
Using Simple Games to Evaluate Self-Organization
Concepts:

a Whack-a-mole Case Study
Nick Nygren

Department of Computer Science
University of Calgary

Calgary, Canada
ndnygren@ucalgary.ca

Jörg Denzinger
Department of Computer Science

University of Calgary
Calgary, Canada

denzinge@cpsc.ucalgary.ca

Abstract—We present the idea of using variants of simple
games as an easy additional application area to establish gen-
erality of AI concepts. We substantiate this idea by using multi-
hammer Whack-a-mole as application area for the efficiency im-
provement advisor and extended efficiency improvement advisor
concepts for self-organizing multi-agent systems. Both concepts
have previously been applied to pickup-and-delivery problems
and were claimed to be general concepts for improving solving
dynamic task fulfillment problems. Our experiments with multi-
hammer Whack-a-mole show similar improvements to the other
area for both concepts, giving credit to the generality claim.

Index Terms—efficiency improvement advisor, extended ef-
ficiency improvement advisor, self-adaptation, Whack-a-mole,
Multi-agent systems

I. INTRODUCTION

Complex games intended for human players have a long
history of being targeted by AI researchers. Some examples are
Deep Blue for chess [3], or AlphaGo for Go [8]. Naturally, in
addition to beating human players, a main goal in developing
game playing AIs is to develop methods that then can also
be applied in other applications. In this paper, we have the
opposite intend. We look at an existing concept for an indus-
trial application, pickup-and-delivery, and apply it to a slight
modification of a well-known and simple human game, multi-
hammer Whack-a-mole, in order to establish the generality of
the concept.

More precisely, we are looking at two variants of a concept
for improving the cooperation of several agents that perform
dynamic task fulfillment, i.e. they have to perform tasks
that might be known ahead of time, can be anticipated or
appear ”out of the blue”. The concept is called the efficiency
improvement advisor (EIA, its original variant described in [9],
an improvement, the extended efficiency improvement advisor,
EEIA, recently published in [7]) and it aims at improving the
behavior of self-organizing multi-agent systems by introducing
an additional agent, the EIA (or EEIA), that uses various
knowledge to adapt the whole multi-agent system to the tasks
it has to fulfill over longer periods of time. The EIA uses
knowledge about recurring tasks it creates by analyzing the

history of the system, while the EEIA adds to this knowledge
about anticipated tasks sure knowledge about the appearance
of tasks. Both advisor agents use the knowledge to create
good solutions for the known and anticipated tasks and then
create exception rules for the task fulfilling agents to improve
their otherwise autonomous behavior. For pickup-and-delivery
problems, both advisors showed substantial improvements
when their application conditions were fulfilled.

Multi-hammer Whack-a-mole expands the well-known
game Whack-a-mole by allowing for the simultaneous use of
several hammers. We also created game settings in which the
appearance of some moles is known ahead of time and where
some mole appearances persist over a number of games. But
the key property that had us select this game is the dynamic
nature of the tasks, which is the challenge for the hammers.

Our experiments with the advisors in Whack-a-mole showed
similar results as for pickup-and-delivery. The EIA improves
the behavior of the hammers (without them having to com-
municate with each other during a game) and if additional
sure knowledge was available the performance with the EEIA
was even better. Compared to the pickup-and-delivery domain,
creating the Whack-a-mole system (i.e. a game simulator and
the behavior of hammers and advisors) was easily done, which
justifies our suggestion to use variants of simple games as
additional application areas for concepts to establish their
generality.

In the following, we first give a short introduction of
the EIA and its improvement EEIA in Section II. Then we
introduce multi-hammer Whack-a-mole and how it fits into the
general problem of dynamic task fulfillment in Section III. In
Section IV, we instantiate the advisor concepts to whack-a-
mole and then, in Section V, we report on our evaluations of
the variants of the advisor instantiated to Whack-a-mole. This
if followed, in Section VI, by a discussion of these results and
the results from [7] with regard to the generality of the advisor
concepts. Section VII provides a short presentation of related
work and Section VIII concludes the paper with some final
remarks.

978-1-7281-1884-0/19/$31.00 c⃝2019 IEEE

II. EIA AND EEIA

In this section, we briefly describe dynamic task fulfillment
(DTF), which represents part of the generality claim for the
advisor concept. This is followed by describing said advisor
concept (EIA) that uses an analysis of a multi-agent system’s
past to determine recurring tasks. Badly solved recurring tasks
are corrected with rule-based advice to the individual agents
to improve the system behavior. We also describe extending
the EIA to the EEIA that additionally uses knowledge about
known-ahead, pre-arranged tasks for an additional improve-
ment.

A. Dynamic task fulfillment

The problem of dynamic task fulfillment involves a set T
of possible tasks that have to be fulfilled in an environment
Env and a set A of agents that can perform tasks. An instance
of a DTF problem is called a run instance and has the form

((ta1, t1), (ta2, t2), ..., (tam, tm))
with tai ∈ T , ti ∈ T ime (the time interval the task fulfillment
has to happen in) and ti ≤ ti+1. Usually, in order to allow for
an analysis of a system’s history to create knowledge, we will
look at a sequence of such run instances.

When the agents in A work on a run instance they generate
a so-called emergent solution sol, which has the form

sol = ((ta′1,Ag′1, t
′
1), (ta

′
2,Ag′2, t

′
2), ..., (ta

′
m,Ag′m, t′m)),

where ta′m ∈ {ta1, ..., tam}, ta′i ̸= ta′j for all i ̸= j, Ag′i ∈ A,
t′i ≤ t′i+1, t′i ∈ T ime. Here, (ta′1,Ag′1, t

′
1) means task ta′i was

started by Ag′i at time t′i. Naturally, there are usually different
ways for the agents to solve a run instance and therefore we
often want to evaluate the quality of a solution, which we
denote by qual(sol) and which is dependent on a particular
instantiation of DTF.

B. The EIA

Without any idea when a task might be announced to
the system it is very difficult to produce solutions of good
quality (and sometimes even complete solutions at all). But
for many problems, some knowledge can be collected that,
if correctly used by the agents, can substantially improve
the solutions A produces. One kind of such knowledge is
about recurring tasks, i.e. tasks that in the past have been
appearing very often in the run instances the system had
to solve. The efficiency improvement advisor concept was
developed as a general enhancement to A to identify such
recurring tasks, determine what good solutions for these tasks
would be, compare these solutions with the emergent solutions
A produced and from this comparison, determine so-called
exception rules. These exception rules are specific to individual
agents and individual tasks, and are intended to result in a
better (preferrably optimal) handling of these tasks in the
future.

As presented in [9] and Figure 1, the EIA performs the
following steps whenever it has gotten from all other agents
all the information for a run instance: receive collects the
local histories of all agents in A, transform creates out of

Basic MAS

Receive
local agent
histories

Transform
local agent histories
into global history

Extract
recurring tasks

from global
history

Optimize
solution of
recurring
tasks

Derive
rules from

optimal solution

Send
derived rules

to agents

Data model
(advisor states, agent knowledge,
environment knowledge, rule sets,

intermediate results, ...)

Advisor

histories rules

Fig. 1. EIA functional architecture

the local histories a global history of the system, includ-
ing information on the created emergent solutions, extract
determines a sequence of recurring tasks from this global
history, optimize solves the static optimization problem for
this sequence, derive creates the above mentioned exception
rules and send communicates those rules to the appropriate
agents. For many of those steps there are different possible
realizations, both in general and when applying the concept
to a particular application area. While [9] introduced the
so-called ignore exception rules that only told a particular
agent not to take on a particular task (in the general form
condig(s, d) → ¬ata, where s is the current situation an
agent is in, d is its current internal state, ata is the action
of starting a particular task ta and condig is the condition
when the rule is triggered), [10] presented an additional kind
of possible exception rules, so-called pro-active rules, that tell
a particular agent to already prepare for a task at a particular
point in time (in the general form condproa(s, d) → prep(ta),
where prep(ta) indicates the action(s) that an agent has to
perform to prepare for performing ta).

Since recurring tasks do not have to be in every run instance
the system did in the past (not even in all the last k instances;
how often a task needs to appear in those last k tasks to be
deemed recurring is a parameter of the system), the knowledge
about recurring tasks can be from time to time misleading
(false knowledge of a task that will not appear in the current
run instance). Another problem is naturally all the other tasks
the system has to perform for which it does not have any
information beforehand. Due to these problems, the EIA is
supposed to be used when there is a high percentage of
recurring tasks in every run instance and it has to be accepted
that from time to time a particular run instance is solved
worse than the solution would be without the EIA. But, as
the experiments in the area of pickup-and-delivery problems
in the two works from above showed, over several run instance
there is always a gain with the advisor when there is a high
percentage of recurring tasks.

Advisor

Receive
local agent
histories

Transform
local agent

histories
into global

history

Extract
recurring

tasks from
global

history

Optimize
solution of

Derive
rules from

optimal
solution

Send
derived rules

to agents

Merge
static

knowledge

Data model
(advisor states, agent knowledge,
environment knowledge, rule sets,

intermediate results, ...)

Basic MAS

histories rules

combined
knowledge

Fig. 2. EEIA functional architecture

C. The EEIA
As already mentioned, there are other sources of knowledge

that the advisor can use to create exception rules. One such
source are tasks that are known in advance of the whole
interval T ime. The EIA does not use this knowledge and such
tasks are treated like the dynamically appearing tasks, which
naturally can be very inefficient. The EIA can be extended
to what we call the EEIA (extended efficiency improvement
advisor) to also use knowledge about such known-ahead tasks,
which requires sets of extension rules about every known-in-
advance and every recurring task.

In general, the EEIA modifies the working cycle of the
EIA by including a merge step after the extract step that
merges the extracted recurring tasks with the known-ahead
tasks and feeds this combined set into the optimize step
(see Figure 2 and [7]). While the functionality of nearly all
steps from the EIA stays the same for the EEIA, the derive
step is substantially modified from what was done in [9], as
mentioned above.

We will provide more details about EIA and EEIA when we
discuss their application to the multi-hammer Whack-a-mole
problem.

III. MULTI-HAMMER WHACK-A-MOLE

Most people know Whack-a-mole as a game at a carnival
or an arcade. The (human) player is armed with a hammer
and has to hit moles that appear seemingly randomly out of
one of the holes arranged in a rectangle (the playing field or
environment). After appearing, a mole stays out of its hole for
a limited time or until it is hit by the hammer. The goal of
the game is to hit as many of the moles as possible within
a given time interval. In this form, the random appearance of
the moles creates highly dynamic tasks for the player.

Having several players with hammers working the same
playing field often adds to the fun due to the possibility of
collisions between players when trying to get their hammers
to a mole. While in todays world the randomness of the
appearence of the moles would be based on the use of random

l0,4

l0,3

l0,2

l0,1

l0,0

l1,4

l1,3

l1,2

l1,1

l1,0

l2,4

l2,3

l2,2

l2,1

l2,0

l3,4

l3,3

l3,2

l3,1

l3,0

l4,4

l4,3

l4,2

l4,1

l4,0

Fig. 3. A Whack-a-mole game situation

number generators that make it very difficult to predict when
and where a mole might raise from its hole, the early days of
this game required a mechanical solution for this with quite
some possibility for making such predictions. And, naturally,
having pre-announced mole appearences can create additional
fun, especially if several players are involved (at least their
collisions due to this are fun for the spectators).

All the above means that Whack-a-mole is an instantiation
of dynamic task fulfillment. More formally, we can model the
environment Env as an N × M array (grid) with each node
of the array representing a hole, whether a mole is out of the
hole and also possible positions of a hammer (see Figure 3). A
hammer, which is an element of A, can travel from a grid node
vertically, horizontally and diagonally. For our experiments,
we used the following rules: the game is performed in discrete
time steps. In each time step, a mole might rise from a hole
and will stay risen for a particular number of time steps if
not hit. After that number of time steps it will lower itself
into the hole and is not visible to a hammer. A hammer can
either move from a node to an adjacent node (in all directions,
including diagonally), can stay put, or can hit a visible mole on
the same node. If a hammer performs the hit action without
a mole being on the same node, this move is wasted. Two
hammers cannot be on the same node. At each time step, the
moles perform their moves first (in a given order) and then
the hammers act (also in a given order).

A task ta is represented by a mole appearing at a particular
time step t and grid position (xta, yta) and ta becomes
unfulfilled at time step tta,end if not hit by a hammer before
that time step. A run instance for Whack-a-mole are all tasks
appearing in a game that lasts the length of T ime. If all

tasks are fulfilled (i.e. all appearing moles get hit before
disappearing) then the emergent solution of the game could be
exactly described as stated before, i.e. as a sequence of triples
of a task, a hammer and the time the mole was hit by the
hammer. We deal with the fact that a mole might ”escape”,
by describing it as the task associated with the mole being
”fulfilled” by a special agent Agnh (no-hammer) at the time
the mole disappeared. And then we define the quality qual
of such a solution as the number of tasks in the solution that
were not fulfilled by Agnh (or, in other words, the number of
moles that were hit).

There are several possibilities how hammers can do their
decision making. In our experiments, the basic decision mak-
ing of a hammer is rather simple. If the hammer is on a node
with a mole out of the hole, then it hits this mole. Otherwise,
it creates a list of all moles out of their holes and moves
towards the mole that is nearest to its current position. If the
list is empty, the hammer stays at its current position. Dealing
with other hammers is also simple: if the hammer wants to
move in a position with another hammer already on it, it stays
at its current position until the move is possible.

IV. EIA AND EEIA FOR WHACK-A-MOLE

In this section we present the instantiations of the different
steps in the EIA and EEIA to improve the cooperation of
hammers for Whack-a-mole. We also show how to modify
the decision procedure for these hammers to make use of the
advice created by the two advisor variants.

The instantiations of the steps receive and transform for the
EIA are very simple, since Whack-a-mole does not have any
problems with regards to observing the environment. Therefore
the EIA itself can observe when tasks are announced and
fulfilled (or not). While we have the hammers communicate
their actions and perceptions after each game (run instance)
to the EIA, the EIA itself has already observed the emergent
solution for the game as
((((xta,1, yta,1), tta,1), ha1, t1), ..., (((xta,m, yta,m), tta,m),

ham, tm))
with hai ∈ A∪{Agnh}. In order to react to possibly changing
recurring tasks, the EIA stores the solutions from the k last
games (similar to what was done in [9]).

These k solutions are the input into the extract step.
Similar to [9], we are using sequential leader clustering [6]
to identify recurring tasks in those k solutions. For clustering,
we need a similarity measure sim on tasks and a threshold
value clustthresh. We defined the similarity of two tasks
((x, y), t) and ((x′, y′), t′) as sim(((x, y), t), ((x′, y′), t′)) =
dist((x, y), (x′, y′))+|t−t′|. Here, dist is the smallest number
of hammer moves between the two positions.

The clustering process goes through all tasks in the k
solutions and if the similarity of the initial cluster element
of any cluster to the new task is above the threshold the task
is added to that cluster. Else, a new cluster with the task as
initial cluster element is created. After that, each cluster that
has at least minocc elements represents a task that we consider
recurring. The initial element of each such cluster is included

in the sequence of recurring tasks (tarec1 , ..., tarecp) (we order
these tasks based on their ttarec

i
-values).

The sequence of recurring tasks is the input to the optimize
step. The goal of this step is to produce the optimal solution
optrec for the recurring tasks without any other tasks around,
which is now a static optimization problem. In our system we
have used a branch-and-bound based optimizer for this step,
creating optrec = ((tarec,∗1 , harec1 , trec1), . . . , (tarec,∗p , harecp ,
trecp)), where {tarec,∗1 , ..., tarec,∗p } = {tarec1 , ..., tarecp } and
hareci ∈ A. There was one problem regarding the optimization
step, namely that the optimizer needs the time steps ttarec

i ,end

for all i’s, where the advisor was not able to observe when
the corresponding mole disappeared, i.e. when a hammer was
always fulfilling the task. In our implementation we chose to
use as end time 8 time steps after a mole’s appearance in such
situations.

The idea of the EIA is to provide advice to agents about
tasks that were not solved well by the whole system. In order
to already evaluate how restrictive the advice scheme by the
EEIA is, we use this scheme already for the EIA and as a
result derive provides advice for each of the tasks in optrec.
More precisely, for each of the (tareci , hareci , treci) in optrec,
we create the following exception rules:

• For hareci , we create
– a pro-active rule that has as trigger condition

condproa
∗ having reached the time trecta,i−preptime(tareci)−

clustervar(tareci) and
∗ having not reached the time trecta,i + timeout and
∗ hareci has not already performed prep(tareci)

after the time trecta,i − preptime(tareci) −
clustervar(tareci) and,

∗ in case that tareci is not the first task assigned to
hareci in this run instance and that ta′ is the task
hareci has to fulfill directly before tareci in optrec,
having fulfilled ta′

and as action prep(tareci).
– an ignore rule that has as trigger condition condig

that time trecta,i−preptime(tareci)−clustervar(tareci)
has not been reached and as action ¬atarec

i
.

• For every harecj with i ̸= j we create
– an ignore rule that has as trigger condition condig

that
∗ fulfillment of task tareci can be started and
∗ time trecta,i + timeout has not been reached
and as action ¬atarec

i
.

Here, preptime(ta) is a function that provides for a task
ta the time that the hammer needs to prepare for hitting
the mole represented by ta, which is the number of moves
it has to make to get to the task’s position plus one. The
function clustervar(ta) returns for a given recurring task ta
the variance in starting times of the tasks within the cluster to
ta. And timeout is a system variable that determines how long
a hammer waits for a task that it was assigned by a pro-active

rule to be performable before looking for other tasks to do.
Also, remember that tta is the time when the mole represented
by the task appears out from its hole.

In our realization of the EIA for Whack-a-mole, all ex-
ception rules a hammer is given are used in the following
manner. If the condition of a pro-active rule is fulfilled, then
the hammer will use only the associated task in his list of
moles out of their holes (even if that mole is not out of its
hole, yet), moving towards that particular position or staying
at that position if it is already reached and hitting the mole the
moment it gets out of the hole. The way how pro-active rules
are created ensures that there is at most one pro-active rule
with a fulfilled condition. If only the conditions of ignore rules
are fulfilled, the hammer uses them to eliminate out of its list
of currently visible moles all moles that represent tasks that
an ignore rule targets. After that step, the hammer procedes
as normal, selecting among the remaining tasks the one with
the mole closest to the hammer and moving towards it. If the
list is empty the hammer stays put.

The send step of the EIA happens before a new game is
started and the sent out exception rules replace the exception
rules a hammer had before.

As already stated, the EEIA uses the same realizations of the
steps receive, transform, extract, optimize and send as the
EIA. It adds the step merge after extract, which gets in addi-
tion to the recurring tasks a set of tasks {taknown

1 ,...,taknown
q },

which are the known-ahead tasks for the next run instance. The
EEIA checks if any of these known-ahead tasks are also in the
recurring tasks, since there can only be one mole getting out
of one hole, and if there are such tasks the duplicates will be
eliminated and the remaining tasks will be the input for the
optimize step.

As stated above, the Whack-a-mole instantiation of the
derive step of the EIA creates sets of exception rules for each
of the tasks that are optimized in optimize is identical to what
the derive step of the EEIA creates (to allow us to see how
much these rules influence the ability to deal with dynamically
appearing tasks), so that the only difference in derive is that
we are creating these rules for both the recurring tasks and
the known-ahead tasks.

V. EXPERIMENTAL EVALUATION

In this section, we will first discuss how we created the
experiments we did, which required to both create system runs
that allowed EIA and EEIA to be applicable and randomness
to evaluate the generality of the concepts within the boundaries
of their applicability. Then we will present the results of these
experiments.

The EIA (and also the EEIA) requires that there are re-
curring tasks in a sequence of run instances (Whack-a-mole
games), so that after they are identified exception rules can
be created. But, in order to be realistic, we also need these
recurring tasks to not occur in every game to explore the
dangers advice can produce. And we naturally need dynam-
ically occuring tasks in each run instance. To bring all these
requirements together, we used the following procedure to

create sequences of Whack-a-mole games, centered around the
parameter δ (a similar procedure was used in [7]).

For run instances of length m in a sequence that form a
run, we first create a so-called base instance (ta1, . . . , tam)
of random mole appearances, i.e. at random places (xta,, yta)
in an N × M environment at random times t within T ime
and with random disappearing times tta,end after ti (but within
T ime). If we create a mole appearance at a location we already
have a task for, we create a new appearance, if the appearance
time intervals overlap. Each of those tai is then assigned a
probability pi from the range [δ, 1.0] (distributed evenly over
all tai) that will be used in the construction of all games within
a sequence in a weighted coin toss to determine if tai will
be in the game or not. More precisely, any game within the
sequence is created as {ta′1, ..., ta′m}∪{taknown

1 , ..., taknown
q },

where ta′i = tai if a random number created between 0 and
1 is smaller or equal to pi and ta′i is a new randomly created
mole appearance event else (with the same limitations as for
the base instance). The tasks in the set {taknown

1 , ..., taknown
q }

are also randomly created mole appearances that the EEIA will
be informed of before a game starts. In all our experiments
we used for this number q of known-ahead tasks q = 5.

An individual run consists of 55 run instances (games)
created in the way described above. We used as the number
of past games that EIA and EEIA look at for recurring tasks
k = 5and we consider a task reoccuring, if its cluster has a
size minocc = 4. This means that depending on δ we have
that tasks from the base instance might from time to time
not even be considered a recurring task and if it is considered
recurring it might still not occur in a particular game. The later
means that EIA or EEIA will have a hammer preparing for
that task, but it will never appear, which means that that part
of the knowledge the advisor used was then misleading (and
perhaps resulting in a worse game performance than the basic
strategy). Naturally, this is always the danger when we use
analytics of the past to predict the future. For the remaining
EIA and EEIA parameters, we used timeout = 10 and, due
to how we constructed the experiments, clustervar(ta) = 0
for every ta.

Table I presents the results of our experiments for various
environment sizes (and consequent numbers of tasks) and two
hammers for a δ-value of 0.85, which reflects the successful
ratio of recurring tasks to dynamic tasks for the EIA from
[9] and [10]. For each size and task number we performed 5
experiments. As can be seen, the EIA variant is for most sizes
better than the basic strategy in more of the experiments than
not, despite treating the known-ahead tasks as dynamic and
despite creating more exception rules than what was originally
suggested. In fact, if we look at the reported averages over all
5 experiments for a size, only for the 5×5the average of the
basic strategy is better than the EIA average. This means that
the new scheme in the derive step is well targeted and not too
restrictive to deal with dynamic tasks.

The EEIA, due to treating the known-ahead tasks as part of
the planned for tasks, is nearly always better than the EIA (the
exceptions being the second experiment for 3×5and the forth

TABLE I
COMPARISON BASE SYSTEM, EIA AND EEIA FOR δ = 0.85

N ×M m basic strat. EIA EEIA

3× 5 15 251 236 277
3× 5 15 249 265 255
3× 5 15 251 248 265
3× 5 15 264 256 264
3× 5 15 239 270 260
avg. 250.8 255.0 264.2
4× 5 20 266 296 314
4× 5 20 298 302 333
4× 5 20 320 309 331
4× 5 20 299 300 323
4× 5 20 325 306 329
avg. 301.6 302.6 326.0
5× 5 25 349 341 386
5× 5 25 352 361 395
5× 5 25 361 338 386
5× 5 25 364 347 377
5× 5 25 336 338 371
avg. 352.4 345.0 383.0
6× 5 30 410 380 438
6× 5 30 355 366 396
6× 5 30 345 380 414
6× 5 30 328 373 401
6× 5 30 317 368 405
avg. 351.0 373.4 410.8
7× 5 35 396 423 442
7× 5 35 355 407 435
7× 5 35 342 385 427
7× 5 35 382 377 373
7× 5 35 329 353 383
avg. 360.8 389.0 412.0

experiment for 7×5) and only for one experiment (again, the
forth experiment for 7× 5) worse than the basic strategy. If
we look at the averages, then the EEIA is always better than
the basic strategy and the EIA, with the differences increasing
with larger environments and numbers of tasks.

Table II highlights the already mentioned danger of using
analytics when they produce misleading knowledge. For two
hammers and with a δ-value of 0.75, there will be in nearly
every game for the EIA supposedly recurring tasks that the
EIA plans for that will not materialize in the game for which
the plan was made. And this often leads to kind of freezing a
hammer for some time, which naturally is not happening with
the basic strategy. Consequently, for many of the experiments
we have the basic startegy being better than the EIA, although
for each of the environments we have at least one experiment
where the EIA is better, But, if we look at the averages,
the basic strategy is always better, even if the differences are
getting smaller with larger environments and numbers of tasks.

The EEIA, on the other hand, was able to use the additional
sure knowledge about the known-ahead tasks to not only
outperform the EIA, but also the basic strategy, when looking
at the averages. For most of the environments we have one
experiemnt where the basic startegy is better than the EEIA,
but at most one of those. And in all experiments the EEIA is
better than the EIA.

In Figure 4 we take a closer look at one of the runs in the
7× 5environment for δ = 0.85. The two graphs depict the
performance of the EIA (top) and EEIA (bottom) compared

TABLE II
COMPARISON BASE SYSTEM, EIA AND EEIA FOR δ = 0.75

N ×M m basic strat. EIA EEIA

3× 5 15 260 228 265
3× 5 15 237 259 268
3× 5 15 264 248 269
3× 5 15 251 254 268
3× 5 15 259 239 248
avg. 254.2 245.6 263.6
4× 5 20 296 283 316
4× 5 20 293 301 309
4× 5 20 313 307 310
4× 5 20 286 294 304
4× 5 20 303 298 313
avg. 298.2 286.0 310.4
5× 5 25 283 313 353
5× 5 25 328 317 377
5× 5 25 363 333 353
5× 5 25 303 293 316
5× 5 25 368 345 368
avg. 329.0 320.2 353.4
6× 5 30 391 376 412
6× 5 30 349 324 359
6× 5 30 363 379 409
6× 5 30 345 357 387
6× 5 30 322 318 358
avg. 354.0 350.8 385.0
7× 5 35 347 368 393
7× 5 35 425 380 429
7× 5 35 388 388 405
7× 5 35 378 412 417
7× 5 35 401 372 395
avg. 387.8 384.0 407.8

to the basic strategy (represented by the 0 line). The graphs
start with the 5th run instance, since this is the first run
instance both advisor variants can provide advice (given how
we generated the runs).

Both graphs show that much more run instances are above
the 0 line than below, although for the EEIA obviously less
are below than for the EIA (4 vs. 7). For the EIA the largest
improvement is 6 hits (in 6 run instances) whereas the EEIA
goes up to 13 more hits than the basic strategy (requiring
different scales for the two graphs). Both graphs show the
effects of dynamism leading already to the basic strategy being
for some run instances better (i.e. nearer the optimum) and for
some worse (allowing for more or less improvement by the
advisors). And, naturally, the EIA has a higher volatility due
to having 5 more dynamic tasks to deal with than the EEIA.
Due to using the knowledge gained from analyzing the history
(and our experimental setup that will make this knowledge
misleading for some run instances) we have to accept from
time to time behavior that makes the adviced hammers worse
than their basic behavior, but the gains in other run instances
make more than up for this (as both the graphs and Table I
show).

VI. DISCUSSION OF GENERALITY OF THE EIA AND THE
EEIA

As stated in the introduction, the goal of this paper is to
show that simple games (with slight variations) can be used to
strengthen generality claims made for AI and MAS concepts.

variants of relatively simple games can be used to substantiate
generality claims of concepts.

REFERENCES

[1] R. Axelrod: The evolution of strategies in the iterated prisoner’s
dilemma, in The Dynamics of Norms, Cristina Bicchieri et al. (eds).
Cambridge University Press, 1997, 1–16.

[2] G. Berbeglia, J-F. Cordeau, G. Laporte: Dynamic pickup and delivery
problems, European journal of operational research 202.1, 2010, pp. 8–
15.

[3] M. Campbell, A.J. Hoane Jr., F.-h. Hsu: Deep Blue. Artificial Intelli-
gence 134(1-2), 2002, 57–83.

[4] J. Denzinger and M. Fuchs: Experiments in Learning Prototypical Situa-
tions for Variants of the Pursuit Game. In Proc. ICMAS-96, Kyoto,1996,
48–55.

[5] S. Gutiérrez, S.O. Krumke, N. Megow, T. Vredeveld: How to whack
moles, Theoretical computer science, 2006, pp. 329–341.

[6] J. A. Hartigan: Clustering Algorithms, John Wiley & Sons, 1975.

[7] N. Nygren and J. Denzinger: Extending the Advisor Concept to Deal
with Known-Ahead Transportation Tasks. In Proc. IDCS 2018, Tokyo,
2018, 27–38.

[8] D. Silver, A. Huang, C.J. Maddison, A. Guez, A. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis:
Mastering the game of Go with deep neural networks and tree search,
Nature 529, 2016, pp. 484–489.

[9] J-P. Steghöfer, J. Denzinger, H. Kasinger, B. Bauer: Improving the
Efficiency of Self-Organizing Emergent Systems by an Advisor, Proc.
EASe 2010, Oxford, 2010, pp. 63–72.

[10] T. Steiner, J. Denzinger, H. Kasinger, B. Bauer, Pro-active Advice to
Improve the Efficiency of Self-Organizing Emergent Systems, Proc.
EASe 2011, Las Vegas, 2011, pp. 97–106.

[11] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, M. Mnif, C. Müller-
Schloer, U. Richter, H. Schmeck: Observation and control of organic
systems, In Organic Computing – A Paradigm Shift for Complex
Systems, Springer, 2011, pp. 325–338.

