
Two Human-Like Imitation-Learning Bots with
Probabilistic Behaviors

Chris Pelling
Inventive Dingo ∗

3507 Palmilla Dr Unit 3044
San Jose CA 95134, USA
chrisp@inventivedingo.com

∗ Formerly at The Australian National University

Henry Gardner
Research School of Computer Science, CECS

The Australian National University
Canberra, ACT 2600, Australia

Henry.Gardner@anu.edu.au

Abstract—We present details of two imitation-learning, game-
playing agents – “SVMBot” and “PETBot” – that feature
probabilistic modelling of some low-level combat behaviours.
Both bots used a support-vector-machine approach for aiming
and a novel, probabilistic model for jumping behaviours. PET-
Bot also used a probability-estimation-tree (PET) technique for
combat movement. The bots were developed for the FPS game
Unreal Tournament 2004 and one of each was submitted to the
qualification round (SVMBot) and the final round (PETBot)
of the 2009 2K BotPrize competition where they obtained
good results. They were then compared with each other as
independent variables in a human-computer-interaction (HCI)
between-subjects experiment.

Index Terms—competitions, support vector machine, imitation
learning, bots, humanness, Turing test, human computer inter-
action, decision trees, first person shooters, evaluation

I. INTRODUCTION

Many genres of video games incorporate artificial intelli-
gence (AI) agents (“bots”) that compete or collaborate with
human players. In competitive games, bots can provide op-
ponents of a given skill-level for training purposes or can
augment or replace human opponents when true multi-player
participation is inconvenient. However, it has been observed
that playing against bots can be less enjoyable than playing
against human opponents [1] and research has addressed the
construction of bots which are more human-like in various
ways.

Bots have been evaluated for their “humanness” in Turing-
test-like competitions. One of the best known of these compe-
titions is the 2K BotPrize that was introduced at the IEEE
Symposium on Computational Intelligence and Games in
2008 [2]. This competition provided cash prizes for develop-
ing human-like bots for the first-person-shooter (FPS) game
Unreal Tournament 2004 (UT2004). In the 2008 and 2009
2K BotPrize competitions, each human judge played several
rounds of UT2004 with both a human player (a “confederate”)
and a bot without knowing which was which. Prizes were
awarded on the basis of evaluations of the bots by the judges
in a Turing-like test. The competition rules were subsequently
revised in 2010 to make the evaluation of humanness part
of the game itself [3]. The 2K BotPrize is one of several

humanness bot-gaming competitions and a review can be
found in [4].

In games development, it has historically been the case
that expert AI programmers create bots manually for each
separate game that requires them. Many effective techniques
are available to support this process, from finite state machines
(FSMs) to sophisticated planners and behavior trees. UT2004
has its own built-in bots which use hand-created scripts
driven by a “fuzzy” FSM. However, whereas it is relatively
straightforward to create very challenging FPS bots (by coding
near-perfect aim or instant reactions) it is much more difficult
to make bots appear as though they are being controlled by
a human opponent. One way to reduce the effort involved
might be to use imitation learning, which performs tasks by
attempting to replicate the observed actions of another actor
such as a human opponent. The potential of this approach for
producing human-like bots is appealing and has been explored
by various authors. In [5]–[8], the authors used imitation
learning for reactive behaviors in low-level tasks such as
aiming, firing, selecting weapons and combat movement. A
neural network approach to building human-like bots, based
on a global workspace architecture, has been described by [9]
and the resulting “Neurobot” was very successful in the 2011
BotPrize competition.

This paper describes two bots that were entered into the
2009 2K BotPrize competition together with their evaluation in
a human-computer-interaction (HCI) experiment. The first bot,
“SVMBot”, used a support vector machine (SVM), imitation-
learning algorithm for combat movement together with a prob-
abilistic approach for jumping. SVMBot was entered into the
qualification stage of the competition. A variant of SVMBot,
denoted here as “PETBot”, was constructed by replacing the
SVM modelling of combat movement with a probabilistic
approach that was based on a probability estimation tree
derived from player data. We describe these our two bots
in Sections II and III below. We describe their evaluation in
competition and in a controlled experiment in Section IV and
we conclude with Section V.

II. SVMBOT

The starting point for the development of the two bots
described in this paper was the AMIS bot by Michal Stolba and

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

Juraj Simlovic [10]. The AMIS bot is an open-source bot for
Unreal Tournament 2004 with behaviors entirely hand-coded
in Java using the Pogamut API to interface with UT2004 [11],
[12]. The AMIS bot was the winner of the 2008 2K BotPrize
competition and we are very grateful that its authors agreed
to let us use it to develop our imitation learning bots.

Typically, the designer of an imitation-learning system
seeks to reproduce observed behavior by constructing function
approximators with defined inputs and outputs and training
them on data obtained from human players. Much of the
prior work in this field has used Artificial Neural Networks
[6]–[8]. We decided to instead use Support Vector Machines
(SVMs), partly for convenience, partly because support vector
techniques have a number of theoretical advantages (such as
always finding a global minimum), and also in the interest of
breaking new ground in games bot development.

The Support Vector Machine algorithm involves maximising
the following expression with respect to the coefficients an for
1 ≤ n ≤ N : [13]

N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk (xn,xm)

where each of the xn is an input vector and where each tn ∈
{−1, 1} denotes the corresponding output category (one of
two output classes) for that input vector. Here k (xn,xm) is a
kernel function with specific properties. Each an satisfies 0 ≤
an ≤ C and

∑N
n=1 antn = 0 where C is a tuning parameter.

C is typically determined by trial and error for each model,
using separate training and test data sets or cross-validation to
find the value that gives the best possible classification rate.
The minimisation is a quadratic programming problem, for
which well-known algorithms exist. Once a solution has been
found, the values of an are used to calculate a parameter b such
that tn

(∑N
m=1 amtmk (xn,xm) + b

)
= 1 for any vector xn

where an 6= 0. Finally, new data points x can be classified by
examining the sign of the following function:

y (x) =

N∑
n=1

antnk (x,xn) + b

If y(x) < 0 then x is classified as belonging to one class,
otherwise it is assigned to the other class. Several techniques
exist for extensions to problems involving more than two
classes. For our work we used the “one against one” method,
where a two-class SVM is trained for all possible pairs of
classes, and points are classified according to which class
receives the highest number of “votes” [13].

A. Combat Movement

In our construction of SVMBot, we set out to replace
many of the AMIS bot’s behaviors with imitation-learning
components. Training data were extracted from several hours
of recordings of a human player competing against one of
UT2004’s built-in bots. Firstly, we desired to reproduce the
combat movement patterns which the human player performed

in order to evade enemy fire. We modified the approach of [6]
to use the following inputs: the player’s current health and
shield values, the enemy’s position (in a Cartesian coordinate
system centered on the player), the enemy’s velocity, the
distance from the player to the walls in four directions (in
the hope of modelling spatially-aware movement behaviors)
and the identity of the weapons held by both the player and
the enemy. The output was a category, with one level for each
of eight directions in the plane (Back, Back Left, Back Right,
Forward, Forward Left, Forward Right, Left, Right) plus an
additional category (Stay) for no movement at all.

Training data were obtained from five separate play sessions
with a total duration of 27.5 minutes using the UT2004 levels
DM-1on1-Albatross and DM-1on1-Idoma. After filtering out
data points from non-combat situations, the training data set
contained 18,427 data points. We then deployed the libsvm
library [14] to train a support vector machine (SVM) for
mapping input into output categories. We used a radial basis
function kernel, and tuned its parameters using a brute-force
grid search and five-fold cross-validation. This achieved a
correct classification rate of 91% on our data-set.

B. Probabilistic Jumping

Jumping is an important part of combat in many FPS games,
particularly when avoiding enemy area-of-effect weapons such
as rocket launchers. Testing showed that the bot never jumped
when jumping was treated as another movement direction in
our SVM combat-movement model. This was possibly because
there were many more non-jumping than jumping data points
in the training data or because all of the jumping data points
were very close to non-jumping data points in the input
space. Upon reflection, it seemed reasonable to try to model
jumping probabilistically: Human players do not necessarily
jump predictably in any given situation and both the size and
the precise timing of jumps can vary. The approach we took
was to count the number of data points where the imitated
player had jumped, and to divide this by the total number of
data points to arrive at a probability value. On each frame,
we generated a uniform random number between 0 and 1 and
we compared this to the probability value to decide whether
to jump or not. We conditioned the probability value on the
weapons in play by dividing the counts into one of 81 bins
(since there are 9 Deathmatch weapons in UT2004). The bot’s
jump decision routine looks at its weapon and the weapon of
its current enemy to determine the appropriate bin, and uses
the probability value calculated for that bin. Jumping lengths
were held constant and were comparable to evasive running
with a similar time-step.

C. Aiming

We trained two aiming models – one for the pitch and
one for the yaw of an angle offset relative to “perfect” aim.
The inputs chosen were the current weapon, the distance
from the enemy to the bot and the enemy’s velocity in a
rotated reference frame (having one axis as the perfect aiming
direction). We found that it was necessary to reduce this set

of inputs from that reported by [8] in order to obtain aiming
behavior which was sufficiently reliable. In particular, the
inclusion of the pitch and yaw of the enemy position (in
spherical coordinates), as described in [8], led to unreliable
aiming behavior in our model. We used the same dataset as
for combat movement, and trained the aiming models using
Support Vector Regression (SVR). As with our SVM models,
our implementation of SVR used libsvm [14].

III. PETBOT

SVMBot achieved the highest score of all the bots in
the qualification trial of the 2009 2K BotPrize competition.
In spite of this good result, our in-house testing revealed
a number of flaws. In particular, the deterministic combat
movement failed to display sufficient spatial awareness. Even
though distances to nearby walls were provided as inputs to
the movement model, the bot frequently bumped into them.
Furthermore, the deterministic nature of SVM was a liability,
causing the bot to sometimes become “stuck” in invalid
movement states (e.g. running into walls). Noise was added to
some inputs to correct this flaw but with only partial success.

A possible solution to these problems appeared to be to
include an element of randomness in the models. The need
for randomness was supported by the fact that players tend to
“dance around” in first-person shooter games to evade enemy
fire. In order to be effective, this dance needs to be have
an element of randomness in order to keep an adversary off
guard. The nature of this dance can be observed in our training
data, captured from the human player, shown in Fig. 1. This
figure plots traces of enemy locations (in Cartesian coordinates
centred on the human player) which are labelled by the human
player’s choice of movement direction in each frame. It can
be seen that there are short sequences of identical markers
(representing movement directions) and that these patterns
tend to be circular. The identical markers result from the fact
that human players tend to stick to moving in one particular
direction for a number of frames. The orientation of these
sequences reflects the classic “circle strafe” tactic, where
opponents circle each other to make themselves harder to hit
while remaining at a distance.

Perhaps the simplest possible probabilistic approach to
movement is to construct a frequency histogram from the
data of the human player’s selections from each of the nine
movement directions and to sample from this histogram as
if it were a discrete probability distribution. The duration
of each movement also needs to be modelled, since (as is
apparent from Fig. 1) human players do not change direction
every frame. To give this approach situational awareness, the
input space can be split into regions and each region can be
given its own histogram. The choice of a combat movement
direction is then a matter of finding which region of the input
space the data point belongs to and then sampling from the
associated histogram. The question remains of how to split the
input space into regions. One approach is to use a decision
tree [15] which is a binary tree where an inequality on some
variable is attached to each internal node. Nodes within the

Relative enemy position and corresponding movements in combat

Enemy position (X)

En
em

y
po

si
tio

n
(Y

)

−1

0

1

2

●
●

●●●●●●●

●
●●

●

●

●●

●●

●●

●

●●●●●

●

●●
●●●

●
●
●

●
●

●●●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●
●●

●●

●●

●●

●

●●

●●●●●●●●●●●●●●●●●●

●●●

●●●

●●
●●●

●

●●

●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●
●●●●●●●●●●●

●

●●●●
●●

●

●

●
●●●

●●●

●●●●

●●

●●

●●

●●
●

●

●●●●●●

●●
●
●
●

●●●

●●●

●●●
●

●

●●

●●●●

●
●●●

●●●

●

●

●●●●●●

●

●

●●●●●●

●● ●●●

●●●●
●●●●●
●

●

●●●●

●

●●●

●●

●●●●●

●

●

●

●

●
●
●

●

●

●

−1 0 1 2

Back

Back Left

Back Right

Forward

Forward Left

Forward Right

Left

Right
● Stay

Fig. 1. Plot of enemy locations relative to the human player in the training
data, with markers showing the player’s current movement direction in each
case.

left subtree correspond to situations in which the inequality
is false, and nodes within the right subtree correspond to
situations in which the inequality is true. Decision trees are
simple and can be easily interpreted and modified by humans
but their principal disadvantage is that the region boundaries
are always hard and axis-aligned. In a classic decision tree,
each leaf node specifies a single outcome but this can be easily
extended to the probabilistic case by replacing those single
outcomes with discrete probability distributions. The resulting
tree can be called a probability estimation tree (PET) [16] or a
class probability tree [17] (although the undifferentiated term
decision tree has also been used [18]).

We constructed a PET based on probability distributions
derived from the same combat movement training data as for
the SVMBot. The tree was constructed automatically using
the “C4.5 algorithm” of [19] with leaf nodes being replaced
by probability distributions in a post-processing step. The data
set contained all of the input parameters used for SVMBot but
was augmented by an additional “recent damage” parameter
to represent the amount of damage done to the bot during the
past two seconds. It turned out that our decision-tree algorithm
made heavy use of the “distance to walls” parameters which
gave us confidence that the model would go some way towards
correcting some of the flaws of the SVMBot. An excerpt from
the resulting tree is shown in Fig. 2.

A. Movement Duration

Movement duration was modelled by recording player
movement durations and placing them in one of nine lists
(one for each of the eight directions in the plane as well as
one for no movement) and then selecting randomly from the
appropriate list. The shapes of the probability distributions as
a function of movement duration are shown in Fig. 3. It can
be seen that these distributions are noticeably different from
each other and that there is a tendency of straight movements
(Forward, Back, Left, Right) to be shorter in duration than the
diagonal movements. This might reflect the imitated player’s

Recent damage ≤ 0
DIST BACK ≤ 0.139815

DIST RIGHT ≤ 0.089745

Left - Right

Forward 38 80 115

- 21 30 30

Back 0 24 18

DIST RIGHT > 0.089745
DIST LEFT ≤ 0.12852

(. . .)
DIST LEFT > 0.12852

DIST RIGHT ≤ 0.27881
Weapon = Shield (no data)
Weapon = Assault (. . .)
Weapon = Bio (. . .)
Weapon = Shock (. . .)
Weapon = Link (. . .)
Weapon = Mini (. . .)
Weapon = Flak (. . .)
Weapon = Rocket

Left - Right

Forward 7 12 34

- 18 6 41

Back 13 4 20

Weapon = Sniper

Left - Right

Forward 0 0 0

- 2 0 1

Back 3 1 0

DIST RIGHT > 0.27881
(. . .)

DIST BACK > 0.139815
(. . .)

Fig. 2. Excerpt from the decision tree used for the final PET-based combat
movement implementation. Each variable beginning with “DIST ” is the
distance to the nearest wall or other map obstacle in the indicated direction.
The frequency histograms are shown as tables under the relevant leaf nodes for
the forward/neutral/backward and left/neutral/right directions of movement.
The neutral columns and rows correspond to the probability of no movement.

preference for diagonal movements, or it might have been a
consequence of the interface: Since diagonal movements were
performed by holding down two straight-direction control keys
simultaneously, many short straight movements might have
been generated as a result of failing to press or release both
keys at the same time.

IV. HUMANNESS EVALUATION

Our two bots have been evaluated for humanness against
other bots in competition, and against each other in a con-
trolled laboratory experiment. The 2009 2K BotPrize com-
petition had two phases – a qualification round (in late July

Time

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Back
Back left

Back right
Forw

ard
Forw

ard left
Forw

ard right
Left

R
ight

Stay

Fig. 3. Density plots of movement duration for each possible movement
direction, including the no-movement direction (“Stay”).

TABLE I
CATEGORIES USED TO JUDGE PLAYERS IN THE 2009 2K BOTPRIZE

Label Category text

0 This player is a not very human-like bot.
1 This player is a fairly human-like bot.
2 This player is a quite human-like bot.
3 This player is a very human-like bot.
4 This player is human.

2009) and a final round (in September 2009). The competition
rules allowed qualifying bots to be modified prior to the final
competition which, in our case, led to SVMBot being replaced
by PETBot in the final round. The controlled laboratory
experiment was run following the final BotPrize round using
a traditional HCI experimental methodology.

A. The 2009 2K BotPrize competition

In the qualification trial of the 2009 2K BotPrize competi-
tion, each of the 15 entrants took part in three rounds of five
ten-minute games with three humans and three bots playing
together in each game. After each game, the three humans
rated their opponents on the scale shown in Table I and the
top five bots went through to the final round. Of the bots in
the qualification round, SVMBot obtained the highest mean
score (of 1.75) but further details of this round have not been
made available.

TABLE II
SCORING OF BOTS IN THE FINAL ROUND OF THE 2009 2K BOTPRIZE

COMPETITION (TAKEN FROM [21])

Judge scores

Entry #1 #2 #3 #4 #5 Mean

sqlitebot 2 4 2 2 2 2.4
PETBot 0 4 2 3 1 2.0
ICE-2009 3 4 1 1 1 2.0
BradBot 2 1 4 0 0 1.4
UTAustin 0 4 0 1 0 1.0

Twenty-five games were played in the final round of the
2009 2K BotPrize. Five human judges and five human con-
federates were recruited. The judges were all game developers
or AI researchers. Each game was played between one judge,
one bot, and one human confederate, such that each judge met
each bot and confederate exactly once. Judges were tasked
with identifying which of their opponents was human, and
rating each opponent using the numerical scale of Table I.
Confederates were instructed to play normally as if trying
to win the game, and they were motivated to do this with
a 100 Euro prize for earning the most game points. Judges
and confederates were optionally allowed to provide comments
together with their scores [20].

The five finalists are listed in Table II together with the
scores they received from each judge in the final trial. (This
data has been taken from [21] – with the name “PETBot”
substituted for “Anubot” in that reference.) Each bot managed
to fool exactly one judge into giving it a rating of 4 (“is
human”). Rankings derived from the mean scores in that table
showed “sqlitebot” to be the winner of the final round with
PetBot tied for second place.

There is evidence that the humanness of bots has improved
since 2009. Figure 1 of [22] aggregates humanness scores
(according to a metric related to judges’ ratings) of a number
of bots, including “Anubot”, in the BotPrize competitions from
2008 to 2012. Later years show a marked increase in aggregate
humanness by these bots. Even though the protocols of com-
petitions after 2009 changed significantly [3], this evidence of
steady improvement in bot humanness is compelling.

B. Controlled Experiment

We decided to run a formal laboratory test to attempt to
distinguish SVMBot and PETBot and to gauge the humanness
of each. We adopted an HCI methology to run this experiment.
Participants were formally recruited from an advertisement
requesting volunteers with first-person-shooter gaming expe-
rience. Before playing the game, participants were provided
with an information sheet and a consent form. After the
game, they were asked to fill in a short questionnaire that
requested a small amount of demographic information and
asked them to rate the humanness of the “bots” they were
playing against (as in the final round of the 2006 2K BotPrize

Human (vs SVM) SVM bot Human (vs PET) PET bot

1
2

3
4

5

Humanness scores: SVM vs PET

H
um

an
ne

ss
 sc

or
e

Fig. 4. Box plots of humanness ratings per player and per bot type.

competition, one “bot” was a human). Participants were also
asked for any observations that they had about each bot and
any suggestions that they had to make that bot appear more
human. The experiment protocol was approved by the Human
Ethics Committee of our university.

Twenty participants were recruited for our experiment. All
were males with fifteen between the ages of 15 and 24,
three between the ages of 25 and 34, and one each in the
age groups 35-44 and 45-54. All had previously played first-
person shooter games with most rating themselves as slightly
above average in skill. Most participants had played Unreal
Tournament 2003 or 2004 a few times.

Each individual test was run as a three-way game of UT2004
with the three players being: the study participant, a human
confederate, and a bot. The bot was chosen to be one of
SVMBot and PETBot, alternating from one experiment to the
next. Each participant only played against one of SVMBot
or PETBot and the human confederate was the same in each
game. Each game was run for 15 minutes (compared to the
10 minutes per game used in the 2009 2K BotPrize).

For this experiment, we asked participants to rate human-
ness using a rating scale that kept the spirit of the 2009
2K BotPrize scale but conformed better to traditional anchors
used in Likert surveys. Our rating scale was similar to the
“Likelihood” set of anchors described by [23] but used termi-
nology taken from the BotPrize Turing test:

(1) This player is definitely a bot.
(2) This player is probably a bot.
(3) I can’t tell whether this player is a human or a bot.
(4) This player is probably a human.
(5) This player is definitely a human.

Figure 4 shows box plots of rating data obtained from
this experiment. From these plots, it can be seen that the
median score for the SVMBot (of 2) was less than the median
score (of 3.5) for the PETBot. Had this been a competition,
these numbers would have made PETBot the winner. However,

statistical significance for rejecting the null hypothesis of the
two bots having identical humanness ratings was not obtained
(a p-value of p ≈ 0.5 was obtained using the non-parametric
Wilcoxon test for this condition). Of the various comparisons
evident in Fig. 4, the most significant was that comparing the
perceived humanness of the human confederate when playing
in games including SVMBot as compared to those using
PETBot (p ≈ 0.13) but this was still not statistically significant
at the traditional p = 0.05 level.

C. Qualitative Analysis

In order to derive recommendations for improvement in
our bots, we combined the written comments made by the
participants in our HCI test with written feedback we received
from the judges in the 2009 2K BotPrize and performed a
textual analysis. We drove this analysis by the two ques-
tions “What went right?” (i.e. Why were players tricked into
thinking that our bots were human and vice versa?) and
“What went wrong?” (i.e. Why did players make the correct
identifications?). We obtained a corpus of about 3,500 words
which we split into 229 separate comments by topic in order
to perform this analysis following a focus group methodology
[24]. Several distinct trends were identified, and the major
recommendations for improving on our bots are listed below.
Apart from these recommendations, we found that there were
no clear differences in comments received regarding combat
movement in SVMBot and PETBot. This was surprising to
us because improving combat movement was the rationale
for replacing SVMBot by PETBot in the first place. We also
found that comments indicated that the human confederate was
sometimes considered to be just “too accurate” and “too fast”
to be really human!

The strongest recommendations that we obtained for im-
proving our bots were the following:

1) Bots should visibly respond when fired upon by unseen
opponents. About half of the untricked participants com-
mented on the bots’ lack of awareness when shot from
behind. This would have been an easy fix for our bots.

2) Bots should have more unpredictable, evasive, tactical
and spatially-aware movements. Avatars identified as
bots had movements which were predictable, repetitive
and became stuck on walls. Human avatars, when cor-
rectly identified, had movements which displayed good
dodging, avoidance and jumping.

3) Bots should not display reaction time delays in their
movements at inappropriate times. About half of the
untricked participants noted that the bots paused or
stopped at inappropriate times.

4) Bots should aim intelligently. For example, they should
cleverly lead the target. But at the same time, bots need
not aim accurately! Some tricked participants cited the
poor aim of the bot as being a reason why they thought
it was human. Some cited the the real human’s accurate
aim as a reason for it being a bot. Some participants
commented on the correctly-identified human avatar’s
precise aiming and good use of leading.

5) Bots should be intelligent about “running the map”
to collect items such as health, shields, powerups and
weapons. Some participants commented on the (cor-
rectly identified) human avatar’s good acquisition of
these items. A few participants, and one BotPrize judge,
commented that our bot was bad at acquisition.

6) Bots should know when to attack and when to avoid en-
gagement or to retreat. They should, however, continue
to display aggressiveness. Some participants noted that
the bots never retreated. About half of the participants
mentioned the human avatar’s consistently aggressive
playing style (although a few mentioned that he was
too aggressive!).

V. CONCLUSION

We have discussed two designs for imitation-learning bots.
Both were based on support vector techniques and include a
novel probabilistic model for in-combat jumping. One bot also
includes a application of probability estimation trees to in-
combat movement. Both designs appeared viable when tested
under laboratory conditions and in the competition format of
the 2009 2K BotPrize.

As mentioned above, later years of the BotPrize competition
have seen a continued interest by bot developers and improve-
ments in bot humanness [22]. In the hope that our experiences
might be useful as this field progresses further, we have listed
the suggestions we received on how to improve our bots in
the previous section. In addition to these recommendations,
future work might build on our bots in several ways. In
particular, we constructed PETBot’s Probability Estimation
Tree by adapting an algorithm designed to construct decision
trees with deterministic leaf nodes. It is possible that a PET
algorithm which operates directly on probability distributions
might give better results. Other methods of estimating prob-
ability distributions could also be applied and the nature of
the density plots obtained for movement duration showed an
interesting structure which could be another matter worthy of
future investigation.

The design of Turing-test competitions such as the BotPrize
continues to be a topic of active research (see, for example,
[4], [25]). A crowd-sourced version of our HCI experimental
approach could provide an alternative to such competitions
for a developer who wished to verify that improvements made
to bots actually did appear to be more human. In such an
evaluation, both human confederates and human participants
could be sourced on the internet using a platform such as
Amazon Mechanical Turk. The larger number of participants
obtained using such an approach would enable statistical
significance to be more easily obtained than in our experiment
and that significance could be used as a decision point to adopt
one version of a bot over another as improvements are made.

ACKNOWLEDGMENT

We gratefully acknowledge Michal Stolba and Juraj
Simlovic, for agreeing to let us use their AMIS bot as a basis

for our development and competition entry. Thanks to Penny
Kyburz for useful discussions and encouragement.

REFERENCES

[1] P. Sweetser, D. Johnson, J. Sweetser, and J. Wiles, “Creating engaging
artificial characters for games,” in Proceedings of the second inter-
national conference on Entertainment computing. Carnegie Mellon
University Pittsburgh, PA, USA, 2003, pp. 1–8.

[2] P. Hingston, “A Turing test for computer game bots,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 1, no. 3, pp. 169–
186, 2009.

[3] ——, “A new design for a Turing Test for Bots,” in 2010 IEEE
Symposium on Computational Intelligence and Games (CIG). IEEE,
2010, pp. 345–350.

[4] C. Even, A.-G. Bosser, and C. Buche, “Analysis of the protocols used to
assess virtual players in multi-player computer games,” in International
Work-Conference on Artificial Neural Networks. Springer, 2017, pp.
657–668.

[5] B. Geisler, “An empirical study of machine learning algorithms applied
to modeling player behavior in a first person shooter video game,” Ph.D.
dissertation, University of Wisconsin, 2002.

[6] S. Zanetti and A. E. Rhalibi, “Machine learning techniques for FPS in
Q3,” in ACE ’04: Proceedings of the 2004 ACM SIGCHI International
Conference on Advances in computer entertainment technology. New
York, NY, USA: ACM, 2004, pp. 239–244.

[7] C. Bauckhage and C. Thurau, “Towards a Fair’n’Square Aimbot–Using
Mixtures of Experts to Learn Context Aware Weapon Handling,” in Proc.
GAME-ON, 2004, pp. 20–24.

[8] B. Gorman and M. Humphrys, “Imitative Learning of Combat Be-
haviours in First-Person Computer Games,” in Proceedings of the Tenth
International Conference on Computer Games: AI, Animation, Mobile,
Educational & Serious Games (CGAMES), 2007.

[9] D. Gamez, Z. Fountas, and A. K. Fidjeland, “A neurally controlled
computer game avatar with humanlike behavior,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 5, no. 1, pp. 1–14,
2013.

[10] M. Stolba, J. Simlovic, and J. Gemrot, “AMIS bot description
and source code,” http://web.archive.org/web/20120814174348/-
https://artemis.ms.mff.cuni.cz/pogamut/tiki-

[21] ——, “2K BotPrize 2009 results,”
http://web.archive.org/web/20090923153541/-
http://www.botprize.org/Results2009.xlsx. (Retrieved 28 May 2019),
2009.

index.php?page=Botprize+2008+winning+bot. (Retrieved 28 May
2019), 2009.

[11] O. Burkert, R. Kadlec, J. Gemrot, M. Bı́da, J. Havlı́cek, M. Dorfler,
and C. Brom, “Towards fast prototyping of IVAs behavior: Pogamut 2,”
Lecture Notes in Computer Science, vol. 4722, p. 362, 2007.

[12] J. Gemrot, R. Kadlec, M. Bida, O. Burkert, R. Pibil, J. Havlicek,
L. Zemcak, J. Simlovic, R. Vansa, M. Stolba, T. Plch, and B. C.,
“Pogamut 3 Can Assist Developers in Building AI (Not Only) for Their
Videogame Agents,” Lecture Notes in Computer Science, vol. 5920, p. 1,
2009.

[13] C. Bishop, Pattern recognition and machine learning. Springer, 2007.
[14] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector

machines, 2001, software available at http://www.csie.ntu.edu.tw/∼cjlin/
libsvm (Retrieved 28 May 2019).

[15] J. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1,
pp. 81–106, 1986.

[16] F. Provost and P. Domingos, “Well-trained PETs: Improving probability
estimation trees,” Raport instytutowy IS-00-04, Stern School of Business,
New York University, 2000.

[17] W. Buntine, “Learning classification trees,” Statistics and Computing,
vol. 2, no. 2, pp. 63–73, 1992.

[18] D. M. Magerman, “Statistical decision-tree models for parsing,” in Pro-
ceedings of the 33rd annual meeting on Association for Computational
Linguistics. Morristown, NJ, USA: Association for Computational
Linguistics, 1995, pp. 276–283.

[19] J. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann,
2003.

[20] P. Hingston, “2K BotPrize 2009 rules,”
http://web.archive.org/web/20090221151001/-
http://www.botprize.org/rules.html. (Retrieved 28 May 2019), 2009.

[22] M. Polceanu, “Mirrorbot: Using human-inspired mirroring behavior
to pass a turing test,” in 2013 IEEE Conference on Computational
Inteligence in Games (CIG). IEEE, 2013, pp. 1–8.

[23] W. M. Vagias, “Likert-type scale response anchors. clemson international
institute for tourism,” & Research Development, Department of Parks,
Recreation and Tourism Management, Clemson University, 2006.

[24] R. A. Krueger and M. A. Casey, Focus Groups: A Practical Guide for
Applied Research, 4th ed. Sage Publications, 2008.

[25] C. Even, A.-G. Bosser, and C. Buche, “Bot believability assessment:
A novel protocol & analysis of judge expertise,” in 2018 International
Conference on Cyberworlds (CW). IEEE, 2018, pp. 96–101.

