
Multi-Agent non-Overlapping Pathfinding with
Monte-Carlo Tree Search

Mohammad Sina Kiarostami∗, Mohammad Reza Daneshvaramoli∗, Saleh Khalaj Monfared∗,
Dara Rahmati∗, Saeid Gorgin‡∗

∗School of Computer Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
‡Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
{skiarostami, daneshvaramoli, monfared, dara.rahmati}@ipm.ir, gorgin@irost.ir

Abstract—In this work, we propose a novel implementation of
Monte-Carlo Tree Search (MCTS) algorithm to solve a multi-
agent pathfinding (MAPF) problem. We employ an optimization
of MCTS with low time-complexity and acceptable reliability
to approach the MAPF problems with no time constraint.
To examine the efficiency and performance of the proposed
approach, the NumberLink problem as a MAPF is investigated.
We show that the addressed problem could be characterized as
multi-agent pathfinding problem with no overlapping paths for
the agents. Furthermore, we define this problem to be a simplified
and special case of Multi-commodity flow problem (MCFP).
Our MCTS solution utilizes a modified search-tree structure to
efficiently solve the problem based on a 2-dimensional search
space which performs in quadratic time complexity (O(m4)
where input size is m2) and linear memory complexity (O(m2)).
To evaluate our algorithm, we investigate the efficiency of the
proposed solution for the well-known Flow Free puzzle. Our
implementation solves a large 40 × 40 Numberlink puzzle in
21 minutes. To the best of our knowledge, there is no other
efficient solution for this puzzle where the size of the problem is
considerably large.

Index Terms—Monte Carlo, Pathfinding, Multi-agent, Flow
Free, Numberlink

I. INTRODUCTION AND BACKGROUND

Monte-Carlo Tree Search (MCTS) is widely used in devel-
opment of Artificial Intelligence’s (AI) applications [1], [2].
This algorithm is successfully employed in specific pathfinding
problems due to its low time-complexity and comparative
reliability. MCTS procedure is conceptually simple which is
thoroughly discussed in [3]. As tree-based approach, MCTS
constructs a tree in a sequential and asymmetric manner at
the beginning. At each stage of the algorithm, a tree policy
is employed to find the most preferable node of the current
tree. The tree policy strives to balance the considerations of
exploration and exploitation. These considerations are handled
by the defined parameters. A simulation is then run from
the selected node and the search tree is updated according
to the result. The Child Nodes are chosen and explorations
are performed during this simulation according to the default
policy. A great advantage of MCTS is that the values of
intermediate states do not have to be evaluated. Furthermore,
limited knowledge of problem is required since the solution is
estimated by the reward criterion [3].

Multi-agent pathfinding (MAPF) problems are extensively
used in AI applications, modern and commercial games [4],
[5]. The general problem as initially defined by [6] is described
by finding the collision-free paths for set of agents (K) which
should be moved from Sourcei to Destinationi where i ∈
K. This is simply illustrated in Fig 1. In this figure, two balls
should not be collided when moved to their desire destination.
Hence, based on time-spot state-machine a solution could be
found to handle the problem (e.g the ball at the right side
would wait until the other ball is successfully moved to its
destination and then it is transported to its goal spot.) More-
over, the black colored squares are known to be obstacle in
the map. Note that, in this problem a great degree of freedom
is provided by time constraint which lets the agents to change
their space configurations in time spots. The MAFP problems
are shown to be NP-Complete [7]. There have been several
proposed algorithms to solve MAPF problems [8], [9], [10].
Among all of these works, the heuristic algorithms have been
conventionally used to solve the problems due to their sim-
plicity. The A∗ algorithm [11] is the most known algorithm to
approach the application specific MAPF problems. However,
these algorithms suffers heavy computational/time complexity
for large scale and multi-agent problems and some propose
MCTS methods to solve some instance of MAPF problems due
to their efficient complexity and acceptable accuracy in many
applicable different puzzles [12]. For instance, [13] gives a
modified implementation of MCTS namely Monte-Carlo Fork
Search (MCFS) which efficiently solves different puzzles like
N-Puzzle where conventional solutions seem to be impractical
in large-scale scenarios.

In this work, we have focused on special cases of MAPF
problem. Here, the scope of the problem is defined with no
time constraint. This means that there are no overlap between
chosen paths of agents at any time. Hence, the problem is
reduced to a single space configuration in single state machine
with no freedom degree of time, which generally is a stronger
case of the MAPF problem. A simple example of this problem
and its solution is demonstrated in Fig. 2. This problem
has been called Numberlink [14] and has proven to be NP-
Complete [15], [16]. Note that, by Numberlink we do not
mean the version with the additional condition which requires
to cover all of the nodes. This condition makes the problem

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

completely irrelevant to the MAPF. There has been some
efforts to solve the problem by proposing different algorithms
based on 2-dimensional search [17]. However, no efficient
algorithm is proposed when the size of the problem tends to
large numbers.

The exact definition of our problem which could be referred
as a MAPF with no-overlapping is as follow:
Consider a K = {k1, k2, k3, ...kn} as a set of paths, each
specified by unique color and defined by ki = (si, di) where
si and di are the source and destination nodes of the ith path
in a m × m grid V = {v1, v2, v3, ...vm2}. The objective is
to find a coloring function χ : V → N which satisfies the
following:

∀ 1 ≤ i ≤ n : ∃ πi = (v′1, v
′
2, ..., v

′
p),

v′1 = si, v
′
p = di,

∀ 1 ≤ j ≤ p : v′j ∈ V, χ(v′j) = i,

∀ 1 ≤ j ≤ p− 1 :MD(v′j , v
′
j+1) = 1

(1)

Note that MD represents the Manhattan Distance which is
equal to 1 in our case. This indicates that the path of a specific
agent should be connected.

This problem could also be defined in the context of Multi-
Commodity Flow Problem (MCFP). Given a flow network
G(V,E) where any edge (u, v) ∈ E has the capacity of
c(u, v) = 1. For n commodities (agents) k1, k2, k3, ...kn
defined by the triple (si, ti, di), where si and ti are source
and destination and di = 1 is the demand. Finding assignment
of variable flow function fj(u, v) for any edge (u, v), where
fj(u, v) ∈ {1, 0} leads to a solution if the flow conservation
law on transit lines (each node), source and destinations are
satisfied and the capacity of the link are not overflowed
(overlapped). These conditions are illustrated below:

∀(u, v) ∈ E :

n∑
i=1

fi(u, v) · di ≤ c(u, v)∑
w∈V

fi(u,w)−
∑
w∈V

fi(w, u) = 0, u 6= si, ti∑
w∈V

fi(si, w)−
∑
w∈V

fi(w, si) = 0∑
w∈V

fi(w, ti)−
∑
w∈V

fi(ti, w) = 0

(2)

Moreover, to apply the no-overlapping restriction the capacity
constraint should be extended to the vertex as follow:∑

w∈V
fiv 6= c(v) ∀v ∈ V \{s, t} (3)

In other words, the amount of flow passing through a vertex
cannot exceed its capacity (c(v) = 1). This restriction is also
known as Maximum flow with vertex capacities.

For the sake of illustration, Fig. 2 represents a simple
demonstration of the addressed problem and its solution.
This figure also shows a simple configuration of the Flow
Free game [18]. It’s worthy to mention that any solution
for a Numberlink puzzle is clearly an acceptable solution

1

2

2

1

Fig. 1. Simple collision-free multi-agent pathfinding problem, circles are
sources and triangles are the determined destinations.

Fig. 2. Demonstration of a presented MAPF with no overlapping problem.

for a MAPF problem with the same configuration. To solve
regular Numberlink naively, instead of space-time search in
the conventional MAPF, only space search is performed to
find the acceptable configuration for the paths. However, an
exhaustive space search for an acceptable solution in this case,
is infeasible in terms of computational/memory complexity for
large-scale problems.

The remaining of this article describes the exact definition of
the problem and the proposed solution, in section II. In section
III, we present some evaluations of the proposed algorithm for
different configurations of the Numberlink puzzle. Finally, we
conclude the article and discuss the possible future works in
section IV.

II. PROPOSED METHOD

In this section, we briefly describe the computational aspect
of the problem to be solved and then discuss our proposed
MCTS algorithm.

Based on the definition of the problem discussed in the
previous section, the multi-agent non-overlapping pathfinding
on a m × m grid is considered. With n agents in the grid
search space, each specified by a unique pair of origin and
goal cells. As described in (1), the path for agents should
be connected. Moreover, there must not be any overlapping
between the paths, since it violates the conditions in (1). Also,
it worthy to mention that the paths are not necessarily the

shortest one which can be addressed as another optimization
problem.

Most of the proposed MCTS-based solutions for pathfinding
collision-free problems build a tree search to estimate the final
correct answer [19], [20]. In the case of the addressed problem
for a m×m grid, a huge tree is constructed leading to a tree
size of bm

2

, where b represents the Branch Factor. Due to
the computation and memory limitations to explore the whole
tree, the MCTS is highly suitable to approach this scenarios.
We refer a single configuration of the m ×m space to be a
ScreenShot of the grid. Each ScreenShot defined by unique
configuration of agents filling the 2-D space with paths. In
proposed MCTS, each node initially represents a ScreenShot.
A Child Node is related to its Parent Node whenever a single
cell in the grid is different. This is shown in the following
relations:

∃ v′ ∈ V :

χ′(v′) 6= χ(v′)

∀v′′ ∈ V, v′′ 6= v′ : χ′(v′′) = χ(v′′)

(4)

Where χ′ represents a coloring function in a Child Node based
on a definition explained in (1).

Fig. 3 represents the construction of the nodes and tree
relations in the proposed algorithm.

1 1

2

2

1 1

2 2

2

1 1

2 2

2

1 1

2

12

Fig. 3. Representation of the nodes and relation trees in the proposed
algorithm.

This prospective yields to a large value of branch factor,
which considerably limits the performance of the algorithm.
To overcome this limitation, as other additional constraints for
the nodes, we store v and c where χ(v) = c with the following
description for its Child Node:

∃v′ ∈ V, v 6= v′, χ(v′) = 0

χ′(v′) = c,MD(v′, v) = 1
(5)

Note that χ′ in (5) represents the coloring function in the
Child Node. Relations in (5) describe that each Child Node is
different from its parents in a single vertex v. v is a neighbour
of a specific node v′ while keeping the Screen Shot connected.
This modification reduces the Branch Factor significantly. In
this case the maximum value for b is 4 (b ≤ 4). As another
optimization in the proposed MCTS, we strive to explore the
nodes with lower Branch Factor. Thus, starting nodes have
lower Branch Factor. This optimization is shown in Fig. 4. As
depicted in Fig. 4, the explorer tree depth (d2) in the modified
version is increased and thus the accuracy of the MCTS is

Fig. 4. Optimization in the tree exploration based on lower Branch Factors

improved. Note that this modification doesn’t ignore/suppress
nodes in the MCTS tree.

Algorithm 1 describes the main proposed MCTS. Each
iteration of the procedure in algorithm 1 gives the best
estimated child. The computational budget is the iteration
value for the algorithm which is manually set to I . The
simulationResult function at each iteration is performed in
O(m2). Moreover, the MCTS procedure is executed in O(m2)
in worst case scenario (full search in the problem space). Thus,
the time complexity of the proposed MCTS algorithm could
be calculated as follows:

O(m2)×O((m2 + n)× I) = O(m4) (6)

Note that, in the above equation n represents the number of
agents which appears due to the final search for all agents in
the final stage of the algorithm.

Algorithm 1 Monte-Carlo Tree Search with No-Overlapping
1: procedure MCTS(root)
2: while within computational budget do
3: leaf = selection(root)
4: expandedLeaf = expansion(leaf)
5: simulationResult = rollout(expandedLeaf)
6: backpropagation(simulationResult, expandedLeaf)

end while
7: return bestChild(root)

As for the memory complexity in our proposed algorithm,
the program needs O(Im2) = O(m2).

III. EVALUATION

A. Setup

The hardware setup used in our evaluation is a machine
running Ubuntu 16.04 equipped with an Intel XEON E5 2697
V3 CPU clocked at 2.6 GHz with 128 GB of DDR3 RAM.
We have implemented the algorithm with Java version 1.8.

B. Results

The Table I represents our evaluation on different generated
Numberlink instances. The puzzles are generated by the use
of an algorithm proposed by [17]. The puzzles are chosen
with different grid size and agent number to present a wide
range of configurations. Note that the simulation is executed 50

TABLE I
PROPOSED MCTS EVALUATION ON DIFFERENT Numberlink PUZZLES

Grid
Size(m2) Instance

Agents
Num(n)

Full Search
Space(nm2

)
Time(s)

Allocated
Memory(MB)

Normalized
Cost

5× 5 MP53-1 3 325 0.037 83.9 3.1× 10−6

MP55-1 5 525 0.024 60.7 1.4× 10−6

8× 8 MP88-2 8 864 0.318 251.1 7.9× 10−5

MP810-2 10 1064 0.295 210.2 6.2× 10−5

MP815-2 15 1564 0.259 155.1 4.01× 10−5

10× 10 MP1010-1 10 10100 1.351 450.2 6.08× 10−4

MP1015-1 15 15100 1.508 567.7 8.5× 10−4

MP1020-1 20 20100 1.630 595.7 9.7× 10−4

15× 15 MP1515-1 15 15225 6.071 2108 1.2× 10−2

MP1520-1 20 20225 9.188 2253 2.07× 10−2

MP1540-1 40 40225 14.606 960.3 1.4× 10−2

20× 20 MP2015-3 15 15400 36.721 2344 8.6× 10−2

MP2020-3 20 20400 42.332 2375 0.1
MP2040-3 40 40400 71.343 1583 0.11

40× 40 MP4010-2 10 101600 143.789 7837 1.12
MP4020-2 20 201600 367.361 8541 3.13
MP4050-2 50 501600 886.196 5281 4.68
MP40100-2 100 1001600 1257.686 5648 7.1

times for each instance and the results are averaged for each
configuration. As shown in the table, the time and memory
results are highly correlated to the configuration of the puzzles
whereas some puzzles are relatively harder to solve. As a
general rule, by increasing the number of the agents, the
memory usage reduces surprisingly. This is due to the fact
that the Branching Factor decreases when large number of
agents is set for the problem which results in a more accurate
exploration. This is also shown in figure 4.
As another interesting point, the evaluation shows a fair
increase in memory-time consumption when the size of the
problem tends to large integers. Also, as shown in the table,
exponential increase in the size of the problem yields near-
linear increase in the computation cost. Note that the computa-
tion cost, here is determined by normalized value of allocated
memory × execution time.

IV. DISCUSSION AND CONCLUSION

In this work, we have proposed a novel implementation of
Monte-Carlo Tree Search (MCTS) algorithm to solve a multi-
agent pathfinding (MAPF). Our MCTS algorithm is empow-
ered by different levels of optimizations to lower the time
complexity and improve the reliability. To approach a MAPF
problem with no time constraint, we have examined Num-
berLink problem as a MAPF problem. We have shown that
this problem could be characterized as multi-agent pathfinding
problem with no overlapping paths for the agents. Further-
more, our solution utilizes a modified search-tree structure to
efficiently solve the problem based on 2-dimensional space-
search which performs in O(m4) and O(m2) for time and
memory, respectively. Rather than a significant decrease in the
memory and time complexity, using MCTS implementations
in the similar puzzles will require a minimum knowledge
of the problem structures, since it inherently tends to find
the optimum solutions based on the defined reward and cost
functions. Our Implemented approach could also be applied
to other different games such as Line Puzzle: Pipe Art, Knots

Puzzle and Draw Line: Classic. As our future work, we would
like to apply the MCTS with the proposed modifications
to other MAPF problems to show the scalability and the
efficiency of MCTS in other real-life applications. Also, as
an interesting application this method could be studied to be
applied as designer for traffic lines with minimum overlap.

ACKNOWLEDGMENT

The authors of the paper would like to express their special
thanks of gratitude to Prof. Hamid Sarbazi-Azad, head of the
school of computer science of IPM.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[2] D. Perez, S. Mostaghim, S. Samothrakis, and S. M. Lucas, “Multiobjec-
tive monte carlo tree search for real-time games,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 7, no. 4, pp. 347–360,
Dec 2015.

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[4] D. Silver, “Cooperative pathfinding.” AIIDE, vol. 1, pp. 117–122, 2005.
[5] M. Buro and T. M. Furtak, “Rts games and real-time ai research,” in

Proceedings of the Behavior Representation in Modeling and Simulation
Conference (BRIMS), vol. 6370, 2004.

[6] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,”
Algorithmica, vol. 2, no. 1-4, p. 477, 1987.

[7] P. Surynek, “An optimization variant of multi-robot path planning is
intractable,” in 24th AAAI Conference on Artificial Intelligence, 2010.

[8] S. Brand and R. Bidarra, “Multi-core scalable and efficient pathfinding
with parallel ripple search,” computer animation and virtual worlds,
vol. 23, no. 2, pp. 73–85, 2012.

[9] Z. Bnaya, R. Stern, A. Felner, R. Zivan, and S. Okamoto, “Multi-agent
path finding for self interested agents,” in Sixth Annual Symposium on
Combinatorial Search, 2013.

[10] D. Šišlák, P. Volf, and M. Pechoucek, “Accelerated a* trajectory plan-
ning: Grid-based path planning comparison,” in 19th International Con-
ference on Automated Planning and Scheduling (ICAPS), Thessaloniki,
Greece, Sept. Citeseer, 2009, pp. 19–23.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[12] J. Barraquand and J.-C. Latombe, “A monte-carlo algorithm for path
planning with many degrees of freedom,” in Proceedings., IEEE Inter-
national Conference on Robotics and Automation. IEEE, 1990, pp.
1712–1717.

[13] B. Bouzy, “Monte-carlo fork search for cooperative path-finding,” in
Workshop on Computer Games. Springer, 2013, pp. 1–15.

[14] Nikoli, “Numberlink,” 1989. [Online]. Available:
http://www.nikoli.co.jp/en/puzzles/numberlink.html

[15] A. Adcock, E. D. Demaine, M. L. Demaine, M. P. O’Brien, F. Reidl,
F. S. Villaamil, and B. D. Sullivan, “Zig-zag numberlink is np-complete,”
Journal of Information Processing, vol. 23, no. 3, pp. 239–245, 2015.

[16] P. Kramer and J. Van Leeuwen, Wire routing in NP-complete. Unknown
Publisher, 1982, vol. 82.

[17] R. Yoshinaka, T. Saitoh, J. Kawahara, K. Tsuruma, H. Iwashita, and
S.-i. Minato, “Finding all solutions and instances of numberlink and
slitherlink by zdds,” Algorithms, vol. 5, no. 2, pp. 176–213, 2012.
[Online]. Available: http://www.mdpi.com/1999-4893/5/2/176

[18] Big Duck Games LLC, “Flow Free,” 2012. [Online]. Available:
https://www.bigduckgames.com

[19] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[20] M. Naveed, D. E. Kitchin, and A. Crampton, “Monte-carlo planning for
pathfinding in real-time strategy games.” PlanSIG, 2010.

