
A Hierarchical Approach for MARLÖ Challenge
Linjie Xu

School of Software
Nanchang University

Nanchang, China
ncuxlj@email.ncu.edu.cn

Yihong Chen
Department of Electronic Engineering

Tsinghua University
Beijing, China

cyh16@mails.tsinghua.edu.cn

Abstract—Recently reinforcement learning has been showing
remarkable performance in playing games. However, the majority
of conventional approaches merely solve games with a single
task. It is not yet well studied whether reinforcement learning
is effective in games like Minecraft, where players are required
to finish multiple different tasks while cooperating with other
collaborators. In such games, AIs are confronted with dual
challenges – finishing multiple tasks and building a multi-agent
system. We propose a hierarchical approach with reinforcement
learning policies to address the challenges. Experiments show
that our approach performs well when dealing with multiple tasks
and multiple agents simultaneously. Our approach got the second
runner-up in MARLÖ Challenge, demonstrating its potential in
tackling the challenges.

Index Terms—Game AI, Multi-Task, Multi-Agent, Reinforce-
ment Learning, Minecraft

I. INTRODUCTION

Game AIs are playing an important role in a diverse set
of games. They can serve as competent opponents for human
players in fighting games [1] or plausible non-player characters
(NPCs) that react robustly to novel game contents [2]. They
are also capable of creating complex and interesting levels in
procedural generation [3], [4]. Furthermore, game AIs can be
used to play various existing games [5]. Although multi-agent
games and multi-task games are common, few game environ-
ments for AI combine both characteristics, which distinguishes
the MARLÖ environment [6] from others. Built on a popular
sand-box game, Minecraft, the MARLÖ environment requires
the player to control two agents, which cooperate to complete
three tasks: Build Battle, Treasure Hunt and Mob Chase. Each
of the three tasks has 5 different scenes for training and one
withheld scene for test. At each time step, the agents receive
a scalar reward after taking some actions.

As shown in Figure 1, the three tasks in MARLÖ envi-
ronment are quite different. In Build Battle, the agents are
required to observe the target cuboid structure and then build
the same one nearby. In Treasure Hunt, the scenes are in a
dangerous cave with lava and monsters. An agent, serving as
the collector, fetches treasure and reach the destination while
the other agent, as the defender, tries to protect the collector
from being attacked by the monsters. In Mob Chase, the two
agents cooperate to chase and capture various animals.

We have many thanks to EPFL Enable Office for offering us a student
travel grant on MARLÖ 2018 challenge.

?

Fig. 1: Overview of the MARLÖ environment.

Such diverse tasks and complex interactions between team-
mates bring immersive experience to human players, together
with a great challenge for game AIs – simultaneously control-
ling multiple agents to complete multiple tasks. Specifically,
we list two aspects of the challenge as follows.

Multi-Task. In MARLÖ, the game AI has to complete three
diverse tasks. Although modern AI algorithms [7]–[9] has been
showing promising results on single-task learning, multi-task
learning, especially multi-task reinforcement learning, has not
been fully studied. Differed from traditional reinforcement
learning, multi-task reinforcement learning aims to generate
policies that can solve multiple tasks at the same time. Given
the fact that most real-world applications require AIs to
accomplish several related tasks at the same time(e.g. tagging
the barrier and meanwhile predicting the distance for an
autonomous vehicle), it is of great importance to find effective
solutions to such multi-task reinforcement learning problem.

Multi-Agent. In a multi-agent system, an agent interacts
with not only the environment but also other agents, lead-
ing to a more dynamic system and exponential computation
complexity with respect to the number of agents. Although
teamwork is crucial in multi-agent systems [10], [11], it is
usually hard for the agents to learn how to collaborate without
any prior knowledge [12]. In MARLÖ, the game AI has to
control two agents at the same time. Hence, addressing multi-
agent reinforcement learning appropriately is critical to tackle
MARLÖ challenge.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

II. RELATED WORK

Although Minecraft has been addressed by integrating graph
neural networks for agents’ communication [13] and injecting
important area features to deep reinforcement learning [14],
both works merely offer solutions to single scene learning(i.e.
training and test using the same scene), far from tackling the
MARLÖ challenge completely. Context-dependent memory Q
network [15] is able to generalize to unseen maps in Minecraft,
yet hard to generalize among different tasks.

To solve multiple different tasks efficiently, the agents are
expected to learn general skills that can be used in many tasks.
Previous works proposed to combine multiple expert policies
in order to create a student policy that can handle a set of
tasks [16], [17]. However, in our MARLÖ experiments, we
observe that the student policy distilled from expert policies
rarely generalize well in unseen environments, resulting in a
task-specific policy rather than an integral policy. Some works
employed hierarchical policies [18], [19] to learn different
skills among tasks. In our approach, we use a simpler hi-
erarchical architecture and focus on task-recognition and the
performance on each task.

As for multi-agent learning, sharing information between
agents has been proposed as an efficient way to learn to
cooperate [10], [11], [20], [21]. In MARLÖ environment,
cooperation mechanisms are totally different among tasks (For
instance, cooperation in Treasure Hunt is that the defender
help the collector attack monsters, while in Mob Chase,
the agents chase the animals together), making it hard to
directly employ the above methods. We thus resort to task-
specific policies, through which the agents can learn different
cooperation mechanisms with different training procedures.

III. PRELIMINARY

Reinforcement Learning (RL) [22] is a popular method for
playing video games. Many RL methods [7]–[9] have shown
remarkable performance on various games, including classic
Atari Games [7], Vizdoom [23] and lately StarCraft [24].
Before presenting our hierarchical approach to solve MARLÖ,
we briefly review reinforcement learning in this section. RL
aims to solve Markov Decision Process (MDPs) problems. A
finite horizon discounted MDP M, as often assumed in RL
problems, can be defined as a tuple: < S,A, T,R, γ > where
S is a finite set of all possible states in an environment, A
is a finite set of actions which are available from each state
s. T : S × A → S is a transition function that describes
how states change under the action made by agent. And
R : S × A → R is a reward function that assigns a scalar rt
to the agent after every interaction. γ ∈ [0, 1] is a discounted
coefficient that controls the weight of future rewards in the
discounted accumulative rewards:

Gt =

t∑
i=1

γi−1ri (1)

The purpose of RL is to find an optimal policy π : S → A
that maximizes the expected return E[Gt].

In our approach, we regard the screen capture at each step
as state st. And we use different action configurations for
different tasks (see the details in appendix A).

IV. A HIERARCHICAL APPROACH WITH REINFORCEMENT
LEARNING

In [25], they designed a classifier to select an effective MPC
controller from a candidate set. Inspired by this, we propose a
hierarchical approach with reinforcement learning policies to
tackle MARLÖ environment. The hierarchical approach shown
in Figure 2 is composed of a selection module and task-aware
policy modules. For MARLÖ, the policy module consists of
three task-specific policies. The selection module recognizes
the task type and chooses a corresponding policy to finish the
task. Formally, given a task set K and its size |K| = N , our
target is to maximize

Ek∼KE[Gkt] =
1

N

∑
k∈K

E[Gkt] (2)

where E[Gkt] denotes the expected return of task k.
We first find the task-aware policy πk that maximizes the

corresponding expected return using Proximal Policy Opti-
mization (PPO) [9]. For task k, PPO maximizes the following
objective:

L(θk) = Ê[min(ut(θk), 1− ε, 1 + ε)Âkt] (3)

where ut(θ
k) =

π
θk

(akt |s
k
t)

π
θk
old

(akt |skt)
and ·̂ indicates that the value

is estimated from a finite collection of trajectories. θk, πθkold
and Ak(sk, ak) = Qk(sk, ak) − V k(sk) respectively denote
the parameters of the policy, the policy before current update
and the state-dependent action advantage function. ε is a
clipping hyper-parameter. This objective function is based
on conservative policy iteration (CPI) [26], which finds an
approximately optimal policy within a finite number of policy
updates.

π

π

π

at

st

at

0

1

2

st

st

at

Fig. 2: A brief view of our hierarchical approach. The selection
module C is constructed by CNN and full-connected layers.
The policy modules consist of task-aware policies, through
which the agents interact with environments.

In the test procedure of MARLÖ challenge, the agents
are confronted with unknown tasks. Making decisions under

such conditions is tough. Therefore, we construct a selection
module C : S → T that recognizes the task effectively from
the first few screen frames and then choose the corresponding
policy. In our implementation, the selection module C is a
CNN classifier.

To simplify the multi-agent problem, our approach considers
a customized cooperation mechanism for each task. This is
achieved by separate training of the agents and tailored reward
shaping. In Treasure Hunt, the defender is trained first to gain
the ability to protect itself and the collector. Then the collector
is trained to learn how to fetch the treasure and reach the exit.
In Mob Chase, one of the two agents is trained by introducing
an external reward that encourages it to stay on the left-hand
side, while the other is trained in a similar way to encourage it
to stay on the right-hand side. Such cooperation on both sides
makes chasing animals much easier. As for Build Battle, only
one agent is used to tackle the task, in consideration of trade-
off between single-agent performance and the complexity of
two-agent cooperation.

V. EXPERIMENTS

To demonstrate the effectiveness of our hierarchical ap-
proach, we run experiments similar to MARLÖ challenge.

A. Experimental settings

500 frames from each task (100 frames per scene) are
collected to train the selection module C with another 440
ones for test. To train each task-specific policy, the scenes
are randomly chosen from a finite scene set. As the setting
in MARLÖ challenge, we construct 2 extra scenes per task,
unseen in the training set, for test. Specifically, for Build Bat-
tle, we build different target cuboid structures, using different
types of cubes. And for Treasure Hunt, the monster type is
different from training. For Mob Chase, we change the animal
types and the weather. In Treasure Hunt and Mob Chase, we
use different maps for test as well. During the end-to-end test,
one of the 6 test scenes are uniformly chosen. The test stops
when we accumulate 100 episodes for each task.

B. Baselines

To verify the effectiveness of our hierarchical approach, we
compare its performance with two baselines. A naive baseline
is to train task-specific policies and then uniformly choose
one to handle MARLÖ environment. Simple as it is, this
baseline can reflect the importance of the selection module in
our hierarchical approach. As for the second baseline, we use
policy distillation [16], training a student policy using multi-
task data produced by teacher policies (well-trained single-task
policies).

C. Results

As shown in Table I, our hierarchical approach outper-
forms the random baseline and the policy distillation baseline
significantly. In the random baseline, the selection module
is replaced with random selection thus task-specific policies
become inefficient confronted with unknown tasks. It is worth

TABLE I
Performance (cumulative rewards) of different approaches on

test. Scores are averaged over 100 episodes.

Task Build Battle Treasure Hunt Mob Chase
Random Policy -0.45 ±0.83 -0.33 ±0.92 -0.37 ±0.90
Policy Distillation -0.054 ±0.94 -0.21 ±0.78 -0.54 ±0.66
Task-specific Policies 0.76 ±0.14 0.4 ±0.85 0.61 ±0.55
Our Approach 0.76 ±0.16 0.37 ±0.86 0.55 ±0.63

TABLE II
Performance of selection module on different tasks

Tasks Build Battle Treasure Hunt Mob Chase
Accuracy 96.6% 95.0% 100%

noting that as policy distillation baseline outperforms the naive
baseline in Build Battle and Treasure Hunt. However, it is of
poor performance in Mob Chase.

We further analyze our hierarchical approach here. Table II
shows that the selection module in our approach can recognize
the task successfully, with accuracies of over 95%. Figure 3
shows the performance of the policy module. Benefiting from
task-aware policies by using customized configurations (see
appendix A) for different tasks, our policy module is able to
perform well across the three tasks. From Figure 3 we observe
the instability in the training procedure of Build Battle. This is
due to diverse scenes in this task. Moreover, the gap between
train and test in Treasure Hunt (Figure 3 middle) is caused by
monsters killing agents in test scenes.

0 50 100 150 200
1.0

0.5

0.0

0.5

1.0

Sc
or

es

Build Battle

0 10 20 30 40

Iteration Number (1e3)

Treasure Hunt

0 5 10 15 20

Mob Chase

train
test

Fig. 3: Performance (cumulative rewards) of policy module on
different tasks. The scores are smoothed in every 50 episodes.
The task-specific models used in test are selected from the
training procedure.

VI. CONCLUSION AND FUTURE WORK

In this work, we explore a hierarchical approach with
reinforcement learning policies for the MARLÖ challenge,
where the game AI is required to simultaneously control
multiple agents to accomplish multiple tasks. We decomposes
this problem into two parts, task recognition and task finishing.
We design modules to handle them, selection module and
policy module respectively. Our approach is able to use
flexible configurations and learn task-customized cooperation.
Compared with the baseline methods, experiments show that
our approach performs better, generalizing well to new scenes
in MARLÖ environment. This hierarchical approach helped

us get a second runner-up in the final tournament of MARLÖ
challenge.

There still remain challenges in solving multi-agent and
multi-task problems at the same time, for example, the trade-
off between computation efficiency and multi-task perfor-
mance. Although ideally we could use policies dedicately
designed for each agent in each task, the computation cost
would be unaffordable, and thus the approach would fail to
scale up to a large set of tasks and a large number of agents.
Another direction worth to explore is how the agents can learn
different types of cooperation for different tasks, which is done
by hand-crafted reward shaping in our approach. We leave
these for the future work.

REFERENCES

[1] Makoto Ishihara, Suguru Ito, Ryota Ishii, et al. Monte-carlo tree
search for implementation of dynamic difficulty adjustment fighting
game ais having believable behaviors. In 2018 IEEE Conference on
Computational Intelligence and Games (CIG), pages 1–8. IEEE, 2018.

[2] Christian Guckelsberger, Christoph Salge, and Julian Togelius. New and
surprising ways to be mean. adversarial npcs with coupled empowerment
minimisation. arXiv preprint arXiv:1806.01387, 2018.

[3] Adam Summerville, Sam Snodgrass, et al. Procedural content generation
via machine learning (pcgml). IEEE Transactions on Games, 10(3):257–
270, 2018.

[4] Matthew Stephenson and Jochen Renz. Procedural generation of levels
for angry birds style physics games. In Twelfth Artificial Intelligence
and Interactive Digital Entertainment Conference, 2016.

[5] Niels Justesen, Philip Bontrager, Julian Togelius, et al. Deep learning
for video game playing. IEEE Transactions on Games, 2019.

[6] Diego Perez-Liebana, Katja Hofmann, Sharada Prasanna Mohanty, et al.
The multi-agent reinforcement learning in malmö (marlö) competition.
arXiv preprint arXiv:1901.08129, 2019.

[7] Volodymyr Mnih, Koray Kavukcuoglu, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

[8] Volodymyr Mnih, Adria Puigdomenech Badia, et al. Asynchronous
methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937, 2016.

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, et al. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[10] Jun Feng, Heng Li, Minlie Huang, et al. Learning to collaborate: Multi-
scenario ranking via multi-agent reinforcement learning. In Proceedings
of the 2018 World Wide Web Conference, WWW ’18, pages 1939–1948,
Republic and Canton of Geneva, Switzerland, 2018. International World
Wide Web Conferences Steering Committee.

[11] Jakob Foerster, Richard Y. Chen, Maruan Al-Shedivat, et al. Learning
with opponent-learning awareness. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’18, pages 122–130, Richland, SC, 2018. International Foun-
dation for Autonomous Agents and Multiagent Systems.

[12] Katie Genter, Noa Agmon, and Peter Stone. Role-based ad hoc
teamwork. In Proceedings of the Plan, Activity, and Intent Recognition
Workshop at the Twenty-Fifth Conference on Artificial Intelligence
(PAIR-11), August 2011.

[13] Valliappa Chockalingam, Tegg Tae Kyong Sung, Feryal Behbahani,
et al. Extending world models for multi-agent reinforcement learning in
malmö. In Joint Proceedings of the AIIDE 2018 Workshops co-located
with 14th AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE 2018), Edmonton, Canada, November 13-
14, 2018., 2018.

[14] Nicolas Bougie and Ryutaro Ichise. Deep reinforcement learning
boosted by external knowledge. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, SAC ’18, pages 331–338, New York,
NY, USA, 2018. ACM.

[15] Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, et al. Control
of memory, active perception, and action in minecraft. In Proceedings
of the 33rd International Conference on International Conference on
Machine Learning - Volume 48, ICML’16, pages 2790–2799. JMLR.org,
2016.

[16] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, et al.
Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

[17] Glen Berseth, Cheng Xie, Paul Cernek, et al. Progressive reinforcement
learning with distillation for multi-skilled motion control. In Interna-
tional Conference on Learning Representations, 2018.

[18] Chen Tessler, Shahar Givony, Tom Zahavy, others J, and Shie Mannor.
A deep hierarchical approach to lifelong learning in minecraft. In Thirty-
First AAAI Conference on Artificial Intelligence, 2017.

[19] Tianmin Shu, Caiming Xiong, and Richard Socher. Hierarchical and
interpretable skill acquisition in multi-task reinforcement learning. arXiv
preprint arXiv:1712.07294, 2017.

[20] Ying Wen, Yaodong Yang, Rui Luo, et al. Probabilistic recursive
reasoning for multi-agent reinforcement learning. In International
Conference on Learning Representations, 2019.

[21] Ryan Lowe, Jakob Foerster, Y.-Lan Boureau, et al. On the pitfalls of
measuring emergent communication. CoRR, abs/1903.05168, 2019.

[22] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[23] Michał Kempka, Marek Wydmuch, et al. Vizdoom: A doom-based
ai research platform for visual reinforcement learning. In 2016 IEEE
Conference on Computational Intelligence and Games (CIG), pages 1–8.
IEEE, 2016.

[24] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, et al. Starcraft ii: A new
challenge for reinforcement learning. arXiv preprint arXiv:1708.04782,
2017.

[25] Francois Robert Hogan, Eudald Romo Grau, et al. Reactive planar
manipulation with convex hybrid mpc. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 247–253. IEEE,
2018.

[26] Sham Kakade and John Langford. Approximately optimal approximate
reinforcement learning. In Proceedings of the Nineteenth International
Conference on Machine Learning, ICML ’02, pages 267–274, San
Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

APPENDIX A
DETAILS OF NETWORKS AND ENVIRONMENT SETTINGS

Conv2d 8x8 32
Conv2d 4x4 64
Conv2d 3x3 64

Fc(512)

Fc(|a|) Fc(1)

Action Value

Screen Capture

Conv2d 3x3 64
Max Pool 2x2

Conv2d 3x3 128
Max Pool 2x2

Fc(512)

Fc(3)

Screen Capture

Task Label

Fig. 4: Architecture of selection module and policy module.

Actions. The action set for Build Battle task contains go
forward, go backward, turn left, turn right, place block. The
agent’s view is fixed on -45’ in pitch. In Treasure Hunt task,
the collector collects treasure and then go to exit point, while
the defender is able to attack but unable to collect treasure.
Actions for the defender are go forward, turn left, turn right,
attack and actions for the collector are go forward, turn left,
turn right. For Mob Chase task, actions are go forward, turn
left, turn right.

Reward Shaping. Based on default reward setting on
MARLÖ environments, we modify all the positive reward to
+1 and negative reward to -1 while maintaining the penalty of
every step (-0.02). In Mob Chase, we give an external positive
reward to the agent if it is at the correct side (one agent chase
the mob at the left-hand side and another agent is at right-hand
side).

