
Optimal Use of Experience in First Person Shooter
Environments

Matthew Aitchison
College of Engineering and Computer Science

Australian National University
Canberra, Australia

Email: Matthew.Aitchison@anu.edu.au

Abstract – Although reinforcement learning has made
great strides recently, a continuing limitation is that it requires
an extremely high number of interactions with the environ-
ment. In this paper, we explore the effectiveness of reusing
experience from the experience replay buffer in the Deep
Q-Learning algorithm. We test the effectiveness of applying
learning update steps multiple times per environmental step
in the VizDoom environment and show first, this requires
a change in the learning rate, and second that it does not
improve the performance of the agent. Furthermore, we show
that updating less frequently is effective up to a ratio of 4:1,
after which performance degrades significantly. These results
quantitatively confirm the widespread practice of performing
learning updates every 4th environmental step.

Index Terms – Deep Learning, Game AI, Reinforcement
Learning, Experience Replay

I. INTRODUCTION

Reinforcement learning (RL) in games has gained a lot of
attention recently due to some high-profile successes such as
super-human performance in the Atari games [1], StarCraft [2],
and the game of Go [3]. However, these algorithms require an
extraordinary amount of experience to train the agents. Alp-
haZero, for example, played almost 5-million games to reach
peak performance. This level of sample inefficiency limits the
application of these algorithms to real-world problems. In situ-
ations where generating experience is costly, for example when
robotic interaction with the world is required, episodes typically
measure in thousands rather than millions [4]. Interest has been
building for sample efficient algorithms with the introduction of
the MineRL environment [5], as this is of critical importance to
the application of RL to real-world robotic problems.

The Deep Q-Learning Network (DQN) algorithm [1] first
demonstrated that Deep Neural Networks (DNNs) could be
successfully applied to complex RL tasks. To do this, thr al-
gorithm implemented an Experience Replay (ER) [6] system
that allowed the agent to sample randomly from previously
experienced transitions. Although the primary purpose was to
decorrelate the samples, a useful side effect is the ability to learn
from experience multiple times. The original paper performed
one learning step on 32 samples for every environmental step,
meaning that each transition would be seen an average of 32
times. Later papers instead apply updates every 4th environment
step giving transitions an expected sample rate of 8 times [7] [8].

Figure 1. ViZDoom ‘Health Gathering Supreme’ scenario showing health kits
and poison bottles.

To our knowledge, this change has never been quantitatively as-
sessed in a complex 3D environment. In this paper, we investigate
the impact of adjusting the learning update ratio for DQN under
a First Person Shooter 3D environment. If increased sampling
could make up for environmental steps training schemes may be
able to apply additional model updates in lieu of environmental
steps where the latter has a significantly higher cost. Furthermore,
in situations where the cost of generating experience is relatively
low, a lower frequency may improve training times with little
impact on the performance of the agent.

The ‘Health Gathering Supreme’ scenario in the ViZDoom
environment was used to evaluate agents performance under
different experience replay sampling ratios [9]. The scenario tests
navigating and fine-grained control in a challenging, rich, 3D
environment as shown in figure 1. Furthermore, the graphics of
ViZDoom more closely represent a real-world setting than other
environments such as the Atari Learning Environment (ALE)
[10].

II. RELATED WORK

Various sample efficient algorithms have been proposed to
address the shortcomings of the DQN algorithm. These algo-
rithms, however, would also benefit from knowing the optimal
ratio between taking environmental steps and learning steps.

978-1-7281-1884-0/19/$31.00 c©2019 IEEE

Figure 2. Architecture of the model used in these experiments.

Table I
HYPERPARAMETER SETTINGS

Hyperparameter Value
Minibatch size 32
Replay memory size 10,000
Target network update frequency 1,000
Discount factor 1.0
Initial exploration rate 1
Final exploration rate 0.1
Frame skip 10

A. A3C / A2C

The Asynchronous Advantage Actor-Critic (A3C) algorithm
and its synchronous version A2C were designed to improve
the computational efficiency of the Actor-Critic algorithm by
allowing agents to run in parallel [11]. This greatly improves
training time but has poor sample efficiency due to the lack of
an experience replay.

B. Prioritized Experience Replay

Prioritized experience replay reuses experiences from the past
according to their importance [12]. This importance is estimated
from the temporal difference (TD) error, where larger errors
are believed to be more important. Importance sampling greatly
increases the efficiency of an experience replay buffer, however
the question of how many times to sample the replay buffer
remains.

C. ACER

The Actor-Critic with Experience Replay (ACER) algorithm
extends A2C to use an experience replay and shows that mixing
off-policy experience replay updates with on-policy updates pro-
vides much better sample efficiency [13]. This approach differs
from ours in that is mixes off-policy updates with on-policy, while
ours uses only off-policy updates.

III. METHOD

In this section, we outline the experimental method for eval-
uating the optimal learning step ratio in the ViZDoom ‘Health
Gathering Supreme’ environment. Where the learning step ratio is
the number of times to apply a learning update per environmental
step. Ratios less than 1 indicate multiple environmental steps per
learning update.

A. ViZDoom Environment

The environment selected was ‘Health Gathering Supreme’
which provides a substantial challenge to both AI agents and
human players alike [9]. The scenario involves navigating a maze
while collecting health kits and avoiding poison bottles (see
figure 1). At intervals, the agent’s health is decreased making
it imperative to obtain health kits continuously. The scenario
settings were left unchanged.1

B. Reward Shaping

We use change in health as the reward function as per [14], as
well as adding an auxiliary reward of +100 for each health pack
and -100 for each poison bottle. As health is capped at 100, this
change slightly reduces the reward for obtaining health packs at
high health levels. The final score for the agent is calculated as
the average health over the episode, with any time spent dead
counted as 0. This better distinguishes between an agent who
maintains high health over the entire episode from one who
only just survives. Comparison is also made with Kempka et al’s
original agent according to the default scoring system. Using our
scoring system an idle agent receives an average score of 11.6,
whereas a theoretically perfect score would be close to 100.0.

C. Network Architecture

The network architecture used is nearly identical to the model
used in [9] and is described in figure 2.

D. Hyperparameters

Hyperparameters were left largely unchanged from the ViZ-
Doom paper [9], with the following changes: A minibatch size
of 32 was used to better match the DQN paper. Also, a target
network updating scheme was implemented as per [1], as this was
found to improve training stability. A full list of hyperparameters
can be found in table I. For each learning step ratio, α, a learning
rate search was performed by selecting learning rates from

{5 · 10−5 · α · 2k | k ∈ [−2,−1, 0, 1, 2]} (1)

and choosing the learning rate with the highest final score.
Even though the VizDoom paper used 1,000,000 environment

steps to train their model we found that by including target
updates, most of our models converged much faster than this

1The VizDoom paper uses a backwards action which is not part of the default
configuration for this environment, so one was added. Also, the screenshots from
the VizDoom paper appear to use a different texture pack as the poison bottles
have a different colour. The texture of the bottle in ViZDoom V1.1.7 is more
difficult to distinguish from health than the reference screenshot in their paper

Figure 3. Agents test scores during training taken from the optimal learning rate, and averaged over the 5 runs. The every 4th step agent takes longer to start, but ends
up only slightly underperforming the other agents even with significantly fewer learning updates. Raw scores are shown faded, with a smoothed with an exponential
moving average (ε = 0.8) overlaid.

and did not improve much after the 150,000 mark, so trained
for 250,000 environment steps. The shorter environment steps
helped with training times, and better represents a scenario in
which generating environment steps is expensive.

E. Evaluation

Agents were evaluated by running the agent through the sce-
nario 25 times every 5,000 environment steps, each time starting
from a random position and orientation in the maze. The scores
over these episodes are then averaged. Due to fluctuations over
time the results are then smoothed using an exponential moving
average (EMA) with ε = 0.8, and the top 10% results averaged
to give a final score. Results for each experiment were repeated
5 times with the average of these scores being presented.

IV. EXPERIMENTS

A. Experimental Setup

Experiments were performed with ViZDoom 1.1.7, on an
Nvidia P100 GPU using PyTorch. We used the RMSProp op-
timizer with various learning rates and trained for 250,000 en-
vironmental steps. Target model updates were performed every
1,000 learning steps. Training times ranged from 1 to 12 hours
depending on the learning step ratio used.

B. Experimental Results

Table II
TEST RESULTS FOR AGENTS WITH VARIOUS LEARNING STEP RATIOS.

Learning Ratio Learning Rate Score Reward
4:1 1.25× 10−5 42 1142
2:1 2.5× 10−5 41 1132
1:1 5× 10−5 42 1163
1:2 2× 10−4 41 1129
1:4 4× 10−4 38 1015
1:8 2× 10−4 31 903

1:16 4× 10−4 24 699
1:32 2× 10−4 18 538

Figure 4. Heat map showing average final score for of the 5 runs over each
learning rate modifier k from eq. 1 and learning step ratio. A learning step ratio
of 4:1 indicates 4 learning updates per environmental step, whereas a ratio of 1:4
indicates learning updates every 4th step.

The agent’s performance for each learning step ratio, is given in
table II. Learning rate is the optimal learning rate tested, score the
average final score over the 5 runs, and reward the average final
reward over the 5 runs as per the ViZDoom paper. The agents
performed similarly to those tested by Kempka et al, with the
best run of the learning update every 4th environment step agent
scoring 1,374 compared to approximately 1,300 in the original
paper. The average results, however, are brought down by some
runs failing to converge well.

Figure 3 shows the average test performance during training
for learning step ratios 4:1, 1:1, 1:4 and 1:8. Applying learning
updates every 4th step does initially slow down training, however,
this effect is minimal after 200,000 environment steps. Applying
learning updates every 8th step, on the other hand, significantly
degrades performance.

Figure 4 records the average score over the 5 runs for each
learning rate modifier k and learning step ratio. These results
show that an increased learning step rate, by its self, is not
sufficient to improve the performance of the model. Indeed,

simply applying learning updates additional times leads to a rapid
decrease in performance. However, if the learning rate is similarly
decreased by the equivalent amount, the agent’s performance
remains comparable. Notably, the learning step ratio can also
be decreased to every 4th environment step with little impact
on performance, again, so long as the learning rate is adjusted
accordingly. The reason for the agent’s sensitivity to the learning
rate is not clear. One possible explanation could be that a certain
amount of progress is needed per environment step, and it does
not matter if this progress performed with multiple small steps or
one large step.

V. CONCLUSIONS AND FUTURE WORK

These results show that increased sampling of experience
from the experience replay buffer does not improve an agent’s
performance, nor does it increase the speed at which an agent
learns. On the other hand, decreasing the learning step ratio to
a rate of every 4th environmental step has only a small negative
effect on performance. Reductions beyond this point, however,
severely degrade the agent’s performance. When adjusting the
learning step ratio it is important to also adjust the learning rate by
an equal amount to maintain optimal performance. These results
quantitatively support for the ‘rule of thumb’ of applying updates
every 4th environmental step, with only a minimal impact on
performance. These results suggest further research into the effect
of learning update ratios on other algorithms that make use of
Experience Replay, such as the ACER algorithm.

ACKNOWLEDGEMENT

This research was supported by an Australian Government
Research Training Program (RTP) Scholarship.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fid-
jeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S.
Legg, and D. Hassabis, “Human-level control through deep
reinforcement learning”, Nature, vol. 518, 2015. DOI: 10.
1038/nature14236. [Online]. Available: https://www.nature.
com/articles/nature14236.pdf.

[2] S. Ontanon, G. Synnaeve, A. Uriarte, F. Richoux, D.
Churchill, and M. Preuss, “A Survey of Real-Time Strategy
Game AI Research and Competition in StarCraft”, IEEE
Transactions on Computational Intelligence and AI in
Games, vol. 5, no. 4, pp. 293–311, Dec. 2013, ISSN: 1943-
068X. DOI: 10 . 1109 / TCIAIG . 2013 . 2286295. [Online].
Available: http://ieeexplore.ieee.org/document/6637024/.

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M.
Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Grae-
pel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A general
reinforcement learning algorithm that masters chess, shogi,
and Go through self-play.”, Science (New York, N.Y.),
vol. 362, no. 6419, pp. 1140–1144, Dec. 2018, ISSN: 1095-
9203. DOI: 10.1126/science.aar6404. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/30523106.

[4] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep re-
inforcement learning for robotic manipulation with asyn-
chronous off-policy updates”, in 2017 IEEE international
conference on robotics and automation (ICRA), IEEE,
2017, pp. 3389–3396.

[5] W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno,
S. Milani, S. Mohanty, D. P. Liebana, R. Salakhutdinov, N.
Topin, M. Veloso, and P. Wang, “The MineRL Competition
on Sample Efficient Reinforcement Learning using Human
Priors”, Apr. 2019. [Online]. Available: http: / /arxiv.org/
abs/1904.10079.

[6] L.-J. Lin, “Self-improving reactive agents based on re-
inforcement learning, planning and teaching”, Machine
learning, vol. 8, no. 3-4, pp. 293–321, 1992.

[7] H. Van Hasselt, A. Guez, and D. Silver, “Deep Rein-
forcement Learning with Double Q-learning”, Tech. Rep.
[Online]. Available: www.aaai.org.

[8] G. Lample and D. S. Chaplot, “Playing fps games with
deep reinforcement learning”, in Thirty-First AAAI Con-
ference on Artificial Intelligence, 2017.

[9] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and
W. Jaskowski, “ViZDoom: A Doom-based AI research
platform for visual reinforcement learning”, in 2016 IEEE
Conference on Computational Intelligence and Games
(CIG), IEEE, Sep. 2016, pp. 1–8, ISBN: 978-1-5090-1883-
3. DOI: 10.1109/CIG.2016.7860433. [Online]. Available:
http://ieeexplore.ieee.org/document/7860433/.

[10] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling,
“The arcade learning environment: An evaluation platform
for general agents”, Journal of Artificial Intelligence Re-
search, vol. 47, pp. 253–279, 2013.

[11] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous
methods for deep reinforcement learning”, in International
conference on machine learning, 2016, pp. 1928–1937.

[12] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Priori-
tized Experience Replay”, Nov. 2015. [Online]. Available:
http://arxiv.org/abs/1511.05952.

[13] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K.
Kavukcuoglu, and N. de Freitas, “Sample Efficient Actor-
Critic with Experience Replay”, Nov. 2016. [Online].
Available: http://arxiv.org/abs/1611.01224.

[14] A. Dosovitskiy and V. Koltun, “Learning to Act by Pre-
dicting the Future”, Nov. 2016. [Online]. Available: http:
//arxiv.org/abs/1611.01779.

