
An Angry Birds Level Generator with Rube
Goldberg Machine Mechanisms

Febri Abdullah∗, Pujana Paliyawan∗†, Ruck Thawonmas∗, Tomohiro Harada∗, Fitra A. Bachtiar‡
∗Intelligent Computer Entertainment Laboratory, Ritsumeikan University, Japan

†Research Organization of Science and Technology, Ritsumeikan University, Japan
‡Faculty of Computer Science, Brawijaya University, Indonesia

ruck@is.ritsumei.ac.jp

Abstract—This study proposes a method for generating Angry
Birds-like game levels featuring a domino effect generated based
on Rube Goldberg Machine (RGM) mechanisms, which allow
them to be completed by one shot of a bird. The proposed method
generates a level by selecting predefined segments consisting of
several objects arranged in a way that creates a domino effect
among them. To increase the variability of generated levels, the
proposed method procedurally generates a varying structure
on the top of certain blocks in a predefined segment. Our
results show that the proposed RGM generator is comparable
to two existing generators, including the winner of the 2018
AIBIRDS Level Generation Competition, in terms of stability
while it outperforms both baseline generators with respect to
running time and an expressivity metric called “dynamic” which
is introduced in this work to measure the time period where
moving objects, including a shooting bird, reside in a given level.
In addition, from the perspective on the destructive power of
a shot, the proposed generator can generate levels featuring a
successful domino effect with a high probability, in particular
for levels with three to four segments.

Index Terms—Angry Birds, Rube Goldberg Machine, Proce-
dural Content Generation

I. INTRODUCTION

A Rube Goldberg machine (RGM) [1], [2] is a machine
that uses a chain reaction to accomplish a simple task in a
very complicated manner. The concept of this machine was
invented by Rube Goldberg, an American cartoonist often
referred to as the “father of invention [3]” for his idea of
a machine that once it starts, it is practically impossible
for those who watch it to peel themselves away from the
anticipation of what is coming next. Passing throughout almost
a century, this idea lives in pop culture; Rube Goldberg’s
name has become searchable, hash-taggable, and at best viral
[4]. Goldberg contraptions have flooded cultures around the
world in commercials, contests, movies, and TV shows [3].
Undoubtedly, the RGM is hilarious by its nature [4], and it is
fun to watch a good RGM [3].

With a goal to create gameplay that entertains not only
players but also spectators who watch it, we embraced RGM
ideas and applied them to level generation in “Angry Birds” or
the likes. Namely, we designed a method for generating levels
that feature a domino effect, allowing them to be completed by
one shot of a bird. This paper is an extension with more details
on implementation, of our entry to the Angry Birds Level

Generation Competition at CoG 2019, of our previous short
papers [5], [6] whose details are given in II-C; a process called
structure generation is introduced to increase the variability of
generated levels.

II. LITERATURE REVIEWS

A. Rube Goldberg machines in Academia

An RGM [2] is a machine intentionally designed to perform
a simple task in an indirect and over-complicated fashion.
Often, these machines consist of a series of simple devices
that are linked together to produce a domino effect, in which
each device triggers the next one, and the original goal is
achieved only after many steps. This concept is very popular,
and many RGM contests have been held, e.g., in early 1987,
Purdue University started the annual National Rube Goldberg
Machine Contest [7], organized by the Phi Chapter of Theta
Tau, a national engineering fraternity, and in 2009, the Epsilon
Chapter of Theta Tau established a similar annual contest [8]
at the University of California, Berkeley.

An idea of RGMs is widely adopted in education, par-
ticularly engineering education, and it is known for its ef-
fectiveness in motivating students. For example, Lei et al.
[9] described how an RGM project can be integrated to
an introductory electrical engineering course to trigger and
maintain students’ motivations. They described that RGM
has an innovative, humorous and unconventional nature, and
their project created a social environment that encourages
intellectual engagement1.

Acharya [10] applied RGM mechanisms in engineering
education. The main focus was given to engineering design
and microcontrollers in RGM mechanisms. The author claimed
that the Rube Goldberg project provided a unique engineering
design experience for students. Those students successfully
accomplished the task by strictly following the given guideline
and the recommended detailed engineering design and devel-
opment approach. All required work products were submitted
and presented within the deadline. Positive student feedback
was obtained during and after the learning experience.

O’Connor [11] applied RGMs to a course designed to teach
concepts of design and development of Web-based instruc-
tional materials. The author created a project named Rube-o-

1https://en.wikipedia.org/wiki/Typical intellectual engagement
978-1-7281-1884-0/19/$31.00 ©2019 IEEE

Rama for teaching K-12 students with the Rube Goldberg’s
concept. From the perspective of education outcomes, the
author claimed that the overall learning experience for all par-
ticipants was much richer than one would find in a traditional
classroom or a traditional room-to-room videoconferencing
setting for distance education.

There exist some video games mainly featuring RGMs, for
example, Rube Works: The Official Rube Goldberg Invention
Game that bridges the worlds of gaming and education.
However, to the best of our knowledge, there exists no work,
besides our work, that applies the concept of RGMs to game
level generation. Although the studies mentioned above were
not directly related to video games, we believe that they
together with our previous findings demonstrate the potential
of RGM mechanisms in entertaining people who watch RGM
contents.

B. Procedural Content Generation for Angry Birds

Procedural content generation (PCG) has increasingly
gained attention as a promising solution that can reduce the
cost of game development. Shaker et al. [12] described PCG as
computer software that can create game contents on its own, or
together with human players or designers. PCG techniques can
be used for generating contents such as game levels or stages.
Our work focuses on PCG for generating game levels on
“Science Birds”, a clone version of “Angry Birds” presented
by Ferreira and Toledo [13] that has been widely employed
for academic research.

“Science Birds” level generation is a popular theme of
research, and an annual competition on this topic has been
held by IEEE Conference on Games (CoG) since 2016 (then
IEEE Conference on Computational Intelligence and Games)
[14]. Ferreira and Toledo [13] proposed a level generator
based on a genetic algorithm (GA), whose main objective
is to minimize the total amount of object movement during
simulation to create levels which do not fall. Kaidan et al.
[15] modified the above GA-based generator such that it
automatically adjusts its parameters according to the player’s
gameplay results and hence adapts to the player’s skills.
Stephenson and Renz proposed methods [16]–[18] that can
create a wide variety of stable levels without the aid of pre-
defined level components. From the perspective of system
evaluation, these studies mainly focus on the stability and/or
playability of generated levels while effects on the player’s
emotions was not much considered.

Our group has been focusing on building game levels that
promote fun and relaxing gameplay. Jiang et al. [19] proposed
a pattern-struct approach that generates each time a different
appearance for an alphabetical letter; a level generator, called
Funny Quotes, was our first work focusing on fun and was the
winner of the Fun Track of the CIG2016 Angry Birds level
generation competition. Yang et al. [20] proposed two imple-
mentations for promoting mental well-being through smiling:
in the first implementation, the player must smile in order to
erase fog that hides some parts of the game stage, while in
the second implementation, a TNT (an in-game explosive) that

can be exploded by the player’s smile is introduced. Later on,
Yang et al. [21] found that proper placement of a TNT in
the game contributes to an increase in the interestingness of
generated gameplay, so they presented and compared several
techniques to optimize a TNT’s placement to promote the
spectator’s emotions. Xu et al. [22] presented mechanisms
for generating game levels in the form of pixel images and
promoting players to smile to enhance the explosive power of
a special bird; their system could not only increase the positive
affect but also decrease the negative one of the players.

C. Angry Birds with RGM levels

RGM-based level generation is a recently established project
in our group. This project is inspired by supporting evidence
from non-game-related studies that RGMs have strong poten-
tial in entertaining people who watch them [9]–[11]. Former
studies on PCG for Angry Birds did not emphasize evaluation
of generated levels in terms of player emotions [13], [15]–
[18]. On the other hand, previous studies targeting emotion
promotion by our group evaluated systems only in terms of
either playability or user evaluation. For example, Jiang et al.
[19] evaluated the playability of generated levels and showed
that levels with various difficulty (i.e., easy to hard) can be
created, but user evaluation was not conducted, while Yang et
al. [20], [21] and Xu et al. [22] focused on user evaluation,
but overlooked the playability aspect. On the contrary, in this
RGM project, we evaluate the effectiveness of RGM-based
level generation in terms of both user evaluation (effects on
the player’s affect [5] and the player’s working memory [6])
and playability (this paper).

For more details, our first work presenting RGM mecha-
nisms was evaluated in terms of the effects of on spectators’
emotions [5]. Two sets of gameplay videos were compared:
one consisting of only perfect shots and the other of only
imperfect shots, i.e., those that complete and those that do
not complete a level in one shot, respectively. A self-report
questionnaire called Positive and Negative Affect Schedule
(PANAS) [23] was used to assess emotions of the spectators.
The results showed that the set of perfect-shot videos leads
to higher positive affect and lower negative affect of the
spectators in the same series of generated RGM levels.

The second work [6] investigated whether and to which
degree watching live streaming of Angry Birds gameplay with
RGM levels could affect the spectator’s working memory
(WM). WM is measured using a task called the N-back
task [24]. The results showed a possibility that watching
Angry Birds featuring RGMs can increase the spectator’s WM
performance.

In both studies [5], [6], RGM levels were generated using
a predefined set of objects called segment, each constructed
by several types of primitive blocks, platforms (a type of
surfaced object, apart from the ground of the level, whose
gravity is not applicable and can not be destroyed), and TNTs
arranged manually beforehand to achieve the RGM effect.
Each segment has a specific object, called input object, that
must be destroyed to trigger the collapse of the segment

and make another specific object, called output object, move
in a particular direction to a specific destination. The next
segment is then chained using the information on the previous
segment’s output destination. This process is repeated until the
desired number of segments or the maximum boundary of a
level is reached. In theory, this mechanism allows a level to be
completed with just one shot of a bird by creating a domino
effect chained from the first to the last segment.

This study extends the RGM level generator from our
previous work [5] [6] by improving the variability of the
generated levels, which was said to be an important factor
for keeping the experience of players fresh [25]. To increase
the content variability, we propose a method that generates a
structure on each predefined segment. We define a structure
as a set of objects procedurally generated on a segment.

III. RGM LEVEL GENERATOR

This section describes how RGM levels are generated. The
first part of this section is about RGM segments as components
of an RGM level. The second part explains the algorithm
for level generation. The last part proposes the algorithm for
generating a structure in a segment.

A. RGM Segments

A new parameter called “base blocks” is added to specify
the block type, material type, and position of one or several
blocks upon which a structure is procedurally generated. We
apply a rule-based algorithm to generate not only a relatively
stable structure, but also a structure that lies outside the
perfect-shot projectile trajectory of the bird and does not reside
outside of the boundary of its segment.

To achieve a desired domino effect, we employ several
variables for each segment as follows:

1) Input direction: the direction of an incoming object (the
shot bird for the first segment or the output object from
the preceding segment) that will trigger the input object.
There are four types of direction: “left”, “right”, “down”,
and “up”.

2) Output direction: the direction of the output object’s
movement after it is triggered. It has four types of
direction similarly to the input direction.

3) Output destination: the x and y coordinates representing
the new position of the output object after it is triggered;
in other words, it indicates the position where the
output object will be moved to, which is the average
value among multiple simulations each with a different
structure, to trigger the input object of the subsequent
segment.

4) Segment size: the maximum width and height of the
segment box within which all its objects must reside
before the input object is triggered

5) Base blocks: a block or set of blocks – newly intro-
duced in this work – serving as the base for placing a
procedurally generated structure

Note that a segment may not have base blocks, but no structure
will be procedurally generated for this kind of segment.

Figure 1: An example of an RGM segment with the “left”
input and “right” output directions. A procedurally generated
structure added to the current predefined segment is shown
within the green rectangle. The segment’s size is shown by
the magenta rectangle. The input object (a TNT) is indicated
by the red circle. The blue circle shows the output object.
Several frames after the input object is destroyed, the output
object will be relocated at the output destination (red box).

B. Level Generation

An RGM level is procedurally generated as a combination
of segments containing various objects. As described earlier,
a segment has a specific object (input object) that needs to be
destroyed to trigger the RGM mechanism which eventually
results in the movement of another object (output object).
Based on this idea, we generate an RGM level by connecting
several segments to create a domino effect among them.
Algorithm 1 describes how an RGM level is generated.

Algorithm 1 Level Generation Algorithm

1: inputDir ← left
2: while c < count do
3: segment← SelectSegment(inputDir)
4: GenerateStructure(segment)
5: inputDir ← Opposite(segment.outputDir)
6: level.Add(segment)
7: c← c+ 1
8: end while
9: Refine(level)

The algorithm starts with setting the initial value of inputDir
to “left” (line 1). This is done because in this game typi-
cally a level places the slingshot at the left-most side. Our
algorithm will randomly select a predefined segment having
the input direction of inputDir from the set of predefined
segments and assign the selected segment to the segment
variable. The aforementioned segment selection is done by the
SelectSegment function (line 3) subject to the constraint that a
candidate segment does not overlap with the existing segments
in the level. Note that the position of a segment of interest is
determined by the output destination of the preceding one,
namely, a selected segment must be positioned such that its
input object’s position is the same as the output destination
of the preceding segment. To increase the variability of the

(a)

(b)

(c)

Figure 2: The top, middle, and bottom images are examples of
RGM levels with 3, 4, and 5 generated segments, respectively.

selected segment, the GenerateStructure function (line 4) will
generate a structure on it (more details of this algorithm are
given in the next subsection). Then the value of inputDir
will be updated. The algorithm will stop if the number of
segments reaches a desired value (cf. Fig. 2 for two RGM
levels with different numbers of segments). Finally, the Refine
function will adjust the segments’ position to prevent them
from overlapping with the level’s ground and ensure that they
are not too close to the slingshot.

C. Structure Generation

Here we introduce the structure generation process to im-
prove the segment variability of our previous RGM level

generator [5] [6]. A structure is automatically generated on
top of certain blocks in a segment. Algorithm 2 describes how
such a structure is generated.

Algorithm 2 Structure Generation Algorithm

minPos //minimum position for generating blocks
maxPos //maximum position for generating blocks

1: baseLayer ← segment.baseBlocks
2: while !IsOutOfBounds(structure) do
3: availLayers←

GenerateMerged(baseLayer,minPos,maxPos)
4: if availLayers.count ≤ 0 then
5: availLayers←

GenerateUnmerged(baseLayer,minPos,maxPos)
6: end if
7: selected← GetRandom(availLayers)
8: structure.Add(selected)
9: baseLayer ← selected

10: end while
11: DistributePigs(structure)
12: AddDecorations(structure)

A structure is generated as a set of several layers stacked on
top of each other. A layer consists of blocks of the same type,
among those shown in Fig. 3, but with any kinds of available
materials. The blocks in a layer are arranged symmetrically
according to its base layer, the layer below it. The algorithm
will stop if there is no space available for generating a new
layer (line 2). Some primitive blocks available in the game
are excluded in this process; more specifically, those that have
shapes hard to stack or sizes too small, and henceforth they
are called decorations (cf. Fig. 3). Figure 4 illustrates the
generation process of a four-layered structure.

When a base layer of interest has more than one block,
the GenerateMerged function (line 3) will try to merge them
into a number of groups, each consisting of two blocks. The
same function will search in the block database if there is any
block whose length is greater than the distance of the two
blocks for each group; if there exists multiple candidates, one
of them will be randomly selected for being placed on top

Figure 3: The primitive objects used as the components to
generate a structure.

(a) (b)

Figure 4: The left image illustrates a base segment. The right
image shows the same base segment with a generated four-
layered structure.

of the group. The function will be terminated if there is no
such block. We use this function because we want to avoid
the generated structure getting wider, which makes it more
unstable. An illustration is shown in Fig. 4b where the four
blocks in the 3rd layer are merged into two groups.

The GenerateUnmerged function (line 5) will undo the
grouping by the GenerateMerged function and place two
blocks on top of each block in the base layer. An illustration
is shown in Fig. 4b where two blocks are placed on top of the
2nd layer.

The DistributePigs function (line 11) will exhaustively
search for an empty space to place pigs on each generated
layer. An illustration of the DistributePigs function can be
seen from Fig. 5 where the pigs form the 5th layer.

As previously mentioned, we exclude decorations in the
process of generating layers because of their shapes and sizes.
They will serve as additional components to increase the
variety of a structure. The AddDecoration function will search
for any empty space left in the structure that can be used to
place some of decorations. Figure 5b shows two decorations
placed between the empty spaces left in the 3rd layer in
Fig. 5a.

(a) (b)

Figure 5: The left image shows the additional 5th layer of
pigs. The right one shows the same segment with generated
decorations in the 3rd layer.

IV. EXPERIMENT AND RESULTS

We evaluated generated levels by using four factors: stabil-
ity, running time, expressivity, and perfect-shot rate. We also
compared the stability, running time, and expressivity of our
generator with a baseline generator (Baseline), provided by
the AIBIRDS COG 2019 Level Generation Competition2, and
IratusAves (MSGv2.0), the winning generator of the AIBIRDS
2018 Level Generation Competition developed by Stephenson
and Renz3 [18]. We set the parameters of all the generators
as follows: 250 levels to generate, no forbidden block or
material, and the time limit to generate levels of 30 minutes.
For Baseline and IratusAves, the number of pigs is set from 3
to 10. We generated RGM levels using different numbers of
segments: 3, 4, and 5 segments (denoted as RGM 3, RGM 4,
and RGM 5, respectively), 250 levels each. In addition, Table
I shows the system specification used in our experiment.

Table I: System specification used our experiment.

System Operation Windows 10 Pro 64-bit (10.0, Build 17134)

Processor Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50Ghz

Memory 16384 MB RAM

Graphic Card NVIDIA Quadro K2000

A. Stability Analysis

The stability of a level was measured through a simulation
process where no shooting takes place. The simulation runs
for 10 seconds for each level and is started after there is no
detected movement in any pig, block, or TNT. We classify a
level as stable if there is no block, pig, or TNT being destroyed
due to the in-game gravity during simulation. The stability of
each generator is calculated as the percentage of stable levels
in all 250 generated levels.

The results of the stability evaluation are shown in Table II.
From this table, our RGM levels have high stability (> 90%)
for all the settings (RGM 3, RGM 4, and RGM 5). In ad-
dition, RGM 3 has the stability of 97.60% higher than that
of Baseline (95.60%) and nearly equal to that of IratusAves
(98.80%). Note that the stability of our RGM level decreases
as the number of segments increases because having an
unstable segment in a level always causes the level to be
unstable; the more segments the more chance a level will
become unstable.

B. Running Time Analysis

The running time factor is used to measure how fast a
generator generates a specific number of levels. We define
running time as the time required (in seconds) for a generator
to generate 250 levels. As shown in Table II, compared
to Baseline (81.12s) and IratusAves (2003.91s), our RGM
generator runs much faster for all the settings, i.e., 2.45s, 3.83s,
and 6.13s for RGM 3, RGM 4, and RGM 5, respectively.

2https://aibirds.org/Level-Generation/LevelGeneratorBaseline-2.0.zip
3https://github.com/stepmat/IratusAves

Table II: Stability and running time comparisons between
Baseline, IratusAves, RGM 3, RGM 4, and RGM 5.

Stability Running time

Baseline 95.60% 81.12s

IratusAves 98.80% 2003.91s

RGM 3 97.60% 2.45s

RGM 4 94.40% 3.83s

RGM 5 92.40% 6.13s

Due to the structure generation process on each segment,
the running time of the proposed generator increases as the
number of segments increases.

C. Expressivity Analysis

Expressivity metrics have been used to describe how the
generated contents are expressed in several aspects [13], [16]–
[18]. We use four existing expressivity metrics [16], [17],
i.e., frequency, linearity, density, and leniency, together with a
metric called “dynamic” newly introduced in this study. Below
are results for each of the five metrics in use.

1) Frequency: The frequency metric is used to express
block distribution in a generated level. For each of the 12
types (cf. blocks and decorations in Fig. 3), its block ratio is
calculated over all blocks on a level. The frequency of a block
or a decoration is defined as the mean value of the block ratios
for all 250 generated levels. Its value ranges from 0 to 1; 0
indicates that a block type of interest is not used on any levels,
and 1 indicates that all the levels only consist of it.

Fig. 6 shows the frequency of each block type for each
generator where the names of blocks are shown in Fig. 3.
Compared to IratusAves which frequently selected “b6” and
“b8”, our RGM generator rarely selected these types of blocks
and preferably selected bigger blocks such as “b1” and “b5”.
We also found that all the generators rarely selected “b10”,
“b11”, and “b12”. In our case, the proposed RGM generator
rarely selected “b8”, “b10”, “b11”, and “b12” because they
were excluded from the layer generation process of a segment
due to their shapes and sizes. However, “b9” has a high fre-
quency, even though it was classified as a decoration because

Table III: Expressivity comparisons (mean and standard devi-
ation) over 250 generated levels between Baseline, IratusAves,
RGM 3, RGM 4, and RGM 5.

Density Leniency Linearity

Baseline 24.21%± 5.14% 78.02± 21.34 0.07± 0.08

IratusAves 32.37%± 4.67% 94.28± 23.69 0.04± 0.05

RGM 3 13.19%± 3.56% 46.56± 12.94 0.30± 0.25

RGM 4 11.31%± 3.46% 62.30± 15.13 0.31± 0.24

RGM 5 10.53%± 3.26% 78.33± 16.53 0.30± 0.23

Figure 6: The frequency of each block type for each generator.

most of our predefined segments contain this type of block. In
addition, even though our proposed generator has a capability
of generating a varying structure on each segment, it still relies
on predefined segments, which makes the frequency of a block
type of interest roughly the same regardless of the number of
segments.

2) Density: The density metric expresses a level’s com-
pactness. A level having low density indicates that it has more
amount of empty space than other levels with a higher density.
We define density of a level as the percentage of the amount of
space occupied by all objects in the level’s whole space. Table
III shows that our RGM generator has lower mean density than
Baseline and IratusAves. This is because a generated segment
needs more empty space to ensure that its output object can
move in a clear path, which also explains why the density
value decreases as the number of segments increases.

3) Leniency: Leniency is used to express the difficulty of
a level. We define leniency using the numbers of pigs (p) and
blocks (b) as follows:

Leniency = 2p+ b (1)

As shown in Table III, our RGM generator shows less mean
leniency for all the settings compared to IratusAves. This is
because space provided in its predefined segments for placing
blocks, to form a structure, and pigs is more limited. However,
RGM 5 has a slightly higher value than Baseline. In addition,
the leniency value of the proposed RGM generator increases
as the number of segments increases since a level with a higher
number of segments has more pigs and blocks.

4) Linearity: Linearity expresses the variety of each gen-
erated content. Previous studies defined this metric in slightly
different ways. Ferreira and Toledo [13] defined linearity as
the average height of all the blocks that are generated in a
level and represented as columns. Stephenson and Renz [16]
defined linearity based on a level’s width and height. Another

study conducted by them [17], [18] measured linearity by
performing a linear regression which takes the positions of all
the generated blocks, platforms, and pigs (plus TNTs in the
latter work) as data points. We also use the linearity metric
discussed in the latter work of Stephenson and Renz [18]
where the resulting R2 value, obtained by applying a linear
regression analysis to the said data points, is used to express
the linearity. A low value of R2 indicates that a generated level
has low linearity or, in other words, all generated objects’
positions in the level do not form a straight line. From the
results in Table III, our RGM generator in all the settings has
a higher R2 mean value than both Baseline and IratusAves.
These results indicate that our generated RGM levels have
higher linearity due to a constraint imposed by the input and
output directions of the predefined segments.

5) Dynamic: Findings from one of our previous studies
[21] indicate that objects’ movement or the duration of the
movement caused by a TNT explosion plays an important
role in helping spectators lower their negative mood. However,
such an effect can not be directly expressed by the existing
four expressivity metrics. Hence, we propose a new one called
dynamic in the following.

We define dynamic of a level as the time duration (in
seconds) during the timing when a bird is shot and the timing
when moving objects are no longer detected in the level. We
consider all TNTs and pigs in a level as the shooting targets for
this measurement. And we run several simulations where the
targets are aimed one by one—by utilizing the bird’s starting
position, target position, and game’s gravity—and take the
maximum duration as the dynamic value.

The mean value of dynamic for all 250 generated levels
from each generator is shown in Table IV. It can be seen that
the generated RGM levels have a higher mean value than both
Baseline and IratusAves. This result is caused by the collapse
of each segment which triggers a domino effect among them.
It can also be noted that the dynamic value increases as the
number of segments increases because more segments will
collapse one after another resulting in extending the duration
of the whole level’s collapse.

Table IV: Dynamic comparisons (mean and standard devia-
tion) over 250 generated levels between Baseline, IratusAves,
RGM 3, RGM 4, and RGM 5.

Dynamic

Baseline 12.48s± 2.10s

IratusAves 12.20s± 2.44s

RGM 3 12.78s± 1.88s

RGM 4 13.46s± 2.06s

RGM 5 14.10s± 2.06s

D. Perfect-shot Evaluation

We define a perfect shot4 as a single shot that completes a
given level by destroying all the pigs therein. The idea behind
using this factor is to evaluate the performance of generated
RGM levels by featuring a domino effect among segments. We
evaluated the perfect-shot rate on 500 generated RGM levels
for each setting. For each level, we calculate the angle and
power of bird-shooting to always aim and shoot at the input
object of the first segment. A level is considered “perfect” if
it can be completed with just one shot of a bird; note that in
the experiment, the game always proceeded to the next level
regardless of whether or not the current level is completed
after the first shot.

Table V shows the perfect-shot rate result of each setting.
Although there is room for improvement, e.g., employing
a simulation process to ensure each generated level can be
completed with a perfect shot, we consider that our RGM
levels have a high perfect-shot rate on both RGM 3 (82.6%)
and RGM 4 (74.6%). Note that, as mentioned in III-A, since
the output destination for each segment is derived beforehand
from multiple samples (each with a different procedurally
generated structure in a given segment), there exists an error
in the actual position where the output object will be moved
to; this kind of error accumulates, and hence the perfect-shot
rate drops as the number of segment increases.

Table V: The perfect-shot rate of RGM levels in each setting.

Perfect-shot rate
RGM 3 82.8%
RGM 4 74.6%
RGM 5 68.6%

V. CONCLUSIONS AND FUTURE WORK

From the experimental results, our RGM levels have high
stability comparable to both existing generators although we
plan to increase the stability of each RGM level by employing
beforehand a simulation process to dismiss any unstable levels
or more accurate calculation to estimate the stability of each
generated structure. Our proposed generator performs much
faster in generating levels. In terms of the four existing
expressivity metrics, our proposed generator still has room for
improvements in the following.

First, from the frequency results, the proposed generator
tends to has the same block distribution regardless of the
number of segments employed. Second, from the density
perspective, as the number of segments increases, the density
value decreases because our proposed generator needs more
empty space to ensure the output object of a segment has
a clear path to destroy its subsequent segment. Third, the
leniency results show that our proposed method has a lower
mean value compared to the latest winning generator due to
having more limited space, for placing blocks and pigs, in
the predefined segments. Fourth, according to the linearity

4https://youtu.be/WBKsBG5s-o0

results, the RGM levels have higher linearity due to a limited
number of combinations of the input and output directions of
the predefined segments. For future improvements, we plan to
generate RGM levels without relying on predefined segments
because almost all unsatisfying results with respect to the
existing expressivity metrics apparently stemmed from the use
of predefined segments.

However, the results from our newly introduced dynamic
metric show that our generated RGM levels have a higher
mean value than both of the existing generators. These results
indicate that the domino effect featured in the proposed
generator has successfully extended the interval of having
moving objects in generated levels. For future improvements,
we plan to propose better methods to accurately predict the
movement of the output object of a segment. By doing this,
we assume that the empty space between a pair of connected
segments can be minimized, thus a larger number of segments
can be placed in a given level; noting that the dynamic value
increases as the number of segments increases.

From the perfect-shot evaluation, those generated with the
RGM 3 and RGM 4 settings have a high perfect-shot rate,
indicating that there is a high probability to create a domino
effect among their segments. We plan to improve the perfect-
shot rate by performing the same method as in our plan to
increase the level’s stability. We assume that simulating each
segment’s destruction process or accurately predicting objects’
movement can guarantee a high perfect-shot rate on each RGM
level.

ACKNOWLEDGMENT

This research was supported in part by Grant-in-Aid for
Scientific Research (C), Number 19K12291, Japan Society for
the Promotion of Science, Japan. Special thanks are also given
to Zhou Fang, Junjie Xu, and Dawang Chen for their amazing
work in designing the base segments in this study.

REFERENCES

[1] Rube Goldberg machine, en.wikipedia.org/wiki/Rube Goldberg machine
(accessed 4 June 2019)

[2] MF. Wolfe, R. Goldberg, Rube Goldberg: Inventions!, Simon and
Schuster, 2000 Nov 20, pp. 1-195.

[3] The best Rube Goldberg machines, www.digitaltrends.com/cool-
tech/best-rube-goldberg-machines/ (accessed 4 June 2019)

[4] The official Rube Goldberg website, www.rubegoldberg.com/rube-the-
artist/ (accessed 4 June 2019)

[5] F. Abdullah, C. Yang, P. Paliyawan, R. Thawonmas, T. Harada, F.A.
Bachtiar, “Promoting Emotion With Angry Birds-like Gameplay on
Rube Goldberg Machine Levels,” IEEE ICCE-Asia 2019, 2019 Jun 12-
14 (accepted)

[6] F. Abdullah, C. Yang, P. Paliyawan, R. Thawonmas, T. Harada, F.A.
Bachtiar, “Effect of Angry Birds-like Live Streaming on Working
Memory,” 2019 SEGAH, 2019 Aug 5-7 (accepted)

[7] Rube Goldberg Contest - Rube Goldberg Machine,
www.purdue.edu/newsroom/rubegoldberg/index.html (accessed 4
June 2019)

[8] Theta Tau, en.wikipedia.org/wiki/Theta/ Tau (accessed 4 June 2019)
[9] CU. Lei, HK. So, EY. Lam, KK. Wong, RY. Kwok, CK. Chan, “Teaching

Introductory Electrical Engineering: Project-based Learning Experi-
ence,” 2012 IEEE International Conference on Teaching, Assessment,
and Learning for Engineering (TALE), 2012 Aug 20-23, pp. H1B-1,
IEEE.

[10] S. Acharya, A. Sirinterlikci, “Introducing Engineering Design Through
an Intelligent Rube Goldberg Implementation,” Journal of Technology
Studies, 2010 Oct 1, vol. 36, no. 2, pp. 63-72.

[11] D. O’Connor, “Application Sharing in K-12 Education: Teaching and
Learning With Rube Goldberg,” TechTrends, 2003 Sep 1, vol. 47, no.
5, pp. 6-13.

[12] N. Shaker, J. Togelius, M. J. Nelson, “Procedural Content Generation
in Games: A Textbook and an Overview of Current Research”, Berlin:
Springer, 1st edition, 2016 Oct 19, pp. 1-237.

[13] L. Ferreira, C. Toledo, “A Search-based Approach for Generating Angry
Birds Levels,” 2014 IEEE Conference on Computational Intelligence and
Games, 2014 Aug 26, pp. 1-8, IEEE.

[14] MJ. Stephenson, J. Renz, X. Ge, LN. Ferreira, J. Togelius, P. Zhang,
“The 2017 AIBIRDS Level Generation Competition,” IEEE Transactions
on Games, 2018 Jul 12, pp. 1-10.

[15] M. Kaidan, T. Harada, CY. Chu, R. Thawonmas, “Procedural Generation
of Angry Birds Levels With Adjustable Difficulty,” 2016 IEEE Congress
on Evolutionary Computation (CEC), 2016 Jul 24, pp. 1311-1316, IEEE.

[16] M. Stephenson, J. Renz, “Procedural Generation of Complex Stable
Structures for Angry Birds Levels,” 2016 IEEE Conference on Com-
putational Intelligence and Games (CIG), 2016 Sep 20, pp. 1-8, IEEE.

[17] M. Stephenson, J. Renz, “Procedural Generation of Levels for Angry
Birds Style Physics Games,” The Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE), 2016 Sep 19, pp.
225-231.

[18] M. Stephenson, J. Renz, “Generating Varied, Stable and Solvable Levels
for Angry Birds Style Physics Games,” 2017 IEEE Conference on
Computational Intelligence and Games (CIG), 2017 Aug 22, pp. 288-
295, IEEE.

[19] Y. Jiang, T. Harada, R. Thawonmas, “Procedural Generation of Angry
Birds Fun Levels Using Pattern-Struct and Preset-Model,” 2017 IEEE
Conference on Computational Intelligence and Game (CIG), 2017 Aug
22, pp. 154-161, IEEE.

[20] C. Yang, Y. Jiang, P. Paliyawan, T. Harada, R. Thawonmas, “Smile With
Angry Birds: Two Smile-interface Implementations,” 2018 Nicograph
International (NicoInt), 2018 Jun 28, p. 80, IEEE.

[21] C. Yang, P. Paliyawan, T. Harada, R. Thawonmas, “Blow Up Depression
With In-Game TNTs,” 2018 IEEE 7th Global Conference on Consumer
Electronics (GCCE), 2018 Oct 9, pp. 820-821, IEEE.

[22] J. Xu, Y. Okido, S. Sae-Lao, P. Paliyawan, R. Thawonmas, T. Harada,
“Promoting Emotional Well-being With Angry Birds-like Gameplay
on Pixel Image Levels,” 2019 SEGAH, 2019 SEGAH, 2019 Aug 5-7
(accepted).

[23] D. Watson, LA. Clark, A. Tellegen, “Development and Validation of
Brief Measures of Positive and Negative Affect: the Panas Scales,”
Journal of personality and social psychology, 1988 Jun, vol. 54, no.
6, pp. 1063-1070.

[24] MJ. Kane, AR. Conway, TK. Miura, GJ. Colflesh, “Working Memory,
Attention Control, and the N-Back Task: a Question of Construct
Validity,” Journal of Experimental Psychology: Learning, Memory, and
Cognition, 2007 May, vol. 33, no. 3, pp. 615-622.

[25] P. Lopes, A. Liapis, GN. Yannakakis, “Sonancia: Sonification of Proce-
durally Generated Game Levels,” The 1st computational creativity and
games workshop, 2015 Mar 18, pp. 1-6.

