
Macro and Micro Reinforcement Learning for
Playing Nine-ball Pool

1st Yu Chen
Guanghua School of Management

Peking University
Beijing, China

yu.chen@pku.edu.cn

2nd Yujun Li
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

liyujun145@gmail.com

Abstract—We present a method of training a reinforcement
learning agent to play nine-ball pool. The training process uses
a combination of reinforcement learning, deep neural networks
and search trees. These technologies have achieved tremendous
results in discrete strategy board games, and we extend their
applications to pool games, which is a complicated continuous
case. Pool types of games have a huge action space, to improve
the efficiency of exploration, we use a macro and micro action
framework to combine reinforcement learning and the search
tree. The agent learns skills such as choosing pockets and control
the post-collision position. Our method shows the potential to
solve billiards planning problems through AI.

Index Terms—reinforcement learning, nine-ball pool, Monte
Carlo tree search

I. INTRODUCTION

Various games provide rich simplified testbeds for rein-
forcement learning (RL) algorithms [1]–[3]. Moreover, RL
can discover new and creative ways of playing games [4],
[5]. The research on the two mutually beneficial fields has a
long history [6], [7], and a lot of breakthroughs have recently
emerged due to the development of deep neural networks.

Among the RL applications in games, there are three main
categories, namely board games, video games, and physics
based games. In this work, we apply reinforcement learning
to the billiards game. Billiards game contains a variety of
physical movements, including sliding, rolling and collision
processes. At the same time, it also requires global planning
like board games; for example, the player is required to control
the cue ball position for the next shot.

A. Nine-ball

Nine-ball is the predominant professional game in the World
Pool-Billiard Association. It is played on a billiard table of ten
balls, with one cue ball and nine colored balls labeled from
1 to 9, respectively. The objective is to pocket the balls in
ascending order, from 1 until 9, and the player that pockets
the last ball wins the match. Therefore, players need to pocket
target balls successively until the final ball.

B. The Challenge

As we mentioned above, cue sports require precise physical
skills as well as global planning. Classic games, such as Go,

Chess and Texas Hold’em, put more emphasis on planning.
Billiards are similar; players need to decide what to do, for
example, what is the best pocket to put the target ball in.
To accomplish the goal, players also need to make decisions
such as the speed, angle and spinning methods (Changing the
collision point to rotate the ball).

Games such as Go and chess have detailed human replay
data, while for billiards the data is insufficient. It is unfeasible
to perform supervised learning by imitating human players.
Besides, accuracy is especially crucial in nine-ball. For exam-
ple, the aiming angle takes a value between 0 and 360 degrees,
but 0.3-degree error may lead to a failure shot.

C. Related Work

There are several AI eight-ball players [8]–[11]. They use
a Monte Carlo search for shots generation and use domain
knowledge to improve performance. Nine-ball is professional
pool game and is generally accepted to be more difficult than
eight-ball, where the latter significantly reduces the require-
ments of planning.

We follow the reinforcement learning framework in Al-
phaGo [4]. Regarding the characteristics of billiards, a macro
and micro action structure is used to speed up training.

II. THE LEARNING ENVIRONMENT

We trained the artificial nine-ball player in a simulated
environment based on the work of [12], which uses explicit
physical models for the balls, cue, table and their interactions.
The methodology was also used as the physics model in
the Computational Pool Tournament of the 10th Computer
Olympiad.

State We use a three-dimensional coordinate (x, y, z) to
represent a ball’s position in the environment. (x, y) are the
position on the table, and z is the height from the ground,
which indicates whether the ball has been pocketed. State
s consists of coordinates of the ten balls. s can be indexed
by a sequence of discrete time points t = 0, 1, 2, · · · , where
s0 represents the initial state before the break shot, and st
represents the state before t-th shot.

Action Space We follow previous studies in robotic
billiard, for example, [8], [10], [12] and use five continuous

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

parameters for an action. The first three parameters represent
the movement of the cue stick, namely,
• ψ, cue stick horizontal angular, i.e. the aiming direction.
• φ, cue stick vertical angular, i.e. the elevation of the cue.
• v, initial speed of the stick.
Hitting the cue ball at an off-center point will cause the ball

to spin, which is an important skill. The related parameters
include,
• w, the horizontal offset from the center.
• h, the vertical offset from the center.
Rewards According to the nine-ball rule, winning occurs

when a player pockets the final ball without committing a foul.
Hence, rt = 1 if the final ball is pocketed, rt = 0 if the other
balls are pocketed. If the agent fails to pocket the target ball,
rt = −1. In this work, the agent is trained to maximize the
winning probability.

III. MACRO AND MICRO ACTION REINFORCEMENT
LEARNING

As mentioned previously, nine-ball requires both precise
shooting and global planning. In this section, we demonstrate
a novel method to train a nine-ball player1.

A. Macro and Micro Actions

With the help of cushions, we have many ways to pocket
the target ball (see Fig. 5 for example). If we link the path
of which the cue ball moves to the target ball, and the path
of which the target ball to its pocket, we will get a polyline
called aiming path. Some example aiming paths are presented
in the second and third row of Fig. 2.

According to the characteristics of billiards, scholars use
a two-step action framework for billiards AI in the literature
[9], [10]. We divide the action parameters into macro actions
At and micro actions at respectively. Our contribution is
to introduce reinforcement learning into this framework to
improve global planning.

The macro action is the choice of aiming path, i.e., the
shooting angle ψ. For each st, let Ω(st) be the set of
candidates ψ. Ω(st) includes different shooting options, such
as different pockets, whether to use cushions.

To adjust the post-collision position of the cue ball, we need
micro actions to “fine tune” how we shoot. The micro action
is (∆ψ, v, θ, w, h), where ∆ψ is the adjustment added to ψ in
the macro action. The micro action determines how to shoot,
for example how far the cue ball can go and whether the cue
ball will follow or draw.

B. Actor and Critic Functions

A Q-function Q(st, At) is used for macro value estimation,
where At is the macro action from Ω(st). We use a policy
function π(st, At) to produce at. π(st, At) is as function of
At, because the micro action needs to adjust according to
macro action, for example for those At with long aiming path,
a larger speed is needed consequently.

1See a video demo at https://youtu.be/icHWGVhCTKs

TABLE I: Input features for Q(st, At) and π(st, At).

FEATURE # description

POSITION 6 Cue ball, target ball, next three target
balls and all balls

AIMING PATH 2 Aiming path for At; paths from final
ball to each pocket

TABLE 2 Contour of cushions and pockets

Fig. 1: Feature plane samples in nine-ball for the rendered
position maps and aiming paths.

The environment provides the coordinates as well as the ren-
dered image for state representations. We used 10 images, each
representing different information of the game, for example,
the cue ball position and the target ball position. All images are
resized to 62×125 for the convenience of calculation. Feature
details are listed in Table I and see Fig. 1 for a comprehensive
understanding. We choose the image representation because it
can better capture relative position information.
Q and π share a common CNN, which is designed as

follows,
• two layers of 64 kernels with size 7× 7 and stride 3
• two layers of 128 kernels with size 5× 5 and stride 1
• two layers of 256 kernels with size 3× 3 and stride 1
• a dense layer of 512 kernels

C. Use Tree Search to Train and Inference

Similar to Chess and Go games, we conduct planning
for nine-ball by a search tree which inherits the framework
of [4]. There are two types of nodes in the search tree,
namely common nodes and sub-nodes. A common node
represents a real state of the game, while a sub-node stands
for an imaginary aiming plan, which is a pair of state and
macro action. Each common node st contains |Ω(st)| sub-
nodes (st, At), corresponding to different aiming paths. For
every sub-node, the visit count N(st, At) is recorded, and
a micro action is proposed by the actor function π(st, At)
with an added Gaussian disturbance, which is referred to as
ω(st, At) = π(st, At) + ε. Each sub-node connects to its
children states st+1 by a sequence of exploring micro actions
based on ω(st, At). The value of node st is the maximum of
its sub-node children, i.e, maxAQ(st, A), and the value of a
sub-node (st, A) is the maximum of value of next state st+1.
See Fig. 2 for a graphical presentation for the procedure.

Tree select policies During the tree search procedure,
the macro action is selected by an upper confidence bounds
(UCB) method, and the micro action is by a renewal exploring

https://youtu.be/icHWGVhCTKs

Fig. 2: The tree search procedure for nine-ball. For each node
st, a macro action is selected first and then followed by a micro
action based on π(s,A) and the exploratory set ω(s,A). The
value of each state is evaluated by Q(s,A).

method, which is discussed later. For a given state st, select
At that maximize αQ(st, At) + (1 − α)U(st, At) where the
first part is used to drive the algorithm to exploit by estimated
values, and the second is for macro actions exploration.
U(st, At) is defined as

√∑
AN(st, A)/N(st, At), represent-

ing compensation for sub-nodes that have not been explored,
i.e., drive the algorithm to explore the less visited nodes.

Renewal Exploring Method We develop a novel mecha-
nism to determine the number of exploring trials for tree search
with continuous policy, which is described in Algorithm 1.

Algorithm 1 Renewal Exploration Algorithm

Input: st, π(s,A) and Q(s,A).
Initialize Q∗ = −1, l = l∗ = 0.
while True do

l← l + 1
Select At according to the UCB like method, evaluate

π(st, At), and set at = π(st, At)+δ, where δ is a Gaussian
disturbance

Get s′t+1 from the environment and set Q =
arg maxAQ(s′t+1, A)

if Q−Q∗ > 2× SD({Qi | l∗ < i ≤ l})/
√
l − l∗ then

Q∗ ← Q, l∗ ← l
else if l − l∗ > MAXSTEPS then

break

The algorithm is inspired by the renewal process, and it
includes two mechanisms, namely stopping and refreshing. If
the algorithm cannot explore better results for a long time, the
process will stop. Otherwise, the whole process is refreshed
when reaching a significantly better result according to the
t-test of Q values.

Self-playing policies The search tree stops when the
renewal exploration algorithm stops, and then the agent selects
an action and sends it to the simulator. The macro action At

is chosen by maximizing Q(st, At), and at is selected by
maximizing maxAt+1∈Ω(st+1)Q(st+1, At+1), where st+1 is

the simulated result of acting (At, at), i.e., the micro action is
chosen among the sub-node (st, At)’s children, by maximizing
the t+ 1 state value.

Parameters update From t = 0 (the break shot) to T
(misses, commits a foul, or pockets the final ball), the agent
collects rt from the simulator, and updates Q(st, At) from
the environmental feedback. The total loss consists of two
parts, ltotal = (lA + la)/2, where the loss for macro action lA
is (Q(st, At) − (rt + γmaxat,At+1

Q(st+1, At+1))2, and the
micro action loss la is ‖π(st, At)−at‖22, i.e., micro actions are
updated by supervised learning of the best tree search trials.
We use the Adam algorithm [13] to update all parameters.

Training details The hyper parameters in the search
process are set as follows, γ and α is set to be 0.95, the
max steps in Algorithm 1 is set to be 200, the learning rate
is 1 × 10−4, the batch size is 32 and parameters of Adam
algorithm is (0.9, 0.999, 1× 10−8).

The training process is distributed on 16 CPUs and 2 GPUs.
The billiards simulator on CPUs continuously send its state
to the search tree, and the search tree will propose an action
based on current network parameters and previous simulations.
One GPU is used to update the parameters based on the new
simulated data periodically, and the other one synchronizes
with it and provides Q and π for the search tree. The whole
system simulates 80,000 nine-ball games each day.

IV. EMPIRICAL ANALYSIS AND PERFORMANCE

Networks training results We record the curve of the loss
function over time. A simulated data queue is maintained,
the network takes the latest 200,000 (st, At, at, Rt) tuples
from the queue every hour to update the parameters, perform
parameter updates, and records the corresponding losses. The
losses curve are reported in Fig. 3. The Q(s,A) contributes the
most of the total loss. The training curve begins to converge
after 30 hours.

AI Player’s behavior Next, we analyze the behavior of
the artificial player. The player executes 6,000 shots with the
latest model. We present several statistics in Fig. 4 and an
example replay in Fig. 5.

Comparison with the MCTS Since there are no publicly
available nine-ball AI players, we choose the pure MCTS
player as a comparison. The MCTS player does not have a

Fig. 3: The subgraph on the left shows the curve of ltotal and
the right one shows its components.

Fig. 4: Distribution of the macro and micro actions of the
AI player. They are pocket id, ∆ψ, v, hit point offset (w, h),
distance to target ball and the heat map of cue ball.

Q or π function, and it uses basic physics and Monte Carlo
search trees to make actions.

Both players try to run out after random break shots in
the simulation environment. We count the agent’s maximum
number of consecutive shots; if the number is 1, this means
that the player successfully pockets ball 1, but fails on ball
2. If the final ball were pocketed, the game would be labeled
“run out”. Each player plays 5,000 games, and the results are
shown in Fig. 6.

Regarding run out probability, the proposed method based
on reinforcement learning is 40.6%, which is 48% relatively
higher than pure search tree methods. This is because planning
is essential to perform a run-out in nine goals. In our method,
Q(s,A) and π(s,A) can guide the AI player to place the
cue ball in a better position, and consequently increase the
probability of consecutive shots.

V. CONCLUSIONS AND FUTURE WORK

We use reinforcement learning techniques with deep neural
networks and MCTS to train an AI nine-ball pool player. We

Fig. 5: A sample of game path {st, at} in an episode. The cue
ball is shown in gray, and the polyline represents the aiming
line and future trace of cue ball. In this episode, the learning
agent successfully pockets all the nine balls.

Fig. 6: Maximum continuous shots distribution for the pro-
posed player and the MCTS player. Regarding run out prob-
ability, the proposed method is relatively 48% better.

introduce RL into the macro and micro action framework for
global planning. The AI player finally learns to play nine-ball
with 40.6% probability to run out in a trial.

Our method can also be applied in other games with
continuous action space, such as golf and soccer games.
Similarly, in shooting games, the choice of target enemies can
be determined by the macro action strategy, and micro actions
can control the way of shooting.

The goal of our AI is to maximize the probability of winning
directly. However, professional players have more sophisti-
cated strategies. For example, one can choose to increase the
likelihood of opponent fouls. This strategy may make billiards
AI closer to human masters.

REFERENCES

[1] Y. Naddaf, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning
environment: an evaluation platform for general agents,” Journal of
Artificial Intelligence Research, vol. 47, no. 1, pp. 253–279, 2013.

[2] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Ja?kowski,
“Vizdoom: A doom-based ai research platform for visual reinforcement
learning,” in Computational Intelligence and Games, 2017, pp. 1–8.

[3] Y. Tian, Q. Gong, W. Shang, Y. Wu, and C. L. Zitnick, “Elf: An ex-
tensive, lightweight and flexible research platform for real-time strategy
games,” 2017.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D.
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and
M. Lanctot, “Mastering the game of go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

[5] M. Moracı́k, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard,
T. Davis, K. Waugh, M. Johanson, and M. Bowling, “Deepstack: Expert-
level artificial intelligence in heads-up no-limit poker,” Science, vol. 356,
no. 6337, p. 508, 2017.

[6] Leslie and S. David, “Reinforcement learning in games,” Ph.D. disser-
tation, University of Bristol, 2004.

[7] I. Szita, Reinforcement Learning in Games. Springer Berlin Heidelberg,
2012.

[8] J.-P. Dussault and J.-F. Landry, “Optimization of a billiard player:
tactical play,” annual conference on computers, pp. 256–270, 2006.

[9] M. Smith, “Pickpocket: A computer billiards shark,” Artificial Intelli-
gence, vol. 171, no. 16, pp. 1069–1091, 2007.

[10] C. Archibald, A. Altman, and Y. Shoham, “Analysis of a winning
computational billiards player,” in IJCAI’09 Proceedings of the 21st
international jont conference on Artifical intelligence, 2009, pp. 1377–
1382.

[11] D. Silva and P. Rui, “Minipool: Real-time artificial player for an 8-ball
video game,” 2017.

[12] W. Leckie and M. A. Greenspan, “An event-based pool physics simula-
tor,” advances in computer games, pp. 247–262, 2006.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Computer Science, 2014.

