
MazeExplorer: A Customisable 3D Benchmark for
Assessing Generalisation in Reinforcement Learning

Luke Harries*, Sebastian Lee*, Jaroslaw Rzepecki, Katja Hofmann, Sam Devlin
Microsoft Research, Cambridge, UK

*Joint first author

Abstract—This paper presents a customisable 3D benchmark
for assessing generalisability of reinforcement learning agents
based on the 3D first-person game Doom and open source
environment VizDoom. As a sample use-case we show that
different domain randomisation techniques during training in
a key-collection navigation task can help to improve agent
performance on unseen evaluation maps.

Index Terms—Artificial intelligence, Machine learning, Ma-
chine learning algorithms

I. INTRODUCTION

In reinforcement learning (RL), it is common to evaluate
agent performance in the same environments as those in which
the agent is trained. The lack of separation between training
and test environments, as is otherwise the norm in machine
learning, can lead to brittle policies that do not generalise to
new or even slightly modified environments (i.e. overfitting
to training experiences). This shortcoming of RL research
practices has been increasingly acknowledged and assessed
in recent work [1]–[4]. Its solution will entail – among other
components – environment frameworks in which it is easy
to perform reproducible, statistically significant, customisable,
and principled experimentation.

As both emphasis on theoretical justification of different ex-
perimentation configurations heightens (across aspects such as
reproducibility and statistical best practices) and RL algorithms
are brought to bear in real-world applications, such as robotics,
where overfitting the training environment will not be feasible
(e.g. due to safety or cost), we anticipate that generalisation
will be a key factor in future RL research directions.

For these reasons, we introduce in this paper a new RL
benchmark environment, MazeExplorer, based around procedu-
ral generation of 3D navigation tasks in the first person game
Doom. Installation via pip, a gym environment interface, and a
high degree of customisation make this a flexible and easy to
use package for researchers to experiment with. Additionally,
we present results of domain randomisation of maps during
training as an example use-case of our package.

II. RELATED WORK

The concept of benchmarks is integral to RL research. In the
modern deep RL literature, widely used benchmarks include
the arcade learning environment [5] and MuJoCo [6]. Although
the decision to train and evaluate on the same maps ultimately
belongs to the experimenter and is not an inherent feature of

these environments, in practice they have inflexible APIs that
are clearly not designed to be used to generate split train/test
configurations; as such their use often leads to research that
suffers from the overfitting problems outlined above.

More recently, DeepMind Lab, CoinRunner, and the Sonic
Benchmark are all examples of environments designed for
use in generalisable RL research [7]–[9]. They all employ
randomisation in the form of procedural generation. Our
work differs from those of CoinRunner and Sonic in that
it is built on Doom - a 3D rather than 2D environment. 3D
environments provide more challenging control problems and
will be more applicable to real world applications (e.g. robotics)
than 2D environments. Doom can also operate at up to 7000
fps and permits extensive customisation of maps (including
map dimensions and specification of extent of randomisation),
allowing for faster and more configurable experimentation
than would be possible with the higher fidelity DeepMind
Lab [10]. The benchmark tasks proposed here can also be seen
to complement those in the minecraft-based Project Malmö [11],
as they instead emphasise multi-agent learning [12].

Our domain randomisation investigation is influenced by
previous work [13], and is applied here to tasks in our
environment as a demonstration of what we envision typical
use-cases of our package to be. Our experimentation approach
- and the general philosophy of the package - is based on
principles outlined in Henderson et al. [1].

Fig. 1: Top: Example 10×10 mazes generated using NavDoom
from a top-down view. Bottom: Example POVs of the agent in
the MazeExplorer navigation task with randomised textures.

978-1-7281-1884-0/19/$31.00 ©2019 Crown

III. MAZEEXPLORER

The primary motivation of the MazeExplorer environment is
to evaluate the ability of trained agents to generalise. In each
MazeExplorer mission, the goal is to navigate a procedurally
generated maze and collect a set number of keys. MazeExplorer
follows the OpenAI Gym interface and allows for a high level
of customisation. An example of the Python interface is shown
in Appendix A. The following subsections will outline some
package details and the high-level API.

A. VizDoom

MazeExplorer generates navigation missions for VizDoom,
a Doom-based platform for developing AI agents that learn
purely from visual information [14]. VizDoom is well suited
for RL research as it is multi-platform, fast (up to 7000 fps)
and memory efficient (a few MBs).

Researchers typically create custom maps (WAD format)
for their agents using GUIs such as DoomBuilder [15] or
Slade [16], or by scripting with the python OMGIFOL
library [17], and add custom tasks via game events using the do-
main specific language ACS [18]. Our aim with MazeExplorer
is to abstract this time-intensive process without compromising
customisability.

B. Procedural Maze Generation

We use NavDoom [19] to procedurally generate a user-
defined number of distinct training and test mazes. The mazes
are guaranteed to have a solution though will often have more.
Fig. 1 shows top-down schematics of example generated mazes
and agent points of view (POV) for random textured levels.

C. Experiment Configuration Options

The primary configurable aspects of MazeExplorer are map
dimension and complexity, number of maps, randomisation of
spawn and key positions, and randomisation of textures. A full
list of configuration options can be found in Appendix B.

IV. BENCHMARKS

0 0.5 1 1.5

·106

0

2

4

6

8

10

Steps taken during training, s

R
ew

ar
d

pe
r

ep
is

od
e,

r

PPO + LSTM
PPO
A2C
A2C + LSTM

Fig. 2: Learning curves for PPO, A2C, PPO+LSTM and
A2C+LSTM, smoothed over 8000 steps, shown with min and
max curves to outline robustness. All four algorithms converge
on all three repeats in fewer than 2×106 steps (Max r is 9).

To illustrate how our package could be used in research,
we present the performance of A2C [20] and PPO [21]
(with and without LSTMs [22]) on an example navigation
task from MazeExplorer and go on to show the effects of
domain randomisation of maps during training on generalisation.
All experiments were done using the open source OpenAI
stable-baselines to facilitate reproducibility [23]. In all of the
experiments below, every map (training and evaluation) contains
9 keys and the agent receives a reward of +1 for picking up
each key. We use an episode timeout of 2100 steps, action
frame repeat of 4, and frame stack of 4.

A. Overfitting

We begin by assessing A2C and PPO on the simplest
MazeExplorer configuration - a single (10×10) map with fixed
spawn and key positions, and fixed wall, ceiling and roof
textures. Fig. 2 shows the training curves of A2C, PPO, A2C
+ LSTM and PPO + LSTM. All 4 policies clearly converge
on this simple task.

0 3 6 9

ρ
(r
)

PP
O

+
L

ST
M

0 3 6 9

0 3 6 9

ρ
(r
)

PP
O

0 3 6 9

0 3 6 9

ρ
(r
)

A
2C

0 3 6 9

0 3 6 9
r, 10×10

ρ
(r
)

A
2C

+
L

ST
M

0 3 6 9
r, 20×20

Average Scores

Fig. 3: Probability distribution of reward scores over 1000
rollouts on six different evaluation maps, ρ(r), vs. reward
score, r, for the learned policies taken from Fig. 2. Scores
on the 10×10 maps are better than those on 20×20 maps but
performance on all is noticeably worse than in training.

However, if we port these learned policies onto a different
map (an evaluation map), they do not perform well. This is
a simple yet illustrative example of the overfitting problem

outlined at the start of this paper and can be seen graphically
in Fig. 3, which shows the distributions of 6 evaluation map
scores (3 at 10×10 and 3 at 20×20) over multiple rollouts of
the trained policies from Fig. 2.

Fig. 2 and Fig. 3 show that convergence in a training task in
RL is not indicative of having learned a generally applicable
policy. Interestingly, on average the least robust policy in terms
of learning (A2C + LSTM), generalises best to new maps, and
the most robust (PPO + LSTM), generalises the poorest. This
suggests that what one would typically associate with ‘efficient’
(i.e. fast) learning of a task, can lead to greater over-fitting,
perhaps because the agent sees a less diverse dataset before
having converged on an optimal policy for the specific task
configuration on which it is being trained.

We can show more explicitly how the evaluation performance
compares to the training performance by doing periodic rollouts
of the policy during training. These results for PPO + LSTM
are shown in Fig. 4.

0 0.5 1 1.5

·106

0

1

2

3

4

5

6

7

8

9

10

Learning Curve

10×10 Evaluation

20×20 Evaluation

Steps taken during training, s

R
ew

ar
d

pe
r

ep
is

od
e,

r

Fig. 4: For PPO + LSTM: The top curve is the learning curve
(rewards on the training map) the rest are evaluation curves
(reward on unseen evaluation maps) - the middle three (purple,
orange, red) are on 10×10 maps and the bottom three (green,
pink, brown) are on 20×20 maps. Evaluation performance is
markedly worse than training performance.

B. Domain Randomisation

In the experiment above, the agent has learned a mapping
from a specific path through a static map to the reward signal.
What we want the agent to learn is a mapping from seeking
and collecting red keys to the reward signal. One way to
encourage a better mapping is to add randomisation to the map
configurations seen by the agent during training. This can be
done in multiple ways, all of which MazeExplorer supports:

• Multiple maps: rather than using a single map during
training, each episode randomly selects one of an ensemble
of training maps with different layouts.

• Random spawn: rather than having the agent start in the
same position in a given map, the spawn position and
angle can be randomised. This forces exploration while

making it harder for the agent to memorise a route through
the map.

• Random textures: rather than having constant wall
colours on a given map we can randomise the texture of
the walls, ceiling and floor in each new episode.

• Random keys: rather than fixing key positions we can
randomise their positions in each new episode.

Sec. IV-A suggests that the overfitting problem is indepen-
dent of algorithm choice, so from this point we perform our
experiments with PPO + LSTM (empirically the most robust
for this task) only. We train policies using every combination of
the configurations outlined below, which makes 2× 2× 2 = 8
different configurations. (We keep the textures constant in the
first set of experiments).

Number of Maps Random Spawn Random Keys

1, 10 Yes/No Yes/No

Table I below summarises the results of these experiments,
which were each run with 3 different random seeds and
evaluated on the same six maps as those used in Sec. IV-A.
Plots in the format of Fig. 4 for each of these configurations are
omitted for brevity but will be available in the README along
with the code release. All variants follow the pattern that 10×10
evaluation performance is worse than training performance,
and 20×20 evaluation performance is worse still. Increased
randomisation narrows this gap.

Experiment Configuration Mean Evaluation Scores
Maps Spawn Keys 10×10 20×20

Untrained (Random) Agent 2.32 ±1.20 0.60 ±0.64

1 Fixed Fixed 5.26 ±2.59 1.89 ±0.84

1 Fixed Random 7.49 ±0.24 2.76 ±0.17

1 Random Fixed 7.68 ±0.37 3.50 ±0.42

1 Random Random 8.16 ±0.21 4.05 ±0.45

10 Fixed Fixed 8.18 ±0.43 4.20 ±0.45

10 Fixed Random 8.01 ±0.43 4.07 ±0.41

10 Random Fixed 8.31 ±0.21 4.34 ±0.66

10 Random Random 8.34 ±0.26 4.29 ±0.43

TABLE I: Domain Randomisation Ablation Results

The learned agent generalises better to the previously unseen
evaluation maps when aspects of the training are randomised
and it is no longer possible simply to memorise a route through
the map. The agent must now learn more about the general
task we want it to learn. In particular, training on multiple
maps appears to give the most significant boost in performance.
On average the best performing agent with randomisation
collects 3.08 and 2.45 more keys than the agent trained in
completely fixed maps on the 10× 10 and 20× 20 evaluation
maps respectively.

V. CONCLUSION

MazeExplorer provides a highly customisable benchmark
for assessing generalisation in RL research. As part of our
domain randomisation experiments, we demonstrate some of
that customisability (random spawn, random keys, multi-map
training). In doing so we have exposed the poor generalisability
of state-of-the-art RL algorithms alone (i.e. without specific
methods such as domain randomsiation), particular when test
maps are larger than those on which agents are trained.

Outside of those highlighted in the above sections, there
are two further features of the package that we envision being
particularly useful for the community. The first is the ability
to randomise textures. This adds a layer of difficulty to the
learning task, our experiments with the vanilla stable baseline
implementations of PPO and A2C were unable to learn even
static configurations of the navigation task with randomised
textures. We thus propose this itself as a challenge to the
community, especially with emphasis on generalisability. The
second is simply the idea that by limiting the number of keys to
1, MazeExplorer provides a very good platform for testing the
exploration capabilities of algorithms in sparse reward settings.

We hope that in future, together with contributions from
the open source community, further features can be added
to MazeExplorer. These may include: multiple map training
over varying size/complexity mazes to facilitate curriculum
style learning, more sophisticated map structures (e.g. multiple
floors), and flickering observations or sticky actions for use in
research on stochastic environments.

REFERENCES

[1] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[2] C. P. . K. Gao. https://bair.berkeley.edu/blog/2019/03/18/rl-generalization/,
2019. [Online; access 28-03-19].

[3] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius,
and S. Risi, “Procedural level generation improves generality of deep
reinforcement learning,” arXiv preprint arXiv:1806.10729, 2018.

[4] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, and S. M. Lucas,
“General video game ai: Competition, challenges and opportunities,” in
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[5] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Journal
of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[6] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 5026–5033, IEEE, 2012.

[7] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler,
A. Lefrancq, S. Green, V. Valdés, A. Sadik, et al., “Deepmind lab,”
arXiv:1612.03801, 2016.

[8] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying
generalization in reinforcement learning,” arXiv:1812.02341, 2018.

[9] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta learn
fast: A new benchmark for generalization in rl,” arXiv:1804.03720, 2018.

[10] E. Beeching, C. Wolf, J. Dibangoye, and O. Simonin, “Deep rein-
forcement learning on a budget: 3d control and reasoning without a
supercomputer,” arXiv:1904.01806, 2019.

[11] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell, “The malmo
platform for artificial intelligence experimentation.,” in IJCAI, pp. 4246–
4247, 2016.

[12] D. Perez-Liebana, K. Hofmann, S. P. Mohanty, N. Kuno, A. Kramer,
S. Devlin, R. D. Gaina, and D. Ionita, “The multi-agent reinforcement
learning in malmö (marlö) competition,” arXiv:1901.08129, 2019.

[13] D. S. Chaplot, G. Lample, K. M. Sathyendra, and R. Salakhutdinov,
“Transfer deep reinforcement learning in 3d environments: An empirical
study,” in NIPS Deep Reinforcemente Leaning Workshop, 2016.

[14] M. Wydmuch, M. Kempka, and W. Jaśkowski, “Vizdoom competitions:
playing doom from pixels,” IEEE Transactions on Games, 2018.

[15] P. vd Heiden. http://doombuilder.com/. [Online; access 28-March-2019].
[16] S. Judd. http://slade.mancubus.net/. [Online; access 13-05-19].
[17] F. Johansson. http://omgifol.sourceforge.net/. [Online; access 13-05-19].
[18] R. Software. https://zdoom.org/wiki/ACS. [Online; access 13-05-19].
[19] I. J. Lee, “Navdoom.” https://github.com/agiantwhale/NavDoom, 2018.
[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,

D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International conference on machine learning,
pp. 1928–1937, 2016.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] A. Hill, A. Raffin, M. Ernestus, A. Gleave, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,
S. Sidor, and Y. Wu, “Stable baselines.” https://github.com/hill-a/stable-
baselines, 2018.

APPENDIX A
API EXAMPLE

MazeExplorer was designed to enable seamless generation
of a train/test map split. Consider for example the case in
which one wants to test the ability of an agent to generalise to
new random textures, MazeExplorer makes it easy to generate
distinct test maps with their own configurations as shown below.

1 t r a i n e n v = MazeExplore r (number maps =1 ,
2 s i z e = (1 5 , 1 5) ,
3 random spawn=True ,
4 r a n d o m t e x t u r e s = F a l s e ,
5 keys =6)
6

7 e v a l e n v = MazeExplore r (number maps =10 ,
8 s i z e = (1 5 , 1 5) ,
9 random spawn=True ,

10 r a n d o m t e x t u r e s =True ,
11 keys =6)
12

13 # t r a i n
14 f o r i n r a n g e (1 0 0 0) :
15 obs , rewards , dones , i n f o = t r a i n e n v . s t e p (

t r a i n i n g m o d e l . a c t i o n)
16

17 # e v a l u a t i o n
18 f o r i n r a n g e (1 0 0 0) :
19 obs , rewards , dones , i n f o = e v a l e n v . s t e p (

t r a i n e d m o d e l . a c t i o n)

APPENDIX B
LIST OF MAZEEXPLORER CONFIGURATIONS

When generating an instance of MazeExplorer, the following
arguments can be configured:

• Number of maps
• Map Size (X×Y)
• Maze complexity
• Maze density
• Random/Fixed keys
• Random/Fixed textures
• Random/Fixed spawn
• Number of keys
• Environment Seed

• Episode timeout
• Reward clipping
• Frame stack
• Resolution
• Data augmentation
• Action frame repeat
• Actions space
• Specific textures (Wall,

ceiling, floor)

