
Enhancing Monte Carlo Tree Search for Playing
Hearthstone

Jean Seong Bjorn Choe
School of Electrical Engineering

Korea University
Seoul, South Korea
garangg@korea.ac.kr

Jong-Kook Kim
School of Electrical Engineering

Korea University
Seoul, South Korea

Jongkook@korea.ac.kr

Abstract—Hearthstone is a popular online collectible card
game (CCG). Hearthstone imposes interesting challenges in
developing a search algorithm for the game AI. As a CCG,
it has a considerable amount of hidden information from each
player’s private hand and deck. Moreover, the action space is
full of stochastic actions compared to other similar games. That
is, instead of a single move, each player is allowed to build
a move sequence via various combinations of atomic actions.
Therefore, when applying any heuristic search algorithm, the
branching factor of the search space is extremely large. In
this paper, we explore the use of Monte Carlo Tree Search
(MCTS) with approaches to reduce the complexity of the search
space and decide on the best strategy. First, we utilise state
abstraction to present the search space as a Directed Acyclic
Graph (DAG) and introduce a variant of Upper Confidence
Bound for Trees (UCT) algorithm for the DAG. Next, we apply
the sparse sampling algorithm to handle imperfect information
and randomness and reduce the stochastic branching factor. This
paper presents empirical evaluations of the proposed framework
for Hearthstone and the experimental results suggest that our
approach is well suited for developing a better AI agent.

Index Terms—Monte-Carlo tree search, Hearthstone, artificial
intelligence for games

I. INTRODUCTION

Collectible Card Games (CCGs) contain challenging prop-
erties for applying operational AI. Players of CCGs must
face informational uncertainty from their opponent’s private
hand, and innate stochasticity of drawing cards from own
shuffled deck. Furthermore, CCGs allow deck building with
innumerable combinations of selected cards to play against
others, rather than use a predetermined set of cards. This
characteristic poses a considerable similarity to General Game
Playing (GGP), making it difficult for an agent to construct
a precise evaluation function for overall gameplay. Moreover,
these games usually encourage players to think and perform
with the flexibility to play creative combinations of cards. Plus,
the action of each turn is often a sequence of atomic actions
rather than a single move.

Hearthstone1 is one of the most popular CCGs. According
to Blizzard Entertainment, the publisher of Hearthstone, there
are more than 100 million players of Hearthstone. In addition

1Blizzard Entertainment, Inc. https://playhearthstone.com

to the popularity, it also has gained in popularity among AI
researchers in recent years. Some group of researchers studied
the deck building aspect of Hearthstone [1]–[4]. While some
other authors focused their researches with developing an
AI agent for playing Hearthstone [5]–[7]. There also have
been several data mining/AI competitions about Hearthstone,
including the one held in the CIG conference of the last year.

Three major factors create difficulties in applying AI to
Hearthstone. First, AI agents must deal with an abundance of
hidden information and randomness. Moreover, the stochastic-
ity of actions in Hearthstone is relatively higher compared to
those in other similar games, such as Magic: The Gathering2.
Another defining feature of Hearthstone is its freedom of
combining any kind of in-game action. For example, there is
a certain type of action that commonly exists in CCGs called
the ‘attack move.’ While usually performed separately from
playing cards, these moves can be executed at any moment
of a turn in Hearthstone. Therefore, searching for the optimal
action sequence for each turn is more difficult in this game
compared to others.

In this study, we present Monte Carlo Tree Search (MCTS)
[8], [9] based approaches that mitigate the difficulties de-
scribed above. To reduce the complexity of the state space,
we show the utilisation of state abstraction to integrate rule-
based heuristics and reflect the information set of each player.
With the use of state abstraction, we are able to construct a
Directed Acyclic Graph (DAG) instead of a tree for Monte
Carlo search. Then, we demonstrate schemes for running
Monte Carlo search on the DAG. For the imperfect information
and the stochastic actions, we use Expectimax algorithm. In
other words, a state ahead of uncertainty is presented as a
chance node in the DAG, and subsequent uncertain states are
sampled from the chance node. We also introduce an approach
based on sparse sampling [10], in order to reduce stochastic
branching factor of the chance nodes.

The structure of this paper is organised as follows: Section II
presents existing research on AI in the domain of Hearthstone
and compares it with our study. Our approaches and algorithms
for playing Hearthstone are presented in Section III. Then, in
Section IV, approaches to combine expert knowledge into the

2Wizards of the Coast LLC. https://magic.wizards.com
978-1-7281-1884-0/19/$31.00 ©2019 IEEE

framework is introduced. Section V describes the setup and
results of the experiments. Finally, Section VI provides the
conclusions.

II. RELATED WORK

There are researches on the use of MCTS for Hearthstone
AI [5], [6], [11]. In [11], the authors proposed the use of a
deck database for opponent prediction and tested the range
of parameters of MCTS with two heuristic state evaluation
functions for rollout and tree policies. In this work, we allow
our agents to know the list of cards in the opponent’s deck.
Also, we do not consider any form of evaluation functions.
Zhang et al. proposed an approach to handle large branching
factors in chance node, called Chance event bucketing [5].
Chance event bucketing groups pre-sampled outcomes of a
chance node with domain-knowledge based, empirically tuned
criteria. Then, the algorithm considers only a portion of events
for each bucket. On the other hand, we use sparse sampling to
reduce the stochastic branching factor of chance nodes. The
search technique proposed in [6] takes similar approaches with
the methods in this paper. In [6] authors proposed an algorithm
to handle imperfect information with MCTS by constructing
a DAG with information sets as keys of transposition table.
We also build up a DAG of state abstractions, which represent
the information set of the corresponding player. However, we
use sampling-based methods to handle hidden information, in
contrast with the algorithm suggested in [6] picking deter-
minization at the beginning of the iteration of MCTS.

III. PROPOSED METHOD

A. Overview

In this section, we present approaches to deal with the
difficulties of playing Hearthstone using MCTS. Our frame-
work consists of three essential methods: (1) State abstraction
that combines domain knowledge of Hearthstone and handles
imperfect information of the game. (2) Modified implementa-
tion of Upper Confidence Bound for Trees (UCT) algorithm
for DAG structure of the search space of abstractions. (3)
Sparse sampling approach for randomness and incomplete
information.

B. State Abstraction

The ground states of Hearthstone contain a lot of dis-
tinguishable features. The board, where both players can
observe, may consist of up to 7 Minions, a Hero and its Hero
Power and Weapon for each player’s side. Each minion is
characterised with a card from the pool of approximately 1,000
different cards including non-collectible ones. The cards also
have approximately 20 distinctive attributes; to name some of
them, there are Health, Zone Position, and also hidden ones
like Order-Of-Play. Nevertheless, expert human players often
consider only a small part of the ground state. For instance,
zone positions of minions on board are usually neglected
by players except for some specific situations. Inspired by
this idea, we construct state abstractions with the minimum
information of the ground states. With the introduction of state

abstraction, the size of search space is adequately reduced, as
many similar states are aggregated that ought to be separately
considered without abstraction. We represent the space of
abstractions using a transposition table [12], with the keys of
the table are the abstractions. Thus, the search space becomes a
single rooted Directed Acyclic Graph (DAG) where each node
corresponds to a unique abstraction instead of a ground state.
Consequently, the number of possible sequences of atomic
actions is effectively reduced.

C. Modified Upper Confidence Bound for Directed Acyclic
Graph (UCD)

Saffidine et al. [13] proposed an extension of Upper Confi-
dence Bound for Trees (UCT) algorithm [8] for DAGs called
Upper Confidence Bound for Directed Acyclic Graph (UCD).
Unlike the plain MCTS algorithm, UCD stores statistics in
the edges of DAG, rather than the nodes. Then, during the
selection phase, UCD uses the modified UCT formula to select
an edge from the outgoing edges of a node:

argmax
e∈C(s)

Qd1(e) + c

√
lnNd2(e)

nd3(e)
(1)

with:
d1, d2, d3 ∈ Z+

0 , (2)

where C(s) is the set of outgoing edges of a node s, Qd1(e)
is the average value of descendants edges down to depth d1 of
e, nd2(e) is the sum of the visit counts of descendants edges
down to depth d2 of e, and Nd3(e) is defined as the sum of
nd3(e

′) for the siblings e′ of e. Thus, if d1 = 2, Qd1(e) is
average payoff over outgoing edges from each successor node
of outgoing edges of the successor of the edge e.

Here, we propose a modified implementation of the UCD
algorithm, which uses 2 parameters instead of 3 and has a
more integrated structure than the implementation proposed
in the previous work. First, to use the same form of the UCT
algorithm, where the bias term of each option is determined by
the total number of tries and the number of times the option
is chosen, we replace Nd2 in equation 1 with Nd, the sum
of the parametric visit count nd of outgoing edges. Nd is
accumulated in each node during Backpropagation. Moreover,
since d1 = 0 parameterisation means the value of a node
can be calculated according to the preceding node, we only
consider parameterisation of d1 > 0. Qd is also accumulated
in each node during backpropagation. Therefore, the modified
selection formula becomes:

argmax
e∈C(s)

Qd1(s(e)) + c

√
2 lnN(p(e))

nd2(e)
, (3)

where s(e) and p(e) refer to the successor and the predecessor
of an edge, respectively. Qd1(s) and nd2(e) are defined in the
same way as in the original UCD framework.

We also present a simpler backpropagation algorithm to
incrementally update Qd(s), nd(e) and N(s). The basic idea
is updating visit count and the payoff from leaf nodes to nodes

and edges in the traversed path recursively. By storing statistics
in the nodes in the path, the algorithm naturally accumulates
the values from all outgoing edges of each node. Also, with the
given parameterisation, the algorithm backpropagate values in
off-path nodes and edges recursively. This ensures each node
to have statistics from all descendent nodes down to the given
depth parameterisation. Thus, this backpropagation algorithm
removes the need for recursive calculation for each statistic
during the tree phase. The entire algorithm presented in the
Algorithm 1.

D. Handling Imperfect Information

There are several methods have been suggested to employ
MCTS to imperfect information games [9], [14]. In this work,
we focus on sampling-based methods to treat imperfect infor-
mation and randomness in the same manner. We introduce two
typical approaches, Perfect Information Monte Carlo (PIMC)
and Information Set Monte Carlo Tree Search (ISMCTS), then
present our approach.

1) Perfect Information Monte Carlo (PIMC): PIMC [15],
also called Determinized UCT, is a classical approach for
domains of imperfect information. PIMC starts with generating
a set of determinizations, the sampled game states from the
information set, which contains indistinguishable states from
the point of view of a player, of the root state. Then at the
beginning of each iteration of MCTS, it chooses a determiniza-
tion from the set and continues the search as if the domain
has perfect information. Thus, PIMC uses a subtree of states
with perfect information, for each generated determinization
as the root of the subtree. The work in [16] studied that this
approach can be useful for CCGs.

2) Information Set Monte Carlo Tree Search (ISMCTS):
In Information set MCTS [17], each node in the search tree
corresponds to the information set of a particular player.
Similar to PIMC, it selects a determinization each time and
searches the relevant part of the tree of information sets. Since
states with different action sets are allowed to be aggregated
in a node, selecting the best child is treated as subset-
armed bandit problem here. The authors of [17] proposed two
variants of ISMCTS, Single-Observer ISMCTS (SO-ISMCTS)
and Multiple-Observer ISMCTS (MO-ISMCTS). SO-ISMCTS
constructs a single tree whose nodes are information sets of
the root player, while MO-ISMCTS generates a separate tree
for each player.

In this work, we handle imperfect information with a single
DAG. In the DAG, each node of state abstraction only contains
the observable information of the player about to act. Thus,
each node represents an information set of the active player.
This is somewhat between SO-ISMCTS and MO-ISMCTS,
because we maintain a single graph but information sets of
both players can appear. The main difference in our approach
is that determinizations are generated when hidden information
is needed. In other words, we use Expectimax method and
chance nodes for the hidden information. Note that since we
have considered DAG, where only unique information sets of
each player exist, the size of the search graph will not be

Algorithm 1 Modified UCD Algorithm
1: procedure MCTS(s)
2: while search duration do
3: while s is not terminal and not a leaf node do
4: Select a best edge among the outgoing edges

of s according to the equation (3).
5: Set s as the successor of the selected edge.
6: end while
7: Run Expansion and Simulation phase from the

current node unless the node is terminal.
8: BACKPROPAGATION(s, r)
9: end while

10: end procedure
11:
12: procedure BACKPROPAGATION(s, r)
13: repeat
14: Update the total rewards and the update count for

rewards of the current node with r.
15: Update p(s) of the current node s.
16: for each incoming edge e of the current node do
17: if e is not in the current traversed path then
18: RECURSIVEUPDATE(e, r, d1, d2)
19: else
20: Increase the edge visit count n(e) by 1.
21: end if
22: end for
23: Backpropagate to the next node on the current

traversed path.
24: until The root node is reached.
25: end procedure
26:
27: function RECURSIVEUPDATE(e, r, d1, d2)
28: if d1 > 1 then
29: Update the total rewards and the update count for

rewards of the predecessor of e with r.
30: end if
31: if d2 > 0 then
32: Increase the e’s the edge visit count by 1.
33: Increase the predecessor of e’s the total edge visits

N(p(e)) by 1.
34: end if
35: for each incoming edge ε of the incoming edges of

the predecessor of e do
36: RECURSIVEUPDATE(ε, d1− 1, d2− 1)
37: end for
38: end function

intractably ramified despite the introduction of chance nodes.
For example, although the number of all possible outcomes of
a particular chance node representing the unknown opponent’s
hand arrangement can be unmanageable, the number of possi-
ble final resulting states after the opponent’s turn is relatively
feasible.

This approach, combined with sparse sampling we will
explain in the next subsection, can be regarded as a simpler
version of POMCP algorithm [18]. Whereas POMCP deals
with exact histories, in our framework, the opponent appeared
in planning repeatedly forgets his previous actions as his
turn ends and the search graph expands to the nodes of the
root player. Also, as the number of iterations increases, the
virtual opponent in the search graph eventually ”knows” the
information of the root player. Despite this problem, we could
not observe the effect of this theoretical flaw in experiments
because we did not allow agents to think enough time to
construct such a deep graph.

E. Sparse Sampling for Chance Nodes

Our system treats stochastic actions and opponent sequences
with the expectimax algorithm. While classic expectimax
requires prior knowledge of the distribution of the outcomes of
each chance node, we presume that is practically impossible
in our domain. To tackle this problem, the authors of [19]
proposed the application of Sparse sampling algorithm [10]
to MCTS, called Sparse UCT. This method samples a new
outcome each time a chance node is visited until the total
number of samples reaches a predetermined threshold. Thus, it
constructs an approximated probability distribution for chance
nodes with a limited number of samples. Here, we make full
use of the transposition table to construct a discrete distri-
bution of outcome nodes. So, when an outcome is sampled,
we immediately look up the transposition table and find a
matching transposition. And if there is one, instead of adding
a separate node to the graph, we increase the sample count of
the matching outcome. In this way, we are able to obtain the
approximated probability distribution for chance nodes while
maintaining a graph without duplication.

Double progressive widening (DPW) [20] algorithm also
constraints the maximum number of samples for chance node.
In contrast with the sparse UCT, DPW determine the threshold
k by the visit count of the chance node n, with k = dCnαe.

In our search algorithm, chance nodes appear too often
with the ‘end turn’ nodes and many stochastic actions of
Hearthstone. Therefore, the combinatorial complexity of each
traversed path from the root to leaves easily becomes in-
tractable as the search space expands. To handle this problem,
we propose a new method called Damped sampling (DS). DS
decreases the threshold for the number of samples with the
number of encountered chance nodes having a large number
of outcomes. For example, suppose that the first chance node
in the traversed path has a threshold value k and k sample
nodes have been expanded from the chance node. Then the
next chance node encountered during the tree phase would
have a threshold value of less than k. Therefore, this algo-

Root

Chance Node

S1 S2 S∗ S3 S4 S5

A B C D E F G H I

Fig. 1. Example of decision graph when a chance node representing Discover
mechanic is selected. The chance node is selected from the current root and
the outcome S∗ is observed. Discover allows a player to choose one of three
randomly selected choices from the corresponding pool of cards. Here, each
sample Si represents the three choices and squares with an alphabet means
the resulting states from the choices. Although a new root with the state S∗

is created because the observed outcome S∗ has not been sampled from the
chance node until the selection, it is possible to reuse the subgraphs rooted
at B, D, and E, by maintaining the transposition table.

rithm effectively decreases the number of outcomes with low
realization probability and allows deeper search by reducing
stochastic branching factor. Thus, the formula for the threshold
k with DPW and DS combined becomes,

k = dCnαη−µe, (4)

where µ is the count of encountered chance nodes that the
number of outcomes exceeds the threshold parameter d, the
η is the damping parameter. d and η are hyperparameters that
should be determined empirically.

F. Search Time Allocation

In Hearthstone, it is often difficult to obtain all available
action sequences due to the enormous number of outcomes
from random actions. In other words, to attain a complete
action sequence, a player should play an atomic action and
observe the outcome, if it is stochastic. Thus, it is natural
to have a search procedure that returns an optimal atomic
action, rather than an optimal action sequence. If we consider
each move selection as a process of Absolute pruning [21],
we are able to reuse the statistics from previous iterations.
Specifically, after an atomic action is selected, we run MCTS
searching for the next atomic action with the selected node or
the outcome of the selected chance node as a root node for the
MCTS. This approach is also studied in [11] as Search tree
reuse and in [22] as Bridge-burning MCTS. We also maintain
the transposition table along with the consecutive searches
in our implementation. This is extremely useful for handling
mechanics like Discover. A more detailed explanation is
shown in Figure 1.

With the given action selection scheme, as Zhang et al.
reported [5], fixed time budget for the whole sequence would
result in the unbalanced allocation of search duration. Mean-
while, in Hearthstone, most of the actions in one turn limit

the subsequent range of actions. For example, an action of
playing cards consumes Mana, which is limited for each
turn. Therefore, allocating time search time in a decreasing
manner can be efficient for general cases. Thus, we use
exponentially decreasing search time for a turn. For this, we
introduce four parameters, k, Tmax, Tmin, and T0 and allocate
T (i) = γi−1T0 seconds for the search for the i th move selec-
tion, where γ is determined by solving Tmax =

∑k
i=1 T (k).

Therefore, the search time T (n) for the n th selection is

T (n) =

{
T0γ

n−1 , if n ≤ k
Tmin , otherwise,

(5)

where γ is determined by solving Tmax =
∑k
i=1 T0γ

i−1.

IV. INTEGRATING DOMAIN-SPECIFIC KNOWLEDGE

A. Overview

In this section, we briefly explain heuristic approaches that
integrate domain-specific knowledges for boosting MCTS for
playing Hearthstone.

B. Category-based Action Filtering

Hearthstone often allows a player to perform self-destructive
actions or wasteful actions that give disadvantages to the
player in most of the situations. Thus, these kinds of actions
can seriously harm the performance of the Monte Carlo
simulation, especially in the absence of any sophisticated
simulation policies. Therefore, we use heuristic categories
based on the text information of cards. Each category of
cards is subjected to a hand-crafted criterion based on domain
knowledge, which examines the validity of playing the cards
of the corresponding category using the given game state. For
example, playing “Fireball” or any similar cards, which deal
a certain amount of damage to a character, are filtered out
when the target character is friendly. We observed applying
category-based filtering to the uniform random rollout policy
improves the performance of overall MCTS and even reduces
the running time of the simulation phase. We also use the
filtering in the tree phase of MCTS in a limited manner to
prevent it from removing “niche” actions.

C. Obliged Actions

In some situations, there are actions that unconditionally
profitable and should be performed without any consideration.
A fine example of this kind of action is attacking the oppo-
nent’s Hero in the absence of any obstacles. We can oblige
these actions by removing turn-ending action. This heuristic
is very simple to implement and observed to benefit both the
tree phase and the simulation phase of MCTS.

V. EXPERIMENTS

A. Setup

We use SabberStone [23], an open-source Heathstone sim-
ulator written in C# and the competition environment for
CIG’18 and COG’19 Hearthstone AI competition [24]. Specif-
ically, our testing environment is on par with Hearthstone

TABLE I
BASELINE PARAMETERS FOR APPLIED METHODS

Symbol Description Hunter Warlock Paladin

c UCT
constant 0.25 0.4 0.8

w
Sparse UCT
sampling
width

48 32 48

η
Damping
parameter 2

k Search
Time
Allocation
parameters

3 3 5
Tmax 20 20 30
Tmin 3
T0 10

client of Patch 12.2.0.27358, which was released on October
18, 2018, and played until November 4, 2018.3 To evaluate our
methods in various game environments, we used 3 competi-
tively played decks: Deathrattle Hunter, Even Warlock, and
Odd Paladin. In the rest of this paper, we simply put them
as Hunter, Warlock, and Paladin, respectively. In all tested
games, both players carried the same deck. Moreover, mulligan
is skipped and the starting player for each game is randomly
chosen. Also, we empirically determined the required param-
eters such as UCT constant for each deck. However, we used
the parameters for allocating search time differently, based
on the machine specification used for testing, to sync average
search count per turn around various machines, but we did not
change the value of γ. The determined parameters are listed
in the Table I. We allocated search time for agents with the
given parameters and the formula described in III-F.

We employed parallelism by combining root paralleliza-
tion and leaf parallelization [25] throughout the experiments.
Particularly, we ran 6 independent MCTS, with each MCTS
performs 2 simultaneous simulations. Then, we aggregated
statistics gathered in each root and used it for the final move
selection. When an action is chosen, sometimes some of
the roots are incongruous with the resulting state abstraction
from the chosen action due to the looseness of abstraction or
randomness of the action. In that case, we replaced these roots
with new roots but keeping the same transposition table of the
previous root. By preserving the transposition table, we are
able to minimise information loss.

Finally, all heuristic approaches have been introduced in
Section IV are applied to all experiments as a part of the
baseline.

B. UCD

We first evaluated the use of our modified UCD framework
by comparing UCT without transposition table and UCD
with different parameterisations. All agents used sparse UCT
combined with Damped Sampling as their sampling scheme.
The relative performance against UCT agent is in Table II.

3https://hearthstone.gamepedia.com/Patch 12.2.0.27358

TABLE II
RESULTS OF UCD WITH DIFFERENT PARAMETERISATIONS AGAINST UCT

WITHOUT TRANSPOSITION TABLE.

Deck d1
d2

0 1 2
Hunter 1 52.5% 49% 59%

2 51% 61% 46.5%
3 49% 63%* 51%

Warlock 1 47% 47% 53%
2 49.5% 53% 47%
3 48% 54.5% 57%*

Paladin 1 51% 50.5% 45%
2 50% 52% 53.5%*
3 41% 44% 52.5%

The win percentage from 200 games between two players with the same
deck. The best parameterisation for each deck is marked with asterisk(*).

TABLE III
RESULTS OF DPW+DS WITH DIFFERENT PARAMETERISATIONS AGAINST

SPARSE UCT

Deck α
C

0.25 0.5 0.75
Hunter 0.4 53% 58%* 47%

0.5 49% 57% 49%
0.6 51% 50% 49%

Warlock 0.2 56% 64% 55%
0.3 59% 67%* 56%
0.4 59% 63% 56%

0.5 0.75 1.00
Paladin 0.5 52% 42% 57%

0.6 58%* 57% 50%
0.7 51% 53% 50%

The win percentage from 100 games between two players with the same
deck. The best parameterisation for each deck is marked with asterisk(*).

C. DPW and DS

Here, we investigated the effectiveness of the double pro-
gressive widening algorithm, combined with our damped sam-
pling method. We tested empirically chosen interval for the
parameters C and α of DPW algorithm and ran 100 games
against sparse UCT agents. In these experiments, all agents
used UCD, with the estimated best parameters for each deck.
The results are presented in Table III. The result shows that
Warlock benefits greatly from the use of DPW and DS. The
result can be attributed to the fact that playing Warlock deck
involves more chance nodes corresponding to drawing cards.

D. Comparison with TycheAgent

In order to investigate the performance of our agent in the
COG’19 Hearthstone AI competition scheduled in 2019 [26],
we conducted an experiment that compares our agent with
the TycheAgent [27], which took place the third rank in both
“Premade Deck Playing” and “User Created Deck Playing”
tracks of the CIG’18 Hearthstone AI Competition. TycheAgent
is also the best performing bot of the competition that the
source is publicly available at the time of writing.

We arranged two experiments for the two of three decks4

used for the premade deck playing track of the competition

4RenoKazakusMage deck was not compatible with SabberStone client of
the version we used for experiments.

TABLE IV
A SUMMARY OF RESULTS FROM 100 GAMES AGAINST TYCHEAGENT

Deck Winrate

MidRangeJadeShaman 66%
AggroPirateWarrior 78%

Parameters used

c 0.3
d1, d2 2, 1
C, α, η 0.15, 0.5, 2

k, Tmax, Tmin, T0 3, 10, 1.5, 5

of the last year and 100 matchups are played with the same
deck for both agents. In this experiment our agent ran on
single thread and had shorter search time with the allocation
parameters Tmax = 10, Tmin = 1.5, and T0 = 5. The other
parameters are determined based on the previous experiments
and we did not do any deck-specific fine-tuning for the
parameters. The results are presented in Table IV. Results
show that our framework certainly out-performed TycheAgent.

VI. CONCLUSIONS

In this paper, we presented an MCTS-based framework
to handle various challenges of playing Hearthstone. First,
by adopting state abstraction, we are able to tackle three
problems at once: the size of search space, the commutativity
of atomic actions, and representing the partial observability.
Second, we proposed an MCTS enhancing algorithm that
exploits the structure of DAG in the selection phase and
the backpropagation phase of MCTS. Finally, we introduced
the use of sparse sampling to handle large uncertainty. We
also proposed a complementary algorithm called Damped
sampling, that mitigates the stochastic ramification of the
search graph. Thus, we provide a generic framework for
games of similar difficulties and open-ended baseline for
future improvement. Our experimental result shows that our
approach is well fitted for various environments in the domain
of Hearthstone.

REFERENCES

[1] Z. Chen, C. Amato, T. H. D. Nguyen, S. Cooper, Y. Sun, and M. S.
El-Nasr, “Q-DeckRec: A Fast Deck Recommendation System for Col-
lectible Card Games,” IEEE Conf. Comput. Intell. Games, CIG, vol.
2018-Augus, pp. 1–8, 2018.

[2] A. Stiegler, C. Messerschmidt, J. Maucher, and K. Dahal, “Hearthstone
deck-construction with a utility system,” Ski. 2016 - 2016 10th Int. Conf.
Software, Knowledge, Inf. Manag. Appl., pp. 21–28, 2017.

[3] L. F. W. Goes, A. R. Da Silva, J. Saffran, Á. Amorim, C. Franc,
T. Zaidan, B. M. Olı́mpio, L. R. Alves, H. Morais, S. Luana, and
C. Martins, “Honing stone: Building creative combos with honing theory
for a digital card game,” IEEE Trans. Comput. Intell. AI Games, vol. 9,
no. 2, pp. 204–209, 2017.

[4] A. K. Hoover, A. Bhatt, J. Togelius, S. Lee, F. de Mesentier Silva, and
C. W. Watson, “Exploring the hearthstone deck space,” 2018, pp. 1–10.

[5] S. Zhang and M. Buro, “Improving hearthstone AI by learning high-
level rollout policies and bucketing chance node events,” 2017 IEEE
Conf. Comput. Intell. Games, CIG 2017, pp. 309–316, 2017.

[6] M. Swiechowski, T. Tajmajer, and A. Janusz, “Improving Hearthstone
AI by Combining MCTS and Supervised Learning Algorithms,” IEEE
Conf. Comput. Intell. Games, CIG, vol. 2018-Augus, pp. 1–8, 2018.

[7] I. Kachalsky, I. Zakirzyanov, and V. Ulyantsev, “Applying reinforcement
learning and supervised learning techniques to play hearthstone,” Proc. -
16th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2017, vol. 2018-Janua,
pp. 1145–1148, 2018.

[8] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European conference on machine learning. Springer, 2006, pp. 282–
293.

[9] D. Whitehouse, P. Rohlfshagen, S. Tavener, S. M. Lucas, C. B. Browne,
S. Colton, D. Perez, E. Powley, S. Samothrakis, and P. I. Cowling, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Trans. Comput.
Intell. AI Games, vol. 4, no. 1, pp. 1–43, 2012.

[10] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm
for near-optimal planning in large MDPs,” Ijcai, pp. 193–208, 1999.

[11] A. Santos, P. A. Santos, and F. S. Melo, “Monte Carlo tree search
experiments in hearthstone,” 2017 IEEE Conf. Comput. Intell. Games,
pp. 272–279, 2017.

[12] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions and move
groups in monte carlo tree search,” 2008 IEEE Symp. Comput. Intell.
Games, CIG 2008, pp. 389–395, 2008.

[13] A. Saffidine, T. Cazenave, and J. Méhat, “UCD: Upper confidence bound
for rooted directed acyclic graphs,” Knowledge-Based Syst., vol. 34, pp.
26–33, 2012.

[14] J. Heinrich and D. Silver, “Smooth uct search in computer poker,” in
Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[15] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding
the Success of Perfect Information Monte Carlo Sampling in Game Tree
Search,” 24th AAAI Conf. Artif. Intell., pp. 134–140, 2010.

[16] P. I. Cowling, C. D. Ward, and E. J. Powley, “Ensemble determinization
in monte carlo tree search for the imperfect information card game
magic: The gathering,” IEEE Trans. Comput. Intell. AI Games, vol. 4,
no. 4, pp. 241–257, 2012.

[17] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information Set Monte
Carlo Tree Search,” IEEE Trans. Comput. Intell. AI Games, vol. 4, no. 2,
pp. 120–143, 2012.

[18] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” Adv.
Neural Inf. Process. Syst., pp. 2164–2172, 2010.

[19] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower Bounding Klondike
Solitaire with Monte-Carlo Planning,” Proc. 19th Int. Conf. Autom. Plan.
Sched., pp. 26–33, 2009.

[20] A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and N. Bonnard,
“Continuous upper confidence trees,” in International Conference on
Learning and Intelligent Optimization. Springer, 2011, pp. 433–445.

[21] J. Huang, Z. Liu, B. Lu, and F. Xiao, “Pruning in uct algorithm,” in 2010
International Conference on Technologies and Applications of Artificial
Intelligence. IEEE, 2010, pp. 177–181.

[22] H. Baier and P. I. Cowling, “Evolutionary MCTS for Multi-Action
Adversarial Games,” IEEE Conf. Comput. Intell. Games, CIG, vol. 2018-
Augus, pp. 253–260, 2018.

[23] C. Decoster, J. S. B. Choe et al. Sabberstone. [Online]. Available:
https://github.com/HearthSim/SabberStone

[24] A. Dockhorn and S. Mostaghim. Hearthstone ai competition. [Online].
Available: http://www.is.ovgu.de/Research/HearthstoneAI.html

[25] G. M. J. B. Chaslot, M. H. M. Winands, and H. J. van den Herik, “Par-
allel Monte-Carlo Tree Search,” in Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2008, vol.
5131 LNCS, pp. 60–71.

[26] A. Dockhorn and S. Mostaghim, “Introducing the hearthstone-ai com-
petition,” 2019.

[27] K. Bornemann. Tycheagent. [Online]. Avail-
able: https://dockhorn.antares.uberspace.de/wordpress/wp-
content/uploads/2018/11/HearthstoneBot-Bornemann-MCTS.zip

