
Deep Variational Autoencoders for
NPC Behaviour Classification

Everton Schumacker Soares
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

schumack@ualberta.ca

Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

bulitko@ualberta.ca

Abstract—Procedural content generation (PCG) can create
novel, player-specific content in video games, including be-
haviours of AI-controlled non-playable characters (NPC). Here
we present our first results on comparing unsupervised and
supervised machine learning for procedurally generated NPC
behaviours. Using an artificial life environment as a stand-in
for a video game, we run artificial evolution and generate AI
agents with various behaviours. We then train deep variational
autoencoders on commonly evolved behaviour and measure its
efficacy in detecting behaviours unseen during training. As a
reference, we use an off-the-shelf deep network trained in a
supervised manner to detect behaviours both seen and unseen
during its training. Preliminary results demonstrate promising
performance that holds even when the training set contains a
mixture of several types of behaviours without proper labels.

Index Terms—procedural content generation, non-playable-
characters, video games, unsupervised machine learning, deep
learning, variational autoencoders, anomaly detection.

I. INTRODUCTION

Procedural Content Generation (PCG) [1], [2] can generate
video-game levels, narrative, aesthetics and behaviours of non-
playable characters (NPCs) [3], [4]. It has the potential to
produce novel content and thus enable new types of game-
play in video games (e.g., exploring procedurally generated
uncharted alien worlds in No Man’s Sky [5]). On the down
side, procedurally generated content can move beyond the
designer’s intentions and thus have a negative effect on the
player’s experience. Thus, it becomes important to automat-
ically classify procedurally generated content – in our case
procedurally generated NPC behaviours. Such a classifier
can be applied for quality assurance to distinguish expected
behavior from bugs or for novelty detection to flag behaviours
potentially surprising to the player [6].

In this paper we describe our on-going work on classifying
NPC behaviours automatically by training a behaviour clas-
sifier. It can then be used to inform PCG techniques and/or
game designers when interesting/surprising/unacceptable NPC
behaviour emerges. Since we are after detecting previously
unseen, novel behaviours we employ unsupervised machine
learning in the form of deep variational autoencoders [7]–
[9]. In this work in progress we use a simple artificial
life simulation [6], [10] in place of an actual video-game

engine. This is done for rapid prototyping and allows us to
quickly modify both the behaviour generator and the detector.
Preliminary results demonstrate promising performance of
variational autoencoders that hold even when the training set
contains a mixture of several types of behaviours without the
corresponding labels.

II. PROBLEM FORMULATION

The problem is to automatically classify procedurally gen-
erated NPC behaviour. We impose the following requirements:
(i) the classifier is tuned for a given game automatically via
machine learning on training data collected from the game,
(ii) the training data contains representatives of only a single
class, (iii) the classifier takes easily observable data (e.g., a
screen-capture stream) and does not require instrumenting the
game engine or accessing its internal states, (iv) the training
process is robust to inclusion of trace amounts of data from
another class into the training set. The performance of such a
classifier is then measured via its accuracy: the percentage of
data correctly labeled.

III. RELATED WORK

Player behaviour detection is of interest in on-line games
where game modifications, bot use and other anomalous
behaviours are considered cheating. For instance, machine
learning was used [11] to detect gold farmers in EverQuest
II [12]. Their approach relies on feature extraction from game
logs and may be sensitive to training data pollution (i.e.,
presence of mislabeled training data).

Detecting anomalous behaviour is a related binary-
classification task. Techniques based on distance, clustering
and density are common methods for outlier and anomaly
detection [13]. Our previous work showed how supervised
deep learning can outperform density-based approaches and
clustering algorithms (e.g., k-nearest neighbors) when dealing
with screen-capture images taken in an A-life environment
or a video game [10]. Since a screen-capture image contains
positional and morphological information about a population
of several NPCs, crafting a distance function to detect outliers
poses a challenging problem. For the same reason manually
creating descriptive models for data can be challenging. Thus,

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

we here propose to use unsupervised autoencoders as a model-
based approach capable of learning a compression that best
represents images from a given class. NPC behaviours from
a different class can then be detected by measuring how well
the learned compression applies to a given image.

Beyond games, a social-force model was used to detect
anomalous crowd behaviour in image frames from surveillance
cameras [14]. Although this technique is capable of detecting
population-level anomalies, it relies on a specific particle mo-
tion pattern limiting the set of behaviours it can detect. More
recently, autoencoders were used to detect anomalies in crowd
behaviours from video footage [8]. However, their anomalies
manifested itself in an unusual shape of the individual agents
(e.g., a bicycle versus pedestrians). This reliance limits appli-
cability of the approach. For instance, agents may not differ in
their shape in the visualization yet behave anomalously [10].

IV. PROPOSED APPROACH

Given the constraints of our problem, we use autoen-
coders [7], [8]. Specifically, we focus on a binary classification
task and train a variational autoencoder (VAE) [9] to tell
anomalous/unusual/novel behaviours from typical behaviours.
While the technique can be applied to a broad variety of
game and simulation environments we evaluate it in a simple
artificial life (A-life) environment adopted from published
studies [6], [10]. This stand-in for an actual video game
enables rapid prototyping and evaluation.

PCG in A-life. The environment is a 2D grid (Figure 1,
left). The prey agents (“rabbits”) eat a re-growing resource
(“grass”). The predator agents (“wolves”) eat rabbits. An
agent’s behaviour policy is determined by a set of weights
encoded in its genes. On each time step an agent computes
utility of each grid cell within its sight radius. The utility is a
sum of cell contents (e.g., the amount of grass or the number
of wolves in the cell) weighted by the agent’s genetic weights
(e.g., its affinity to grass or its dislike of the wolves). The agent
then moves towards the cell with the highest utility. Agents
spend energy moving around and replenish it by eating. They
die when their energy drops below a minimum. A sufficiently
old agent with enough energy will produce an offspring
which inherits the parent’s genes perturbed with random noise
(mutation). The simulated Darwinian evolution procedurally
generates wolves and rabbits. A similar process has been used
in recent video games to generate enemy NPCs [3], [4].

On a typical evolution run, rabbits evolve to like grass
and dislike wolves while wolves evolve to like rabbits. On
some evolution runs, unusually behaving agents emerge. For
instance, the leader-follower behaviour is an emergence of a
large number of long-living yet grass-disliking rabbits [10].
It can happen when two types of rabbits evolve: those who
dislike grass but like other rabbits (followers) and those who
like grass (leaders). Since any rabbit automatically eats grass
in its current grid cell, grass-disliking rabbits can survive
by following grass-liking rabbits to grass-rich areas of the
environment. While followers usually appear in small numbers

on many runs, an emergence of follower rabbits in a large
proportion (e.g., two thirds of the population) happens rarely.

Our behaviour classifier takes a stream of visualization
frames produced by the A-life. Temporal patterns are impor-
tant to define a behaviour. To avoid dealing with time explicitly
we capture such patterns in a single image by applying a
moving average with an exponential decay to the frames
(Figure 1, center). A similar automated process can be applied
to a screen-capture stream from a video game.

Variational Autoencoders. Notationally x ∈ Rk represents an
input datum (i.e., an averaged frame, Figure 1, center). As a
subclass of autoencoders, VAE is a neural network composed
of an encoder and a decoder trained to reconstruct x as x′.
The encoder is a function that maps the input image x to two
lower-dimensional variables: the mean µ(x) and the variance
σ(x), both vectors in Rm, m� k. A mixture of convolutional
and fully connected layers is used to implemented the encoder.
Then the VAE computes the code z(x) ∈ Rm by linearly
combining µ(x) and ε · σ(x) where ε is a scalar random
variable drawn from N (0, 1). The code is then decoded back
to x′ ∈ Rk by the decoder.

A VAE is trained so that its output x′ is a close re-
construction of its input x. Thus, we use gradient-descent
backpropagation with the loss function given by the linear
combination: L(x,x′) + KL(N (µ(x), σ(x))|N (0, 1)) where
KL(P |Q) is the KL-divergence [15] between the probability
distributions P and Q. L(x,x′) is VAE reconstruction error,
here defined as the pixel-wise mean square error: L(x,x′) =∑W

j=1

∑H
i=1(xij−x′

ij)
2

W ·H where xij is the pixel in row i and
column j in the input image x with the width of W pixels
and the height of H pixels. Likewise, x′ij is the corresponding
pixel in the image x′ reconstructed by the VAE.

Behaviour Classification with VAE. As the VAE learns to
reconstruct training data by passing a high-dimensional image
through a lower dimensional code, it is likely to learn visual
patterns in its input images. If such patterns in visualization
of normal behaviours (which the training data mostly consists
of) are different from patterns specific to visualization of
anomalous behaviours (which were mostly absent in the train-
ing data) then one may assume that the reconstruction error
L(x,x′) will be higher for images of anomalous behaviour.
Thus, we can turn the VAE into an anomaly detector (i.e., a
binary classifier) by comparing its reconstruction error against
a threshold θ as follows: the input image x is classified as
normal if L(x,x′) ≤ θ and anomalous if L(x,x′) > θ.

The threshold θ has to be tuned to maximize the VAE
accuracy. The tuning process is complicated by the fact that
labeled anomalous data are assumed unavailable (Section II).
Thus we tune θ using automatically synthesized images of a
surrogate anomaly. To create such a surrogate-anomaly set, we
take a separate set of normal images and perturb each image
by shuffling its pixels according to a random permutation
(Figure 1, right). Note that such synthetic images are likely to
be substantially different from naturally occuring anomalies.
We then use the two image sets to select the threshold θ for

an already trained VAE. The candidate values of θ run the set
θi = Q3+

i
2 IQR, i ∈ {0, 1, . . . , 20}. Here IQR = Q3−Q1, Q1

is the 25th percentile and Q3 is the 75th percentile [16] of the
VAE’s reconstruction errors on its training set, computed after
its training. We choose the θi which maximizes the VAE’s
accuracy in classifying the surrogate anomalies.

Fig. 1. Representative of a static normal frame from our predator-prey
A-life environment (left), its weighted moving average (center), and the
corresponding surrogate image (right).

V. EMPIRICAL EVALUATION

We define three classes of agent behaviours in our A-life
as follows. Leaders (L) indicates a state of the simulation
in which there are at least twice as many leader rabbits as
there are follower rabbits. This is the most common state
and is considered the normal behaviour. Followers (F) is a
state of the simulation in which there are at least twice as
many followers as there are leaders. This happens much less
frequently and thus constitutes an anomaly. Finally, random
(R) is another type of anomaly where at least half of the
agents in the environment have random behaviour policies.1

Figure 2 shows representative images from the three classes.

Fig. 2. Representatives of classes L, F and R, respectively from left to right.

Using A-life parameters from prior work [10] we conducted
600 evolutions runs. On each run we detected L, F and
R classes and stored only such images, discarding all other
images. Of the 600 evolution runs, 281 were used to produce
training image sets: Ltrain for the class L (leaders) and F train

for the class F (followers). We balanced the image sets by
randomly discarding images from larger sets.

1For our experiments we needed two different types of anomalous be-
haviours yet only one anomaly had been observed to date in the A-life
environment. So we created the second anomaly artificially. Note that classes
L and F emerge naturally in the course of A-life evolution and were
previously reported [10]. However, class R is very unlikely to emerge naturally
since rabbits with random movement policies do not survive for long. Thus, in
order to collect enough data for R we artificially injected hand-built random
rabbits into the A-life environment.

Additional 94 runs yielded the image-set pair (Lval, F val)
used during VAE training for validation (i.e., to detect when to
stop the training process). Then additional 100 evolution runs
were used for the image set Lθ used to compute the threshold
θ for the trained VAE (as described earlier). Then additional
125 runs produced the image-set pair (Ltest, F test) used to
test trained behaviour detectors. Finally, we ran 10 additional
evolutions where, with probability 50%, we replaced each
rabbit in the starting population as well as each rabbit born
during the evolution with a randomly moving rabbit. These 10
runs yielded the image set Rtest.

Our VAE implementation uses convolutional, fully con-
nected, batch-normalization, max-pooling and transposed con-
volutional layers implemented in TensorFlow [17]. While we
hand-tunned the architecture to the data at hand, we conjecture
that a similar architecture would work for other environments.

Experiments. We first considered the case when the training
data set consists entirely of images depicting the normal
behaviour (i.e., the class L). Our VAE was initialized with
weights and biases drawn from N (0, 0.1). It was then trained
on the image set Ltrain. The learning rate followed a stepwise
cooling schedule with initial value of 0.0001 and the decay of
0.8 on each epoch. The training had three stopping criteria: (i)
a maximum of 100 epochs (maximum training time), (ii) the
UP test [18] with k = 5, s = 3 (over-fitting), (iii) the absolute
difference in the validation error between consecutive batches
does not exceed 0.0001 for five times in a row (plateauing).
The validation error was computed on the image set Lval.
Adam optimizer [19] with the batch size of 50 images was
used. As with our VAE architecture, the training parameters
were tuned for the problem in hand. Once the training was
completed, we selected the threshold θ on the image sets
(Lθ, Sθ). After that we evaluated the VAE on the separate test
image set (Ltest, F test). Image labels were used only to test our
VAE after training. The resulting test accuracy is presented in
Table I and discussed below.

To put the test accuracy of our VAE in a context, we
also trained GoogLeNet [20] to classify (Ltest, F test). Being a
supervised learning approach its training required both classes
to be present and labeled in the training data. Thus, while
our VAE was trained only on Ltrain, GoogLeNet was trained
on both Ltrain and F train, all accurately labeled. We used
a version of GoogLeNet included in the Machine Learning
toolbox with MATLAB R2018a. This network was trained
with Adam optimizer from the MATLAB toolbox using the
same learning schedule as we used for the VAE and the
batch size of 50 images. The training stopped either when 100
epochs where reached or when the validation error computed
every 20 batches on (Lval, F val) did not improve over the
previously smallest validation error three times in a row.
Additionally, since GoogLeNet included with MATLAB had
1000 neurons in its output layer and we have only two classes,
we replaced the output layer with a new layer of two neurons.
To compensate for the lack of ImageNet-based pre-training for
the weights leading to the new layer, we increased the layer’s

TABLE I
ACCURACY OF BEHAVIOUR CLASSIFIERS ON TEST DATA.

Classifier Training set Threshold-selection set Validation set (Ltest, F test) (Ltest, Rtest)

VAE Ltrain (Lθ, Sθ) Lval 86.0± 3.0% 70.2 ± 4.8%
GoogLeNet (Ltrain, F train) (Lval, F val) 97.0 ± 2.4% 49.7± 0.4%

learning rate ten folds. A version of GoogLeNet initialized
with random weights on all layers yielded similar results.

Results. The means and the standard deviations of test accu-
racy were measured over four trials and are listed in Table I.
The trials differed in the initialization of the VAE’s weights
and biases, GoogLeNet weights for the last layer and the
randomization of the training process using Adam optimizer.
However all image sets stayed the same on all trials — a
limitation to be addressed in the future work.

GoogLeNet had a mean test accuracy of 97% when de-
tecting the follower anomaly (class F). This confirms that
supervised learning can be a viable behaviour detector when
labeled samples of anomalous behaviour are available during
training [10]. However, when tested on the random anomaly
(class R) missing from the training data, GoogLeNet had
the chance-level test accuracy of 49.7%, failing to recognize
novel behaviours not seen during its training. On the other
hand, the VAE did not require seeing anomalous behaviours
during training and thus could detect the F anomaly 86% of
the time and the R anomaly 70.2% of the time. We suspect
the difference in the test accuracies is due to similarities
and dissimilarities between images in L, S, F,R classes. The
results suggest viability of VAE as a novel behaviour detector.

We also investigated training the VAE on data that includes
anomalous data (without proper labels identifying them as
such). We are unable to report the results in detail due to space
limitations. Briefly, with 1% of anomalous images mixed in
with the normal images, the VAE test accuracy is 81.1% for
the F anomaly and 70.5% for the R anomaly.

VI. FUTURE WORK & CONCLUSIONS

The results presented above are promising but can likely be
improved by further tuning VAE architecture and its training
parameters (e.g., via neuroevolution [21], [22]). We hand-
tuned our approach to maximize classification accuracy and
not precision, recall and rank power often used to assess
anomaly detection [13]. Our performance on these measures
is currently poor. Our previous work ported supervised classi-
fication from an A-life environment to a commercial video
game [10]. Future work will do so for autoencoders. In
particular, we will investigate how well VAE can cope with
complex screen images in a video game.

In summary, as progressively more game content is gen-
erated procedurally, classifying the resulting content becomes
more critical. We presented an approach to classifying NPC
behaviours from readily available screen captures. By using
unsupervised machine learning we trained such a behaviour

classifier automatically and without the need for human-
labeled training data. In doing so we extended our previous
work [10] and showed that deep autoencoders can detect pro-
cedurally generated NPC behaviours not seen during training.

VII. ACKNOWLEDGMENTS

We appreciate contributions from the NSERC and Nvidia.

REFERENCES

[1] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva,
M. Preuss, and K. O. Stanley, “Procedural content generation: Goals,
challenges and actionable steps,” in Dagstuhl Follow-Ups, vol. 6, 2013.

[2] S. Risi and J. Togelius, “Neuroevolution in games: State of the art and
open challenges,” TCIAIG, 2017.

[3] T. Soule, S. Heck, T. E. Haynes, N. Wood, and B. D. Robison, “Darwin’s
Demons: Does Evolution Improve the Game?” in European Conference
on the Applications of Evolutionary Computation, 2017.

[4] Polymorphic Games, “Project Hastur,” 2018.
[5] Hello Games, “No Man’s Sky Next,” 2018.
[6] V. Bulitko, S. Carleton, D. Cormier, D. Sigurdson, and J. Simpson,

“Towards Positively Surprising Non-Player Characters in Video Games,”
in EXAG/AAAI, 2017, pp. 34–40.

[7] E. Protopapadakis, A. Voulodimos, A. Doulamis, N. Doulamis, D. Dres,
and M. Bimpas, “Stacked autoencoders for outlier detection in over-the-
horizon radar signals,” Comp. intelligence and neuroscience, 2017.

[8] M. Ribeiro, A. E. Lazzaretti, and H. S. Lopes, “A study of deep
convolutional auto-encoders for anomaly detection in videos,” Pattern
Recognition Letters, vol. 105, pp. 13–22, 2018.

[9] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[10] E. S. Soares, V. Bulitko, K. Doucet, M. Cselinacz, T. Soule, S. Heck, and
L. Wright, “Learning to recognize A-Life behaviours,” in ACS, 2018.

[11] M. A. Ahmad, B. Keegan, J. Srivastava, D. Williams, and N. Contractor,
“Mining for gold farmers: Automatic detection of deviant players in
mmogs,” in Int. Conference on Comp. Science and Engineering, 2009.

[12] Daybreak Game Company, “EverQuest II,” 2004.
[13] K. G. Mehrotra, C. K. Mohan, and H. Huang, Anomaly Detection

Principles and Algorithms. Springer, 2017.
[14] R. Mehran, A. Oyama, and M. Shah, “Abnormal crowd behavior

detection using social force model,” in CVPR, 2009.
[15] S. Kullback and R. A. Leibler, “On information and sufficiency,” The

Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.
[16] Y. Zhao, B. Lehman, R. Ball, J. Mosesian, and J.-F. de Palma, “Outlier

detection rules for fault detection in solar photovoltaic arrays,” in APEC,
2013.

[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow
et al., “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. [Online]. Available: http://tensorflow.org/

[18] L. Prechelt, “Automatic early stopping using cross validation: quantify-
ing the criteria,” Neural Networks, vol. 11, no. 4, pp. 761–767, 1998.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR, 2015.

[21] A. Rawal and R. Miikkulainen, “From nodes to networks: Evolving
recurrent neural networks,” arXiv preprint arXiv:1803.04439, 2018.

[22] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy et al., “Evolving deep
neural networks,” in Artificial Intelligence in the Age of Neural Networks
and Brain Computing, 2019.

