
Towards Liveness in Game Development
Andrew R Martin1 and Simon Colton1,2

1Game AI Research Group, Queen Mary University of London, UK
2 SensiLab, Faculty of IT, Monash University, Australia

andrew.m@qmul.ac.uk

Abstract—In general, videogame development is a difficult
and specialist activity. We believe that providing an immediate
feedback cycle (liveness) in the software used to develop games
may enable greater productivity, creativity and enjoyment for
both professional and amateur creators.

There are many different methods for achieving interactivity
and immediate feedback in software development, including
read-eval-print loops, edit-and-continue debuggers and dataflow
programming environments. These approaches have each found
success in domains they are well-suited to, but games are
particularly challenging due to their interactivity and strict
performance requirements. We discuss here the applicability of
some of these ideas to game development, and then outline a
proposal for a live programming model suited to the unique
technical challenges of game development. Our approach seeks
to provide an extensible way to automate the process of obtaining
feedback, through the use of a reactive programming model and
dataflow-style UI. We describe our progress in implementing this
design, with reference to a simple example game.

Index Terms—Game Development, Live Programming, Reac-
tive Programming

I. INTRODUCTION

Chris Hancock conveyed the dramatic effect that continuous
feedback can have in a programming environment with an
archery vs. water hose analogy [1] as follows. A traditional
programming feedback cycle can be compared to an archer
trying to hit a target. They fire one arrow at a time, able to
make adjustments only when they see where their arrow lands,

Fig. 1. Bret Victor’s time-travel demo. The top slider controls the timeline.
The slider in the code changes a variable in real-time, affecting the in-game
character.

which could go on indefinitely. In contrast, it would be trivial
to hit the same target using a water hose, simply by moving
the hose until the water hits it. In 2012, Bret Victor gave a
presentation entitled Inventing on Principle [2], in which he
advocated for tools which provide an immediate connection
between creators and the things they create. This presentation
included a highly influential demonstration of a game devel-
opment tool, portrayed in figure 1. The presentation inspired
many research projects in academia and industry, such as Ap-
ple’s Swift Playgrounds (apple.com/uk/swift/playgrounds) and
Chris Granger’s Light Table (chris-granger.com/lighttable),
which crowdfunded investment from more than 7,000 backers.

In this atmosphere of excitement, we might have expected
the ideas from this presentation to make their way into game
development tools in the 7 years that followed, but this hasn’t
happened. Part of the reason is that the demos were only
intended to convey ideas rather than robust technical solutions,
as discussed in [3], and generalising the ideas to general-
purpose development environments has proven challenging.
One area where huge strides forward have been taken is in
front-end web development. In particular, the release of the
Elm programming language [4] and the React web framework
[5] provided the foundations for robust, generalised program-
ming tools, such as hot reloading with state preservation and
time-travel debugging [6], [7].

To apply the techniques used in Elm and React/Redux
frameworks to game development, one must overcome per-
formance limitations. In particular, these frameworks rely
on persistent data structures, as described in [8]. It can be
challenging to build a high-performance game simulation with
data structures like these. Furthermore, as Victor argued in his
presentation, liveness of code on its own is often insufficient
to create a powerful connection between a creator and their
work. To really unlock the value of this programming model,
one approach would be to build a tool that users can reshape
on the fly and extend to suit their purposes. In particular, the
node-based dataflow programming paradigm [9] has a natural
affinity for liveness and extensibility: by connecting live nodes
together, users build their own interface. This is demonstrated
in environments such as Dynamo [10] and Jonas Gebhardt’s
visual programming demo [11], where any React component
may be used as a node in the graph.

We are currently building a generalised programming en-
vironment in which live feedback is given, and using this
to experiment with ways in which continuous feedback can
benefit game developers. We also aim to provide a blueprint

978-1-7281-1884-0/19/$31.00 ©2019 Crown

that existing game development tools can use to begin im-
proving their own feedback cycles. To describe this work
in progress, in section II, we survey four approaches to
interactivity in game development and highlight the pros and
cons of each. In section III, we describe the design for our
new game development environment, which combines textual
programming with a visual node graph interface, and we
provide details of our implementation progress. We conclude
with a discussion of future work.

II. INTERACTIVITY IN GAME DEVELOPMENT

Interactivity in software development has a rich history, and
elements of interactivity have long been included in game
development toolkits. The four approaches described below
are not meant to be exhaustive, but do give a flavour of the
kinds of ways in which liveness can be employed in software
engineering.

A. REPLs and Notebooks

Read-eval-print loops, or REPLs, are a very successful UI
paradigm in software development. Popularised by the Lisp
family of languages, they are now the basis of most scientific
programming environments. The rapid feedback cycle they
enable allowed programming languages to become a tool for
thought, rather than just a way to specify behaviour. REPLs
are often embedded in game loops for querying and debugging
game state, and injecting commands for experimentation.

Any modifications made using a REPL are usually tem-
porary. This makes them excellent for exploration and intro-
spection, but poorly suited as a primary method for authoring
code. This problem is usually overcome by exposing REPL
functionality through the notebook UI paradigm, in which a
user edits a script and is able to evaluate different parts of it at
will, visualising the results between blocks of code. However,
it is not clear how much benefit a notebook would offer beyond
a traditional code editor for creating a game. The user would
likely need to run the whole contents of the notebook to
launch or update the game, just like running a normal program.
Notebooks might be well-suited to experimenting with game
asset pipelines, but do not offer an obvious way for the user
to interact with live game behaviour.

B. The Smalltalk model

Smalltalk pioneered a programming model, runtime tech-
nology and visual UI paradigm that allowed software to be
edited as a live artefact [12]. A user can inspect a Smalltalk
program via a class browser and make arbitrary changes
to it while it is running. These changes are retained as a
permanent part of the program, making this viable as a primary
mode of development. Many popular game development tools
feature editors which could be compared to the Smalltalk
class browser. They allow users to browse and modify entities,
components, scripts and assets, all while a game is running.
However, changes to dynamic state cannot be saved because
they have no clear meaning; for instance, what does it mean

to pause a game of tetris, move a falling block slightly to the
left, and then hit save?

Changes to static data or code might not provide any
feedback, as they may have already affected the state of the
game and won’t necessarily ever affect it again. For example,
changing a variable which controls the size of enemies in a
game may not affect the enemies that have already spawned,
depending on how the game is programmed. In fact, the game
may now contain enemies of two different sizes, which is not
representative of the code and can never happen again. These
live editing tools are powerful, but if used without planning
or structure, they are likely to produce incoherent results or
no visible results at all.

C. Dataflow and Reactive Programming

Dataflow and Reactive programming are broad fields with
much in common [13]. Programs are typically expressed as
transformations over some set of inputs, which may be discrete
event streams, continuous signals or both, depending on the
semantics of the system in question. The state and output of the
program can be calculated deterministically from these inputs.
Calculations are generally modelled as a directed, acyclic
graph of cascading changes, starting from the inputs. It is this
dependency tracking that enables a reliable feedback cycle.
Spreadsheets, for example, are one of the most successful
examples of a reactive system. Changes made to the data
or formula in one cell immediately trigger the recalculation
of all dependent cells. One of the strengths of these tools
is to provide granular, incremental feedback. Intermediate
results can trivially be visualised, and changes trigger minimal
recalculations.

There have been many attempts at writing games using
reactive programming or dataflow systems, but no mainstream
tools are built around either approach. Some game engines
use node-graphs to express behaviour, but they usually rely
on traditional control-flow evaluation semantics, rather than
dataflow semantics. Most game development tools struggle to
embrace dataflow programming because they depend heavily
on the use of mutable data structures and shared-pointers,
both for performance and ease-of-use. This makes it very easy
to introduce accidental coupling in ways that would break a
dataflow or reactive programming model. However, dataflow
programming is still used in some parts of game development.
For example, node-based shader editors and VFX tools like
Houdini both incorporate concepts and UI metaphors from
dataflow programming.

D. Reactive GUI frameworks

Reactive GUI frameworks like Elm and React are usually
modelled as a tree of components which may hold state, such
that each implements the same simple interface: they can
initialise their state, update their state in response to an event,
and render themselves. There are many variations on this
model, including versions which handle state updates using
reducers and immutable data structures. This variation is the
one most commonly used to build tools like time-travelling

debuggers, as it is trivial to cache previous component states
by holding immutable references to them, allowing them to be
re-rendered on command.

Each update to a reactive component causes the entire tree
of components to re-render itself. Although this is the model
presented to the programmer, behind-the-scenes optimisations
may mitigate much of the cost of this. The simple component
interface described above is very similar to a basic game
loop. Game engines also typically re-render the whole screen
according to their internal state, although this may happen on
a timer instead of in response to changes.

III. DESIGNING A NEW SYSTEM

We are building a reactive, node-based game development
tool, wherein a node graph processes streams of discrete events
and uses a combination of both push and pull semantics, as
discussed in [13]. Nodes in our tool can hold mutable state,
but by replaying input event streams, we can visualise, explore
and transform the history of this state. This functionality
will be used to build tools like time-travelling debuggers.
Nodes are implemented using a simple, text-based imperative
programming language. Nodes may also be populated with
custom GUI elements, such as data views or interactive editors.
These custom nodes are implemented using the tool itself.
Game logic and libraries are expressed primarily using the
imperative programming language. The node graph’s purpose
is to provide a flexible, user-friendly mechanism for obtaining
useful feedback.

As discussed in section II-B, existing game development
tools often can’t provide immediate feedback in response to
live changes. This forces the user to perform a series of
additional manual interactions every time they need feedback,
such as manually playing through part of their game. We
intend to show that many interactions like these can be
concisely expressed using reactive nodes instead, such that
feedback becomes immediate and automatic.

A reactive node graph is well-suited to expressing live asset
pipelines and other compile-time processing steps. Thanks to
the reactive nature of the graph, we believe it can also be used
to recreate and expand upon the ideas discussed in section
II-D, which aim to provide feedback for interactive processes
in time (such as GUI applications).

A. Reactivity without immutability

Reactive programming systems are often built using com-
ponents (or cells) that can update each other in response to
changes. These updates are performed deterministically and
efficiently by maintaining a graph of all dependencies between
components. If two components become accidentally coupled
in a way that is not represented in the dependency graph,
the program will no longer function correctly. In most pro-
gramming languages this can happen very easily, through the
ubiquitous use of shared mutable pointers. Building systems
entirely from immutable data structures is one way of avoiding
this, which is why it is the foundation of many reactive
systems.

It is challenging to build a high performance game simula-
tion with only immutable data structures. Instead of relying on
immutability, we can avoid accidental coupling by preventing
mutable state from being shared amongst more than one
component. Dependent nodes may borrow and even re-export
immutable references to these data structures, as long as they
do not store them. This can be achieved by preventing mutable
references from passing between nodes, using the semantics
and type system of the programming language.

B. The programming language

Ease-of-use is very important for an interactive program-
ming environment. However, performance is also very impor-
tant for games. In recent years, languages like Swift (swift.org)
and Julia [14] have demonstrated that careful language design
can offer performance close to systems languages (such as C
and C++), while retaining the memory safety and convenience
features of productivity languages. Similar performance is now
being achieved in C#, thanks to the High-Performance C#
subset and the Burst compiler developed at Unity [15]. Once
we have stabilised our design, it is possible that languages
such as these will be suitable alternatives, bringing the system
to a wider audience.

C. Extensibility

The node graphs in our system are able to define visual,
event-driven applications, and so they may also be used
to define arbitrary GUI extension nodes. These nodes can
be defined in the manner of reactive GUI components, as
described in section II-D. In this way, the editor is live and
capable of self-modification, in the tradition of systems like
Smalltalk. An example featuring a hypothetical pixel editor
extension node is illustrated in figure 2.

Fig. 2. Hypothetical illustration of pixel art editing nodes feeding into a run-
ning game, with another widget for scrolling through time in the game world.
Assets borrowed from BrowserQuest (github.com/mozilla/BrowserQuest).

D. Implementation Progress

Currently, we have implemented an initial version of the
programming language. We have used it to implement a
basic text-based prototype of our reactive programming model,

which has in turn been used to implement a simple demo of a
tetris-like game. This demo supports hot reloading and event-
replay, such that changes to game behaviour or the game’s
initial state cascade through the entire history of the play-
through in real-time. It is depicted in figure 3.

The program is divided into two modules: a controller
module and a game component module. The game compo-
nent exposes an initialisation function, update function and
rendering function. The controller initialises an instance of
the game component and runs an event loop. When it receives
events, it logs them and passes them to the game. This includes
periodic tick events, which trigger both an update and render
step. When the programmer changes the code for the game,
the controller discards the game component and initialises
a new one. It then runs a tight loop providing all previous
logged events to the component. This provides a basic live
update loop and could be extended to give the user control
over the timeline. However, there are obvious shortcomings.
In particular, any change made to the rendering code will
cause the entire event log to be needlessly reprocessed. In
the full reactive node-based system, these functions would
be split across multiple nodes with their dependencies clearly
expressed in the graph, averting this problem.

Fig. 3. A tetris-like game, depicted after a live modification has been made
to the shape of one of the game’s block types (the blue L-shape), affecting
the whole history of play.

IV. FUTURE WORK

The next step is to implement the node GUI for our
reactive programming model. We will then implement the
nodes and UI required to replicate the original Bret Victor
game development demo, as a proof of concept for our system.
Following this, we will implement several other demos to test

the generality of the system. Once we have stabilised the de-
sign of our system, we can evaluate the value and functionality
it provides in contrast to state-of-the-art game development
tools. We will also formalise descriptions of the reactive model
and key programming language features required, and propose
ways to integrate the functionality demonstrated into existing
tools.

We hope to show that liveness in games programming can
increase a game designer’s productivity and creativity, as well
as the enjoyment they gain from the creative process. This is
in line with recent thinking around so-called casual creators
[16], where the fun of making is equal in importance (or more
so) than the value of the artefact produced. Casual creators
for game design, such as the Wevva iOS app [17], are being
used to lower barriers to entry and democratise videogame
development. We plan to compare and contrast such casual
approaches with liveness-enhanced games programming and
possibly to suggest hybrid approaches which might combine
the best aspects of choice-based design and live programming.

REFERENCES

[1] C. M. Hancock, “Real-time programming and the big ideas of compu-
tational literacy,” Ph.D. dissertation, Cambridge, MA, USA, 2003.

[2] B. Victor. Inventing on principle. [Online]. Available:
https://vimeo.com/36579366

[3] G. Bracha. Room 101: Debug mode is the only mode. [Online].
Available: https://gbracha.blogspot.co.uk/2012/11/debug-mode-is-only-
mode.html

[4] E. Czaplicki and S. Chong, “Asynchronous functional reactive program-
ming for GUIs,” in Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation. New York,
NY, USA: ACM Press, Jun. 2013, pp. 411–422.

[5] Facebook. React - a JavaScript library for building user interfaces.
[Online]. Available: https://reactjs.org/

[6] D. Abramov. Hot reloading in react. [Online].
Available: https://medium.com/@dan abramov/hot-reloading-in-react-
1140438583bf

[7] M. James. Time travel made easy: Introducing elm reactor. [Online].
Available: http://elm-lang.org/blog/time-travel-made-easy

[8] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making
data structures persistent,” Journal of Computer and System Sciences,
vol. 38, no. 1, pp. 86 – 124, 1989.

[9] W. Johnston, J. Hanna, and R. Millar, “Advances in dataow programming
languages,” ACM Computing Surveys, vol. 36, pp. 1–34, 2004.

[10] A. Basman, L. Church, C. N. Klokmose, and C. B. Clark, “Software and
how it lives on-embedding live programs in the world around them.” in
PPIG. 2016.

[11] ReactEurope, “Jonas Gebhardt - evolving the visual programming
environment with React at React-europe 2016.” [Online]. Available:
https://www.youtube.com/watch?v=WjJdaDXN5Vs

[12] A. Goldberg, Smalltalk-80: the interactive programming environment,
ser. Addison-Wesley series in computer science. Addison-Wesley, 1984.

[13] E. Bainomugisha, A. L. Carreton, T. Cutsem, S. Mostinckx, and
W. Meuter, “A survey on reactive programming,” ACM Comput. Surv.,
vol. 45, no. 4, pp. 52:1–52:34, 2013.

[14] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia: A fast
dynamic language for technical computing,” arXiv:1209.5145, 2012.

[15] On DOTS: C++ & c# unity blog. [Online]. Available:
https://blogs.unity3d.com/2019/02/26/on-dots-c-c/

[16] K. Compton and M. Mateas, “Casual creators,” in Proceedings of the
International Conference on Computational Creativity, 2015.

[17] S. Gaudl, M. Nelson, S. Colton, R. Saunders, E. Powley, B. Perez Ferrer,
P. Ivey, and M. Cook, “Rapid game jams with fluidic games: A user
study and design methodology,” Entertainment Computing, vol. 27,
2018.

