked to form teams of 3
agents as explained above. These agents are:
• A0: Agent with no prior knowledge.
• A10: Agent taken from a team of agents trained for 10K

episodes. This agent obtained an evaluation score of 0.45
in a level distribution identical to the evaluation sessions.

• A20: Agent taken from a team of agents trained for
20K episodes. The evaluation score is 0.91 in a level
distribution identical to the learning evaluation sessions.

• A10-1: Agent taken from a team of agents trained for
10K episodes, with 0.51 evaluation score in a restricted
level distribution of type 1.

• A10-2: Agent taken from a team of agents trained for
10K episodes, with 0.41 evaluation score in a restricted
level distribution of type 2.

• A10-3: Agent taken from a team of agents trained for
10K episodes, with 0.43 evaluation score in a restricted
level distribution of type 3.

The methods we evaluate along with the agent teams used
in them are as follows:
• XP: The team to be evaluated is formed by agents A0,

A10, A20 and no advising is used. This method serves
as a baseline for the first scenario.

• XP-EA: The team to be evaluated is formed by agents
A0, A10, A20, and early advising is enabled.

• XP-IA: The team to be evaluated is formed by agents
with different knowledge levels A0, A10, A20, and
importance advising is enabled.

• XP-L: The team to be evaluated is formed by agents A10-
1, A10-2, A10-3 and no advising is used. This method
serves as a baseline for the second scenario.

• XP-L-EA: The team to be evaluated is formed by agents
A10-1, A10-2, A10-3, using early advising.

• XP-L-IA: The team to be evaluated is formed by agents
with different knowledge levels A10-1, A10-2, A10-3,
using importance advising.

The hyperparameters of the learning algorithms are deter-
mined empirically, as shown in Table I. They are kept the same

TABLE I
HYPERPARAMETERS.

Parameter name Value

Minimum replay memory size to start learning 10000
Replay memory capacity 25000
Prioritisation type proportional
Prioritisation exponent α 0.6
Prioritisation importance sampling β 0.5→ 1
Target network update period 10000
Minibatch size 64
Learning rate 0.001
Train period 2
Discount factor γ 0.99
Adam ε 1.5× 10−4

Huber loss δ 1

Asking threshold τask 10
Giving threshold τgive 3
Importance threshold τimp 1

across different scenarios and configurations.
We run the tests for the methods with teaching enabled,

namely XP-EA and XP-IA, with different advice budgets of
1K, 2K, 5K, 10K, 20K and unlimited (∞). For Scenario I (XP,
XP-EA, XP-IA), learning is run for 10K episodes, while 20K
episodes are run for Scenario II (XP-L, XP-L-EA, XP-L-IA).
The budgets are separate for each individual agent and are
set the same for asking and giving advice initially. Moreover,
due to stability concerns with deep RL methods, especially
in multi-agent settings, every experiment is repeated 10 times
with different random seeds.

VII. RESULTS AND DISCUSSION

Tables II and III show the results for the scenarios described
in this paper. These results show the asymptotic performance
(score) and the area under the curve (AUC) values as indicators
of the learning performance of the agents. Results are reported
for different moments of the evaluated training: after 2.5K,
5K, 7.5K, 10K, 15K and 20K episodes, and they include the
standard error of the measure (10 repetitions). Results that are
significantly different than the first row (baseline) of each table,
according to Welch’s t-test (p < 0.05) are denoted in bold.
Additionally, evaluation scores of the methods with highest
final AUC values from each of the scenarios are plotted against
their respective baseline as shown in Figures 3 and 4.

In the first scenario, both of the algorithms provided slight
accelerations in learning and achieved very similar final
performances with the baseline method at 10Kth episode. The
only significant difference from the baseline was seen at scores
at 5Kth episode, by XP-IA (5K). The overall best performing
agent in this scenario is XP-IA (10K). This can be seen as
an indication that the importance metric was indeed a useful
heuristic to distribute advice over more important states in this
scenario. The budget seems to have more effect on XP-IA,
achieving its best result at 10K, confirming the claim that too
much advice may have negative effects on performance [9].

In the second scenario, XP-L-IA failed to show any signif-
icant advantage over the baseline XP-L except for the score
at 5Kth episode with budget of 1K. This can be a result of



TABLE II
ASYMPTOTIC PERFORMANCE (SCORE) AND AREA UNDER THE CURVE (AUC) VALUES OF XP, XP-EA AND XP-IA AT LEARNING EPISODES 2.5K, 5K, 7.5K

AND 10K WITH STANDARD ERRORS IN PARENTHESES. RESULTS OF XP-EA AND XP-IA THAT ARE SIGNIFICANTLY DIFFERENT THAN XP ALGORITHM
ACCORDING TO WELCH’S t-TEST WITH p < 0.05 ARE DENOTED IN BOLD. EACH ALGORITHM IS RUN 10 TIMES.

Algorithm At 2500th At 5000th At 7500th At 10000th

AUC Score AUC Score AUC Score AUC Score

XP 13.94 (0.04) 0.58 (0.005) 28.72 (0.12) 0.62 (0.009) 47.15 (0.44) 0.83 (0.013) 68.26 (0.6) 0.87 (0.006)

XP-EA (1K) 13.9 (0.05) 0.58 (0.002) 28.81 (0.14) 0.63 (0.014) 47.18 (0.54) 0.81 (0.013) 68.27 (0.73) 0.86 (0.01)
XP-EA (2K) 13.85 (0.07) 0.57 (0.005) 28.58 (0.13) 0.61 (0.009) 46.39 (0.59) 0.79 (0.024) 67.16 (0.87) 0.86 (0.009)
XP-EA (5K) 13.88 (0.03) 0.58 (0.004) 28.75 (0.11) 0.63 (0.018) 47.02 (0.56) 0.81 (0.024) 67.86 (0.86) 0.87 (0.007)
XP-EA (10K) 13.85 (0.04) 0.57 (0.004) 28.57 (0.09) 0.61 (0.006) 46.3 (0.47) 0.8 (0.021) 67.28 (0.68) 0.87 (0.008)
XP-EA (20K) 13.76 (0.05) 0.57 (0.004) 28.56 (0.09) 0.64 (0.016) 47.38 (0.37) 0.84 (0.005) 68.87 (0.45) 0.88 (0.003)
XP-EA (∞) 13.76 (0.05) 0.57 (0.003) 28.53 (0.06) 0.64 (0.011) 47.11 (0.24) 0.82 (0.006) 68.0 (0.31) 0.86 (0.003)

XP-IA (1K) 13.94 (0.04) 0.58 (0.003) 29.0 (0.15) 0.66 (0.016) 47.62 (0.59) 0.82 (0.012) 68.92 (0.71) 0.87 (0.006)
XP-IA (2K) 13.91 (0.08) 0.58 (0.005) 28.86 (0.21) 0.64 (0.02) 47.11 (0.61) 0.81 (0.015) 68.16 (0.84) 0.87 (0.009)
XP-IA (5K) 13.92 (0.03) 0.57 (0.004) 28.84 (0.12) 0.65 (0.008) 48.01 (0.38) 0.83 (0.006) 69.49 (0.41) 0.88 (0.004)
XP-IA (10K) 13.97 (0.04) 0.58 (0.003) 29.22 (0.22) 0.68 (0.024) 48.26 (0.72) 0.8 (0.019) 69.6 (0.98) 0.88 (0.006)
XP-IA (20K) 13.96 (0.04) 0.58 (0.003) 29.19 (0.2) 0.67 (0.022) 47.92 (0.58) 0.8 (0.012) 69.01 (0.75) 0.87 (0.004)
XP-IA (∞) 13.96 (0.04) 0.58 (0.003) 29.19 (0.2) 0.67 (0.022) 47.92 (0.58) 0.8 (0.012) 69.01 (0.75) 0.87 (0.004)

TABLE III
ASYMPTOTIC PERFORMANCE (SCORE) AND AREA UNDER THE CURVE (AUC) VALUES OF XP-L, XP-L-EA AND XP-L-IA AT LEARNING EPISODES 5K, 10K,
15K AND 20K WITH STANDARD ERRORS IN PARENTHESES. RESULTS OF XP-L-EA AND XP-L-IA THAT ARE SIGNIFICANTLY DIFFERENT THAN XP-L

ALGORITHM ACCORDING TO WELCH’S t-TEST WITH p < 0.05 ARE DENOTED IN BOLD. EACH ALGORITHM IS RUN 10 TIMES.

Algorithm At 5000th At 10000th At 15000th At 20000th

AUC Score AUC Score AUC Score AUC Score

XP-L 15.38 (0.12) 0.36 (0.005) 38.34 (0.43) 0.52 (0.006) 66.97 (0.71) 0.66 (0.02) 105.46 (1.37) 0.86 (0.011)

XP-L-EA (1K) 15.58 (0.1) 0.39 (0.008) 39.51 (0.33) 0.54 (0.005) 69.85 (0.85) 0.73 (0.024) 110.8 (1.55) 0.88 (0.018)
XP-L-EA (2K) 15.4 (0.12) 0.37 (0.009) 38.28 (0.66) 0.53 (0.012) 68.55 (1.49) 0.7 (0.022) 108.4 (2.28) 0.86 (0.02)
XP-L-EA (5K) 15.51 (0.14) 0.39 (0.007) 39.98 (0.37) 0.54 (0.006) 71.18 (0.68) 0.75 (0.022) 112.69 (1.27) 0.89 (0.005)
XP-L-EA (10K) 15.53 (0.1) 0.38 (0.008) 39.53 (0.35) 0.55 (0.005) 71.3 (1.02) 0.74 (0.026) 112.14 (1.77) 0.87 (0.014)
XP-L-EA (20K) 15.53 (0.1) 0.38 (0.008) 39.53 (0.35) 0.55 (0.005) 71.3 (1.02) 0.74 (0.026) 112.14 (1.77) 0.87 (0.014)
XP-L-EA (∞) 15.53 (0.1) 0.38 (0.008) 39.53 (0.35) 0.55 (0.005) 71.3 (1.02) 0.74 (0.026) 112.14 (1.77) 0.87 (0.014)

XP-L-IA (1K) 15.39 (0.13) 0.38 (0.006) 38.54 (0.5) 0.52 (0.008) 67.95 (0.97) 0.68 (0.025) 107.6 (1.59) 0.87 (0.01)
XP-L-IA (2K) 15.27 (0.14) 0.37 (0.008) 38.4 (0.43) 0.53 (0.007) 67.73 (0.69) 0.67 (0.017) 106.47 (1.42) 0.85 (0.016)
XP-L-IA (5K) 15.37 (0.09) 0.38 (0.009) 38.67 (0.32) 0.52 (0.005) 68.13 (0.59) 0.69 (0.025) 107.32 (1.46) 0.86 (0.019)
XP-L-IA (10K) 15.37 (0.1) 0.37 (0.009) 38.58 (0.34) 0.52 (0.006) 68.06 (0.65) 0.68 (0.027) 107.04 (1.6) 0.85 (0.02)
XP-L-IA (20K) 15.37 (0.09) 0.38 (0.009) 38.67 (0.32) 0.52 (0.005) 68.13 (0.59) 0.69 (0.025) 107.32 (1.46) 0.86 (0.019)
XP-L-IA (∞) 15.37 (0.09) 0.38 (0.009) 38.67 (0.32) 0.52 (0.005) 68.13 (0.59) 0.69 (0.025) 107.32 (1.46) 0.86 (0.019)

Fig. 3. Evaluation scores versus number of learning episodes of XP, XP-EA
(5K) and XP-IA (20K). Shaded areas indicate 95% confidence intervals.

Fig. 4. Evaluation scores versus number of learning episodes of XP-L, XP-L-
EA (5K) and XP-L-IA (1K). Shaded areas indicate 95% confidence intervals.



the importance metric not being accurate at reflecting actual
relevance of states in this kind of agent knowledge setting. On
the other hand, XP-L-EA performed very well with significant
improvements in terms of asymptotic performance and learning
speed at multiple stages of learning. Moreover, it even managed
to achieve a significantly better final performance. This may
be caused by the agents starting with similar (and moderate)
amount of knowledge, so the early advices are likely to be
useful for any of them without having a need for additional
importance assessment. The identical results of XP-L with 10K
or a higher budget is caused by not having the need to make
use of it beyond some point, once the agent is certain of the
decision it is making on its own (as controlled with the advice
budgets). This can be considered as an another benefit of using
this uncertainty measurement technique if it is tuned well.

VIII. CONCLUSIONS

This paper describes the application, for the first time, of
action advising via heuristic-based teacher-student framework
on Multi-Agent Reinforcement Learning (MARL) agents,
employing policies with nonlinear function approximation.
The environment used for training agent advising is a grid-
based game in which three agents need to coordinate to place
themselves in three different landmarks. The work described
here shows that using off-policy learning can provide significant
improvements in the speed and performance of agents that learn
via advice, particularly when the team is composed of agents
with heterogeneous knowledge. Moreover, Random Network
Distillation (RND) can be a reliable metric to be utilised as a
state visit counter through nonlinear function approximation
when state space complexity is high.

Another interesting finding is that the state importance metric
may be inefficient in some cases of knowledge distribution
amongst agents, for example if they are all are experts but
on different state distributions. Additionally, it is worthwhile
highlighting that, even if it is possible to determine the
experience of the agents for their roles in knowledge exchange
relationships, this experience is importantly biased by the other
agents that were present at the time they built their knowledge.
Further investigation on how to adapt the importance metric
for agent advising is an interesting line of future work.

Off-policy learning through replay memory may be a slowing
down factor in action advising, as it takes given advice into
consideration in a delayed way and reduces the rate they
influence the agent’s current policy. Therefore, in addition
to the enhancements like prioritised experience replay, it may
be useful to implement more specific techniques like multi-step
advice and continual monitoring of agents for fixed periods of
time after advice exchange. This is similar to previous work
in the field [11][16].

Finally, another interesting line of future work is to expand
the problem to more than 3 agents, which brings interesting
aspects to the discussion such as defining a more accurate peer
selection and decision making beyond majority voting.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press, 2018.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level Con-
trol Through Deep Reinforcement Learning,” Nature, vol. 518:7540,
pp. 529–533, 2015.

[3] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the Game of
Go with Deep Neural Networks and Tree Search,” Nature, vol. 529,
no. 7587, pp. 484–489, 2016.

[4] O. Vinyals, I. Babuschkin, J. Chung, et al., AlphaStar: Mastering the
Real-Time Strategy Game StarCraft II, https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[5] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement
Learning Domains: A Survey,” Journal of Machine Learning Research,
vol. 10, pp. 1633–1685, 2009.

[6] F. L. Da Silva and A. H. R. Costa, “A Survey on Transfer Learning
for Multiagent Reinforcement Learning Systems,” Journal of Artificial
Intelligence Research, vol. 64, pp. 645–703, 2019.

[7] J. A. Clouse, On Integrating Apprentice Learning and Reinforcement
Learning. University of Massachusetts Amherst, 1996.

[8] S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell, and A. L. Thomaz,
“Policy Shaping: Integrating Human Feedback with Reinforcement
Learning,” in Neural Information Processing Systems, 2013, pp. 2625–
2633.

[9] L. Torrey and M. E. Taylor, “Teaching on a Budget: Agents Advising
Agents in Reinforcement Learning,” in International conference on
Autonomous Agents and Multi-Agent Systems, AAMAS ’13, Saint Paul,
MN, USA, May 6-10, 2013, 2013, pp. 1053–1060.

[10] M. Zimmer, P. Viappiani, and P. Weng, “Teacher-Student Framework: A
Reinforcement Learning Approach,” in AAMAS Workshop Autonomous
Robots and Multirobot Systems, 2014.

[11] O. Amir, E. Kamar, A. Kolobov, and B. J. Grosz, “Interactive Teaching
Strategies for Agent Training,” in Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, 2016, pp. 804–811.

[12] Y. Zhan, H. Bou-Ammar, and M. E. Taylor, “Theoretically-
Grounded Policy Advice from Multiple Teachers in Reinforcement
Learning Settings with Applications to Negative Transfer,” CoRR,
vol. abs/1604.03986, 2016.

[13] A. Fachantidis, M. E. Taylor, and I. P. Vlahavas, “Learning to Teach
Reinforcement Learning Agents,” CoRR, vol. abs/1707.09079, 2017.

[14] F. L. da Silva, R. Glatt, and A. H. R. Costa, “Simultaneously Learning
and Advising in Multiagent Reinforcement Learning,” in Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems,
ser. AAMAS ’17, Sao Paulo, Brazil, 2017, pp. 1100–1108.

[15] S. Omidshafiei, D. Kim, M. Liu, G. Tesauro, M. Riemer, C. Amato, M.
Campbell, and J. P. How, “Learning to Teach in Cooperative Multiagent
Reinforcement Learning,” CoRR, vol. abs/1805.07830, 2018.

[16] D. K. Kim, M. Liu, S. Omidshafiei, S. Lopez-Cot, M. Riemer, G. Habibi,
G. Tesauro, S. Mourad, M. Campbell, and J. P. How, “Learning Hier-
archical Teaching in Cooperative Multiagent Reinforcement Learning,”
arXiv preprint arXiv:1903.03216, 2019.

[17] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized
POMDPs, ser. Springer Briefs in Intelligent Systems. Springer, 2016.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. A. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” CoRR, vol. abs/1312.5602, 2013.

[19] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. G. Azar, and D. Silver, “Rainbow:
Combining Improvements in Deep Reinforcement Learning,” in Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), 2018, pp. 3215–3222.

[20] Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov, “Exploration by
Random Network Distillation,” CoRR, vol. abs/1810.12894, 2018.

[21] I. J. Goodfellow, Y. Bengio, and A. C. Courville, Deep Learning,
ser. Adaptive Computation and Machine Learning. MIT Press, 2016.

[22] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning
to Communicate with Deep Multi-Agent Reinforcement Learning,” in
Neural Information Processing Systems, 2016, pp. 2137–2145.

[23] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent Cooperation and Competition with
Deep Reinforcement Learning,” CoRR, vol. abs/1511.08779, 2015.


