
Object-Oriented State Abstraction in Reinforcement
Learning for Video Games

1st Yu Chen
Guanghua School of Management

Peking University
Beijing, China

yu.chen@pku.edu.cn

2nd Huizhuo Yuan
School of Mathematical Sciences

Peking University
Beijing, China

yuanhz@pku.edu.cn

3rd Yujun Li
Department of Computer Science and Engineering

Shanghai Jiao Tong Univeristy
Shanghai, China

liyujun145@gmail.com

Abstract—We present a novel method to obtain object-oriented
state representations for video games. Inspired by the mechanism
of attention to objects in human vision, we try to make the agents
automatically detect the important objects during the learning
process. The detection is directed by the Q value based on
the abstract state representations. The process does not require
human prior knowledge and provides a faster and lighter way for
AI playing games. We present empirical results on the Battle City
game to validate our method. In comparison with raw images
input and other preprocessing methods, our approach achieves
better final results and uses smaller state space.

Index Terms—reinforcement learning, video games, state ab-
straction, object detection

I. INTRODUCTION

Many studies have shown that in the real world, human eyes
automatically focus on objects and filter out some background
information [1]–[3]. At the same time, some objects are more
crucial than others, such as obstacles and boundaries. Inspired
by the above facts, we try to design a mechanism that enables
reinforcement learning (RL) agents to detect objects in image-
input tasks automatically.

Image is one of the most common input forms for RL tasks
in many games [4]–[6]. Image-input data are usually high-
dimensional and can precisely capture game details. However,
they also lead to a large state space of the MDP and add
extraneous noise. An excessive number of states require large
samples and may lead to unstable training results for RL.
A natural solution is to reduce the state space, leaving only
features that are critical to the learning process. The procedure
of obtaining an efficient state space is called state abstraction.

Our main contribution is to enable RL agents to automati-
cally detect new objects, abstract the state space based on the
detected objects and learn policy in the object-oriented state
space. Our approach makes it easier to train RL game agents,
and the procedure is more robust to interfering objects and
noise.

II. PRELIMINARIES

A ground MDP is defined as a 5-tuple M ≡ (S,A,P, R, γ),
where S is a set of states that use image representation, and
A is a set of actions. For ∀s, s′ ∈ S, a ∈ A, P(s′ | s, a) is
the state transition probability from s to s′ by taking action a.

Let Rt = R(s, a) be the reward function which is normalized
to [−1, 1]. The objective is to find a policy π : S 7→ A by
maximizing the discounted future reward

∑
k≥0 γ

kRt+k with
γ ∈ [0, 1).

Let φ : S 7→ S be a mapping function from a ground
state space to an abstracted one. Given φ and s, we define
the inverse image set Iφ(s) = {s | φ(s) = s, s ∈ S}
where s := φ(s). An abstract MDP of M is defined as
M ≡ (S,A,P, R, γ), where S = {s | s = φ(s), s ∈ S}
is the abstracted state space. A and γ are the same as in the
ground MDP.

Given a policy π for a ground MDP, the Q-function is
defined as Q(s, a) = E(

∑
k≥0 γ

kRt+k | st = s, at = a).
The Q-function decomposes into the Bellman equation and
Qt+1(s, a) can be updated by R(s, a) + γmaxa′ Q

t(s′, a′).

For an abstract MDP, we use Q(s, a), π,Q
∗
(s, a) and

π∗ to denote its Q function, policy, and optimums. Simi-
larly, the abstracted Q

t+1
(s, a) can be updated by R(s, a) +

γmaxa′ Q
t
(s′, a′).

Object detection is used to identify a specific pixel area over
images and classify them into different objects. We learn from
the practice of R-CNN [7] to perform detection in RL. The
basic idea is to propose a bunch of boxes for each image, and
check whether each box corresponds to an object.

We enable RL agents automatically recognize objects under
the guidance of Q function. Specifically, improvements in
object detection accuracy may result in a better approximation
function and an increase in future rewards.

III. METHODOLOGY

A. Object oriented state abstraction

Throughout this subsection, we assume the coordinates of
a total of m objects in K classes are known and demonstrate
how to construct φ. For each s, let B1(s), · · · ,Bm(s) be the
bounding boxes for the m objects. We first divide image s into
an L×L grid, and then represent the K classes by K matrices
of size L×L. For the k-th matrix, element (i, j) is 1 if there
is an object of class k at the grid (i, j) in s, and otherwise 0.
As a result, φ is S 7→ {0, 1}L×L×K . This abstract mapping
function can significantly reduce the state space size.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

B. Automatic Object Detection
We present an iterative algorithm to detect objects automat-

ically for image-input games, and we call it automatic object
detection reinforcement learning (AOD-RL). In each iteration,
the algorithm performs the following steps. The procedure is
described in Algorithm 1, and see (a) to (f) in Fig. 1 for an
intuitive explanation.

Algorithm 1 AOD-RL
Input: Number of boxes N , dimensions of the autoencoder p,

number of trajectories T and number of clusters K.
1: procedure AUTOMATIC OBJECT DETECTION RL
2: t ← 0, C0 ← randomly initialized k-means centroids,

randomly initialize Q approximator.
3: repeat
4: t← t+ 1
5: for trajectory in {1, · · · , T} do .
6: Interact according to Qt−1(φt−1(s), a).
7: Update Qt−1(φt−1(s), a) by (1)
8: Sample a set of states Ms from the replay memory.
9: Ot ← {Bi(s) | 1 ≤ i ≤ N, s ∈Ms}

10: X t ← {Autoencoder(o) ∈ Rp | o ∈ Ot}.
11: Ct ← CENTROIDS UPDATE(X t, Ct−1, Qt−1)
12: φt(s) ← Φ(s, Ct). Copy the parameters of

Qt−1(φt−1(s), a) to Qt(φt(s), a)
13: until terminated

Clustering object candidates. First, the agent collects
image states {s ∈ S} from the environment according to Q
in the previous iteration. For each s, it proposes N bounding
boxes B(s) of candidate objects. Second, an autoencoder is
used to project the bounding boxes onto a lower dimensional
space, and we collect the encoded data in Xt. Then AOD-RL
executes a centroids update procedure to get clustering cen-
troids of objects, which is demonstrated in the next subsection.
Given the new obtained centroids Ct, a bounding box B(s) is
assigned to the i-th cluster if ∀j 6= i, ‖x − ci‖ ≤ ‖x − cj‖,
where x is the encoded B(s) and ci, cj ∈ Ct.

Update Q function. Once the clustering step assigns
each bounding box a label, AOD-RL can interact with the
environment and updates a new Q(φ(s), a) according to the
newly obtained φ.

AOD-RL iteratively runs the above two steps. The choice
of K in k-means is not critical, as long as it is greater than the
number of object classes. Irrelevant classes will be filtered out
by Algorithm 2. We define the abstraction mapping as φt(s) =
Φ(s, Ct), where Φ(s, C) refers to the grid mapping given class
centroids C. The abstracted Q function as Q(φt(s), a). Within
step t, the corresponding Bellman update of Q(φt(s), a) is
defined as

(1− α)Q(φt(s), a) + α
(
R(s, a) + γmax

a′
Q(φt(s

′), a′)
)
. (1)

As we can see, in AOD-RL the key to automatic objects
detection is the clustering centroids obtained by the k-means
algorithm. The k-means procedure may miss important objects
due to random factors, and may also obtain some classes that
are irrelevant to the learning task. The following subsection
addresses these issues.

Fig. 1: An intuitive explanation of AOD-RL. (a) Randomly
propose bounding boxes, (b) autoencoder, (c) k-means, (d)
new abstraction φ, (e)learn abstracted Q-function, (f) collect
new experience states and (g) update centroids and filter out
irrelevant objects (Algorithm 2).

C. Centroids Update Mechanism

AOD-RL obtains a state abstraction based on detected
objects. In this subsection, we present a novel algorithm that
can filter out irrelevant object classes and add new classes to
explore based on the environmental feedback.

We give a measurement of the relevance of each class of
object. A relevant object class implies that the presence of
objects can influence the state value. For each cluster centroid
ci ∈ C, we examine the difference between Q(φ(s), a) and
Q(φ−i(s), a), where φ−i(s) represents the abstract mapping
without detecting class i. Large difference means that class i
has a significant influence on Q. Based on this motivation, we
propose Algorithm 2, which describes the (g) step in Fig. 1.

Algorithm 2 Centroids Update Algorithm
Input: New observations in memory Xt, previous centroids Ct−1

and Qt−1.
Output: A new set Ct containing relevant centroids and exploring

centroids.
1: procedure CENTROIDS UPDATE(Xt, Ct−1, Qt−1)
2: Perform k-means algorithm on Xt, with initial centroids Ct−1,

denote the new centroids as C.
3: K ← |C|, φ(s)← Φ(s, C)
4: Sample a set of states and the corresponding actions from the

replay memory for calculating Score(i).
5: for Each ci ∈ C do . Calculate relevance of i
6: C−i ← C \ {ci} ∪ {random(Rp)},
7: φ−i(s)← Φ(s, C−i)
8: Score(i)←

∑
s,a |Qt−1(φ(s), a)−Qt−1(φ−i(s), a)|

9: Crevelant ← {ci ∈ C | Score(i) ≥ threshold, 1 ≤ i ≤ K}
10: Cexplore ← {random(Rp) | Score(i) < threshold, 1 ≤ i ≤ K}
11: Ct = Crelevant ∪ Cexplore
12: return Ct

Algorithm 2 retains centroids with relevance higher than
a threshold, and replaces others with random centroids for
exploration. The threshold is determined by a rule of thumb
based on t-test for Q values.

We compare each class with all the classes that are smaller
than its relevance and test if there is a significant difference.
Let Score(i) be sorted in a descending order, and let xi =

Score(i) and x̄i+ = 1/(K−i)
∑K
j=i+1 Score(j), where x̄i+

represents the average of the smallest K − i scores. For each
i, we perform a t-test onH0 : xi = x̄i+, and denote the t-value
as ti. The test statistic ti should be close to 0 for irrelevant
classes and significant positive for relevant ones. Then the
threshold is chosen to be Score(arg maxi ti/ti+1). See Fig. 2
(c) for an intuitive understanding.

Algorithm 2 can help remove irrelevant classes and it
enables exploration of new classes in the next iteration.
Algorithm 2 is inserted in line 11 of Algorithm 1, and makes
automatic object detection feasible.

IV. EXPERIMENTS

A. Environment and experimental settings

We use a modified BattleCity video game environment [8],
where the agent controls a tank to destroy enemy tanks by
moving and firing. This game is simple and contains obvious
object features, thus we use it to evaluate the performance of
AOD-RL. The ground state space S consists of RGB images
of size (160, 160, 3) (600 Kb per frame). The action space A
is of size 9, including movements in four directions, fire in
four directions and also standby. The reward R(st, at) is 1 if
an enemy is destroyed; otherwise, it is set to be −0.01.

AOD-RL uses the grid abstraction φ(s) described in III-A
with L = 10, K in algorithm 1 is set to be 20. As a result, each
abstracted state uses 2, 000 bytes. Compared to the original
image, the abstracted state s is only 0.3% the size of s ∈ S.
We use the same convolutional neural networks (CNN) as the
Q-function approximator for all cases, with 4 layers of 64
filters and 1 dense layer of 128 filters. In AOD-RL, the length
of bounding boxes randomly ranges in [20, 40] and then resize
to 20×20×3. The autoencoder encodes 300 boxes to 7×7×3
by a 3-layer CNN. The k-means are executed in R147. γ is
set to be 0.9 and learning rate is 10−4 along with the Adam
optimizer. The number of trajectories T in Algorithm 1 is
2, 000, and the average number of steps is about 500.

We provide a video demo of the AI player at the link1.

B. Evaluations

We consider the following aspects of the proposed methods.
Validation. We compare it with the original image-input

version Q learning, which is denoted as IMAGE. We also
compare the AOD-RL with the image autoencoder method
[9] and denote the latter as IMAGE-AE. To validate the
correctness of AOD-RL, we evaluate the distance between
Q
∗
(φ(s), a) and Q∗(s, a). We treat the optimal model (OPT)

as the one based on ground truth coordinates information
from game memory. We examine the performance of AOD-
RL, IMAGE and IMAGE-AE in the environment and record
the average reward divided by the value of OPT. Denoting
the original environment as Origin, we also introduce the
following challenges to examine the robustness.

Robustness. In complex games, many factors may interfere
with RL agents, for example, visual effect and environmental

1Watch AOD-RL playing Battle City at https://youtu.be/yTJImqxO7Z0.

(a) Original environment (b) Interference & blur

(c) Detected objects and relevance score

Fig. 2: (a) the original environment; (b) interference and blur,
(c) clusters and their relevance scores. Gray bars indicate
irrelevant objects. AOD-RL filters out 9 classes out of 20.

objects. We add foreign objects on time-varying positions
of the map, and the levels of interference are named as
Interference-n, where n represents the number of interfering
objects. We also add Gaussian blur to the environment to test
robustness, and different degree of blur is named Blur-n, where
n represents the kernel size of Gaussian blur.

C. Results

We conduct experiments on 8 different game maps and
report the results. Each map corresponds to a different MDP,
and we artificially generate four associated environments with
disturbances, namely, Interference-3, Interference-10 (e.g., see
two of the top in Fig. 2 (b)), Blur-2 and Blur-3 (e.g., see two
of the bottom in Fig. 2 (b)).

The k-means in Algorithm 1 is executed when 5, 000 new
(s, a) are collected, and Algorithm 2 is applied in the first 10
iterations. In Fig. 2 (c), we exhibit some objects that the agent
recognizes. On the right side of each class, we use a bar plot
to show their relevance score, and objects with gray bar are
considered to be irrelevant according to the t-test rule.

https://youtu.be/yTJImqxO7Z0

TABLE I: Average final reward for 4 candidate methods, divided by the reward of OPT.

Origin Interference-3 Interference-10 Blur-2 Blur-3

case IM AE AOD IM AE AOD IM AE AOD IM AE AOD IM AE AOD
1 .68 .76 .94 .68 .70 .78 .69 .61 .67 .70 .82 .96 .73 .78 .87
2 .74 .78 .97 .71 .67 .84 .65 .62 .74 .64 .76 .90 .69 .74 .86
3 .68 .65 .87 .62 .63 .76 .62 .53 .72 .66 .58 .69 .62 .70 .85
4 .70 .64 .88 .73 .66 .73 .67 .66 .77 .70 .66 .67 .64 .68 .71
5 .69 .87 .88 .69 .68 .77 .50 .43 .81 .85 .79 .81 .86 .60 .83
6 .90 .87 .96 .72 .68 .90 .73 .72 .86 .88 .80 .99 .89 .90 .93
7 .77 .64 .88 .71 .58 .83 .69 .55 .66 .79 .64 .85 .85 .62 .83
8 .82 .74 .96 .78 .71 .91 .82 .71 .85 .82 .69 .96 .95 .72 .94

(a) Origin (b) Interference-3 (c) Interference-10 (d) Blur-2 (e) Blur-3

Fig. 3: Smoothed training curves in case 1 of the 4 models.

Table I shows the smoothed reward curves of each experi-
ment. Fig. 3 shows the accumulated reward as a function of
training epochs in case 1.

We draw the following empirical conclusions. In the Origin
environment, AOD-RL behaves as well as OPT from the
perspective of training speed and final score (see Fig. 3
(a)). When there is interference, the performance of all three
methods has declined. Under moderate disturbance conditions,
AOD-RL is significantly better than the other two (see Fig. 3
(b)). In blurred environments, AOD-RL is close to OPT in Fig.
3 (d) and the performance becomes worse in Fig. 3 (e) but it
is still better than the other two.

From Table I, AOD-RL performs the best in most cases,
and the average final reward of AOD-RL reaches 84% of
OPT, while IMAGE is 73.2% and IMAGE-AE is 68.9%. These
numbers show that AOD-RL can still achieve a good level of
performance in the presence of interference and blurring.

V. CONCLUSIONS

Human-designed and rule-based state abstractions are
widely used in games [10]–[12]. These methods have empir-
ically proven to be useful, but often require the involvement
of human experts. Our method is reward-driven and does not
require the participation of human experts.

The game AI trained by our method is more robust and
has anti-interference characteristics. For better user experience,
modern games use numerous decorative items and visual
effects, which increases the difficulty of AI players. Our
approach provides a robust solution for this circumstance.

In complex games such as StarCraft [13], object coordinates
are necessary for AI. This requires additional development
costs and may lead to security issues when AI is accessing
game memory. Our method provides a safe and lightweight
way to teach AI to obtain coordinates automatically.

REFERENCES

[1] A. M. Treisman and G. Gelade, “A feature-integration theory of atten-
tion,” Cognitive Psychology, vol. 12, no. 1, pp. 97–136, 1980.

[2] M. I. Posner and Y. Cohen, “Components of visual orienting,” Attention
and Performance, X, Hillsdale, 1984.

[3] J. P. Gottlieb, M. Kusunoki, and M. E. Goldberg, “The representation of
visual salience in monkey parietal cortex.” Nature, vol. 391, no. 6666,
pp. 481–484, 1998.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[5] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski,
“Vizdoom: A doom-based ai research platform for visual reinforcement
learning,” in 2016 IEEE Conference on Computational Intelligence and
Games (CIG). IEEE, 2016, pp. 1–8.

[6] G. Lample and D. S. Chaplot, “Playing fps games with deep re-
inforcement learning,” in Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 580–587.

[8] H. Sethy, A. Patel, and V. Padmanabhan, “Real time strategy games: a
reinforcement learning approach,” Procedia Computer Science, vol. 54,
pp. 257–264, 2015.

[9] S. Lange, M. Riedmiller, and A. Voigtlander, “Autonomous reinforce-
ment learning on raw visual input data in a real world application,” in
The 2012 International Joint Conference on Neural Networks, 2012.

[10] N. Jiang, A. Kulesza, and S. Singh, “Abstraction selection in model-
based reinforcement learning,” in International Conference on Machine
Learning, 2015, pp. 179–188.

[11] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electronic Imaging, vol.
2017, no. 19, pp. 70–76, 2017.

[12] R. Iyer, Y. Li, H. Li, M. Lewis, R. Sundar, and K. Sycara, “Transparency
and explanation in deep reinforcement learning neural networks,” 2018.

[13] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser et al.,
“Starcraft ii: A new challenge for reinforcement learning,” arXiv preprint
arXiv:1708.04782, 2017.

