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Abstract—AI agents within video games are often required to
compete within an environment shared by many other agents.
This problem can be tackled by multi-agent reinforcement
learning (MARL). One solution to MARL is to learn a Nash
Equilibrium Strategy (NES) that guarantees a known minimum
payoff when playing against other rational agents. We focus on
one approach for learning a NES, Win or Learn Fast (WoLF),
WoLF has been shown to converge towards a NES in a variety of
matrix-games and grid based games. Research into Deep MARL
has focused on performance against opponent agents and with
limited quantitative results regarding learning a NES. We present
a systematic empirical investigation into the ability of Proximal
Policy Optimisation (PPO) to learn a NES, showing instability in
certain matrix games. We then present an extension, WoLF-PPO,
that is able to learn a policy that is closer to the NES.

Index Terms—Artificial intelligence, Artificial neural networks,
Multi-agent systems

I. INTRODUCTION

In multi-agent environments the learning problem is non-
stationary due to the fact that the other agents’ policies are
changing over time. Guarantees provided by single agent
reinforcement learning rely on the problem being framed
as a Markov Decision Process (MDP), but in the case of
playing against learning opponents the problem becomes non-
stationary and these guarantees are lost. Having a guarantee
of convergence to a Nash Equilibrium Strategy (NES) would
be very desirable as it allows us to learn a stationary policy
that has a known lower bound payoff when dealing with
rational agents. Win or Learn Fast (WoLF) attempts to provide
guarantees in these situations [1] by varying the learning rate
of the agent based on the performance in comparison to an
estimated NES. It provides guarantees of converging to a NES
in theory, and has been shown empirically to get closer to
a NES than a fixed learning rate agent. In this paper we
present an initial study into the ability of the popular Deep-
RL approach Proximal Policy Optimisation (PPO), to learn
the NES in a set of traditional game theory matrix-games. We
then present an extension to PPO called WoLF-PPO, that is
designed to learn policies closer to the NES. We observe that
PPO can learn policies close to the NES when it happens to be
the max-entropy policy. We also show that WoLF-PPO is able
to learn policies closer to the NES than PPO irrespective of
whether the NES is the max-entropy policy, as well as being
more robust to high learning rates.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

Katja Hofmann
Microsoft Research Cambridge
Microsoft
Cambridge, England
Katja.Hofmann @Microsoft.com

Sam Devlin
Microsoft Research Cambridge
Microsoft
Cambridge, England
Sam.Devlin @Microsoft.com

II. BACKGROUND
A. Matrix Games

In this work we focus on Matrix games as they are
the simplest form of game that allow us to compare the
convergence properties of learning approaches to the NES.
Matrix games are defined by a payoff matrix where the
players of the game simultaneously pick actions and their
respective payoffs are dependent on the actions of all players
[2]. There are two forms of matrix games, zero-sum games
and general-sum games. We focus on Zero-sum games that
are strictly competitive, where if one of the agents receives
a positive reward then the opposing agent receives an equal
negative reward. When considering solution concepts for this
framework, two are most common: the best response strategy
and the NES [3]. The best response strategy is the optimal
strategy against the joint actions of all the other agents. In the
case of playing against a set of stationary opponents there
will exist a deterministic best response strategy. The NES
states that all agents should be playing a best response against
the joint actions of all its respective opponents. This results
in a stable equilibrium point where no player can gain an
advantage by changing strategy. This means that the NES is
not an optimal strategy against all agents, however it does
provide stability by preventing the agent from being exploited
by another strategy. NES have been proven to exist in all zero-
sum games (contain a unique Nash equilibrium) and all general
sum games, making it a very desirable strategy to be able to
learn.

B. Properties of Multi-Agent systems

Two main properties have been identified as desirable for
any multi-agent learning systems. The first of these properties
is rationality, “If the other players’ policies converge to
stationary policies then the learning algorithm will converge
to a policy that is a best-response to the other players’
policies” [1]. The second property is convergence defined as,
“The learner will necessarily converge to a stationary policy.
This property will usually be conditioned on the other agents
using an algorithm from some class of learning algorithms”
[1]. Most literature focuses on obtaining these properties in
self play, however some work has been empirically shown to
converge with a small subset of learning agents beyond self
play [1]. If two agents are both rational and convergent then
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Fig. 1: WoLF-PPO and PPO matching pennies results, P(Head) is the probability of picking head throughout training. Averaged
over 50 runs by the solid lines. Dashed lines show single representative runs.

they will both converge to a stationary best response strategy
against each other resulting in having converged to a NES.

C. Win or Learn Fast (WoLF)

Win or Learn Fast (WoLF) is an extension to Infinitesimal
Gradient Ascent (IGA), where the step size of the learning
agent is reaching an infinitesimal step size (limy,_o) [4].
WOLF gives a stronger notion of convergence to a NES by
introducing separate learning rates for when the agent is
winning and when it is losing, referred to as aywrny and
arosg where awrny < arposg. The agent is judged to
be winning if their current expected payoff is better than
playing the Nash equilibrium. This change has the effect of
the winning agent learning slower and being more “cautious”
about updating its strategy until the other agent has learned
to counter the new strategy. Although the proofs for this
method do require knowing detailed information about the
environment and opponent, a practical algorithm has been
presented [1]. This method is based on Policy Hill Climbing
(PHC) and is referred to as WoLF-PHC. WoLF-PHC uses an
estimation of the NES. It achieves this by tracking the average
policy over training. By learning Q values during training the
agent can then compare the performance of the current policy
to the current average policy. This gives the ability to select a
larger or smaller learning rate based on the performance of the
current policy compared to the estimated NES, where a7y
is the learning rate used when the current policy is doing better
than the current estimated NES strategy and arosg is used
when the current policy is doing worse than the estimated
NES. WoLF-PHC is shown to have good results in a variety of
matrix games and a gridworld based soccer game, achieving
convergence to policies much closer to the NES than PHC
without varying the learning rate.

D. Proximal Policy Optimisation (PPO)

Proximal Policy Optimisation (PPO) is a policy based
gradient method for deep reinforcement learning. It is a current
state of the art deep reinforcement learning algorithm that has

shown good results on Atari games, MuJoCo control tasks
[5] and DoTA 2 [6]. PPO is based on the ideas introduced

with Trust Region Policy Optimisation (TRPO) [7], that limit
the update of the policy to a “Trust Region” defined by the
distance from the old policy by a given KL divergence between
the two. PPO introduces clipped probability ratios that can be
used as a lower bound estimate of the policy performance. This
means that PPO only requires first-order optimisation, making
PPO easier to implement and support noisy architectures and
parameter sharing. Critically for this paper, we emphasise that
PPO has a term in its objective function that rewards higher
entropy strategies. This is to prevent the agent from learning
an overly deterministic policy early in training promoting
exploration. PPO also introduces multiple update steps for
each iteration of experience, this is made possible because
of the clipped probability ratios.

E. Multiagent Policy Gradient Methods

There has been work attempting to use deep policy gradient
methods in a multi-agent setting. Little work has been done
however to evaluate the ability of these systems to learn a NES,
instead focusing on performance against other approaches. The
work by Lowe et al [8] focuses on performance of actor-critic
methods in a range of competitive and cooperative tasks. They
present a method that uses extra information at training time
with a centralised critic. They also present results for their
model when trained with policy ensembles, showing that it
improves training stability and agent robustness. However the
robustness of the agent is measured by testing the agent against
other pre-trained policies. This means that the lower bound for
performance is not known for these agents.

Bansal et al [9] evaluate PPO in a variety of complex
fully competitive multi-agent control tasks. They observe that
during training one agent would often learn to dominate the
opponent to the point where the opponent is unable to recover.
They introduce opponent sampling in order to give the agents
a form of curriculum learning. They also observe that the
agents’ final policies vary greatly from run to run with different
random seeds. No attempt is made in this work to evaluate the
distance from the NES.
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Fig. 2: WoLF-PPO and PPO rock paper scissors results, P(Rock) is the probability of picking rock throughout training,
P(Paper) is the probability of picking paper throughout training. Colour transitions from Light to Dark over training steps.

III. WIN OR LEARN FAST PROXIMAL POLICY
OPTIMISATION (WOLF-PPO)

When extending an approach to use WoLF, two properties
are required. Due to the fact that the NES can be stochastic,
the ability to learn stochastic policies is required. The other
property required is that the learning rate of the agent can be
varied over training. We chose to use PPO as the base agent as
it meets both requirements, along with achieving good results
in both single player environments and when training on large
sample sizes in complex multi-agent environments [6].

The objective function that is maximised during training for
PPO and our extension WoLF-PPO is shown in equation 1.

L{HPRVERS (0) = B [LEHT (0) =1 LY T (0)+c2S[ma) (s0)] (1)

c1 and cy are coefficients. S is the max entropy bonus,
LELIP s the clipped surrogate objective and L}T =
(Vo(st) — V/*"9)2 the squared error loss for learning a simple
state value mapping. The clipped surrogate objective LE1P
is a clipped version of the TRPO surrogate objective, that
was introduced because in TRPO this surrogate objective can
result in very large policy updates. By clipping the surrogate
objective PPO prevents the large policy updates by preventing
the surrogate loss from being too large in the beginning.

In order to extend PPO to WoLF-PPO, we make two main
changes inspired by the WoLF approach [1]. The first is to
keep track of the average payoff over training, this gives us an
estimation of the payoff that would be achieved when playing
the NES. This works well for the games presented but would
need to be extended for extensive form games.

The second change made is that we have two separate
learning rates a7y and arosg, these learning rates function
in the same way as the learning rates in WoLF-PHC, where
awrn is used when the current payoff is larger than the
estimated payoff from the estimated NES. For all of our
experiments we used a ratio of 4 between our winning and
losing learning rates where ayy = *£92E.

Finally, the network used for all experiments is a fully
connected feed forward neural network, with two hidden layers

of 20 neurons. In our experiments we used Stochastic Gradient
Descent (SGD) as we wanted to avoid interference from the
adapting of learning rates introduce by ADAM [10]. We have
however observed similar results when using ADAM as the
optimiser.

IV. EXPERIMENTS

For our empirical results we aimed to investigate the dif-
ference between PPO and WoLF-PPO. We have therefore
used the same experimental setup and environments from
the original WoLF paper, as these were also designed to
investigate the advantages of WoLF [1]. We also introduce
several weighted variants of the environments to investigate
the effect of the entropy term present in PPO’s objective
function. In table I we present quantitative results for the
distance from the NES that PPO and WoLF-PPO achieve in the
various environments. As the policies will be circling around
and through the NES we take the policy that had the furthest
distance from the NES in the last 10 policy updates for each
run and then average over all 50 runs.

A. Matching Pennies (MP)

Matching pennies is a two-player zero-sum game were both
players pick a side of a coin (heads or tails) these choices are
then revealed simultaneously with one player receiving a point
if they match and the other receiving a point if they differ. This
results in the NES being uniform random, if you pick the side
of the coin at random then you will win 50% of the games
irrespective of your opponent’s strategy. The payoff matrix for
the weighted variant is shown in Table Ila. This variant shifts
the NES away from uniform random to P(H) = 0.4.

Starting with PPO and WoLF-PPO on the standard weight-
ing of matching pennies we can see that both agents stay close
to the NES as shown in Fig 1a and Table 1. In this setting we
see that WoLF-PPO does get closer to the NES than PPO but
both agents learn strategies close to the NES with PPO within
0.056 and WoLF-PPO within 0.012.

When the learning rate is increased by an order of magni-
tude, as shown in Fig 1b, it is apparent that the distance from



TABLE I: Comparison of euclidean distance from NES across approaches, learning rates and games. Mean and Standard

Deviation over 50 runs, Max distance taken over last 10 policy updates.

arose = 0.1 arose = 0.01
Game PPO WoLF-PPO PPO WoLF-PPO
MP 0.558 = 0.093 0.078 +0.033 | 0.056 +0.035 0.012 + 0.007
Weighted MP 0.543 +0.150 0.066 +0.029 | 0.1134+0.051 0.085 + 0.041
RPS 0.476 +£0.114 0.078 £0.032 | 0.0424+0.021 0.013 £ 0.007
Weighted RPS | 0.436 +0.120 0.080 £0.040 | 0.124 £0.055 0.077 +0.010

the NES increases for both PPO and WoLF-PPO. However,
WOoLF-PPO stays much closer to the NES with PPO being
within 0.558 and WoLF-PPO being 0.078. We believe that
the relatively good performance of PPO in this environment is
due to the maximising of entropy in PPO’s objective function.
In games such as matching pennies the NES is to play uniform
random and thus max entropy. This results in this version of
matching pennies having its NES directly optimised by the
max entropy term in the objective function of both PPO and
WoLF-PPO.

TABLE II: Payoff matrices for the weighted matrix games.

(a) Matching Pennies (b) Rock Paper Scissors.

H T R P S
H| (2, —2) | (-1 R| (0,0) | (=1, 2)| (1,—2)
T (7171) (1771) P (2771) (070) (7171)
S (_271) (17_1) (070)

We demonstrate this phenomenon by using the weighted
variant of Matching Pennies to push the NES away from the
max entropy policy. In Fig 1c we can see that PPO now
diverges away from the NES, increasing from a distance of
0.056 to 0.113, with the distance being larger than when
dealing with non weighted matching pennies. We also see
that WoLF-PPO continues to outperform PPO by on average
learning a strategy within 0.085 of the NES.

B. Rock Paper Scissors (RPS)

Rock Paper Scissors (RPS) consists of three possible ac-
tions that form a cyclic winning pattern. This environment
is of interest because in many commercial video games (e.g.
StarCraft [11]) relative skill is non-transitive similar to this
cyclic dynamic demonstrated by RPS. We again use the
standard version of RPS and a weighted variant to move the
NES away from uniform random. The payoff matrix for the
weighted version can be found in Table IIb, giving a NES of
P(ROCK) =0.2 and P(PAPER) = 0.4.

In RPS we see very similar results to what we observed in
matching pennies. In Fig 2a we show a sample run of PPO
and WoLF-PPO. As shown, they both stay close to the NES.
However, as with standard matching pennies, the max entropy
strategy is the NES resulting in relatively good performance
from PPO. In Table I we can see that PPO was within 0.042
and WoLF-PPO was within 0.013 of the NES on average.
When increasing the learning rate by an order of magnitude
we end up with WoLF-PPO showing a greater advantage over
PPO as was the case with matching pennies, shown in Fig 2b.

We then ran PPO and WoLF-PPO on a weighted version
of RPS. In Fig 2c and Table I we show that in this environ-

ment WoLF-PPO stays closer to the NES than PPO. This is
consistent with the matching pennies results.We also observe
that WoLF-PPO does have a reduction in performance when
moving from standard to weighted matching pennies going
from a distance of 0.012 to 0.085, and rock paper scissors
going from 0.013 to 0.077. This is likely due to WoLF-PPO
still benefiting from the max entropy term when playing the
standard versions of these games, but being more robust to the
influence of this term than PPO when dealing with the NES
not on the max-entropy policy.

V. CONCLUSION

In this paper we present an initial study into the ability
of PPO to learn the NES in a set of traditional game theory
matrix-games. We then present an extension to PPO, WoLF-
PPO, that is designed to learn policies closer to the NES. We
demonstrate that PPO is able to learn policies close to the
NES when it is the max-entropy policy. We also shown that
WOoLF-PPO is able to learn a strategy closer to the NES than
PPO in a set of matrix games including games where the NES
is not the max-entropy policy.

We also observed that WoLF-PPO is more robust than PPO
when dealing with large learning rates. In the future we would
like to expand on this work and move to extensive form games.
We would then like to expand beyond what is possible with
tabular RL in order to demonstrate both the advantages of
WoLF and Deep RL by training on games with raw pixel
state representations.
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