
978-1-7281-1884-0/19/$31.00 ©2019 IEEE

G-SpAR: GPU-Based Voxel Graph Pathfinding for

Spatial Audio Rendering in Games and VR

Mirza Beig1, Bill Kapralos1, Karen Collins2, and Pejman Mirza-Babaei1
1University of Ontario Institute of Technology, Oshawa, Canada.

2Unviversity of Waterloo, Waterloo, Canada.

Abstract— The influx of investment in virtual and augmented

reality in recent years has brought with it a renewed interest in

spatial audio. Spatial audio in virtual environments and games has

been neglected previously due in part due to computationally

expensive nature of the processing involved. Here we introduce G-

SpAR, a GPU-based spatial audio renderer for the Unity3D game

engine. The system develops a pathfinding method that shortens

occlusion and obstruction, increasing performance in-game.

Keywords—Spatial audio, acoustical modeling, graphics

processing unit (GPU), real-time, pathfinding

I. INTRODUCTION

Interest in spatial has been increasing in recent years with the

rapid rise of virtual and augmented reality (VR and AR

respectively). This explosion of enthusiasm, comes with a need

for, and greater interest in, further developing spatial audio

tools. Realistic and effective spatial audio technology has

existed for many years in high-end simulations. However, the

challenge with respect to consumer systems is the deployment

of realistic spatial audio in a computationally inexpensive

manner that is also platform agnostic, and easy to use given the

difficulties associated with modeling the human listener (e.g.,

head-related transfer functions (HRTFs)), and the room

acoustics. Here, we ignore the listener and focus solely on

recreating the room acoustics (see for example [1] for a detailed

discussion on simulating listener-specific characteristics).

Many spatial audio approaches employ geometric acoustics,

whereby it is assumed that sound and rays behave in a similar

manner. This is in contrast to wave-based methods whereby the

aim is to recreate a particular sound field by approximating the

wave equation using numerical approximations (e.g., finite

element methods, boundary element methods, and finite

difference time domain methods instead ([2][3][4]).

Geometric acoustics models sound propagation as straight

lines (“rays”) that interact with the surface geometry and

materials of the virtual environment. The acoustics of an

environment is then modeled by tracing these “sound rays”

as they propagate through the environment while accounting for

any interactions between the sound rays and any

objects/surfaces they encounter before reacing the listener.

Mathematical models are used to account for sound source

emission patterns, atmospheric scattering, and the medium’s

absorption of sound energy as a function of humidity,

temperature, frequency, and distance. At the listenera room

an echogram, which describes the distribution of incident sound

energy (rays) at the receiver over time, is obtained. The

echogram is then post-processed to provide a room impulse

response which is used to filter a sound and recreate the specific

listening environment. Geometric acoustic models are only

valid approximations for high frequency sound propagation;

low frequency wave effects such as diffraction are ignored (see

[5]). Current graphical-based application (e.g., video games and

virtual environments), employ advanced graphical rendering

techniques (such as real-time ray-tracing and radiosity), and

other advanced lighting and shading techniques that are

implemented using the graphics processing unit (GPU). As will

be described in the following section, there is an increased

demand for the application of such advanced technqiues to

sound rendering, thus taking advantage of the power inherent

in GPUs. There have been various approaches to using the GPU

for spatial sound generation, leading to various interactive rate

spatial sound methods and techniques. Here, we present the

GPU-Spatial Audio Renderer (“G-SpAR”), a spatial audio

rendering component that employs pathfinding and runs on the

GPU to the acoustics of an environment in a computationally

efficient manner.

II. BACKGROUND

A. Spatial Audio Rendering

Audio-based ray tracing using the GPU has been
implemented by Jedrzejewski [6] to compute the propagation
of acoustic reflections in highly occluded environments. The
method also allows for the sound source and the listener to
move throughout a simulation without the need for a long
pre-computation. Jedrzejewski takes advantage of the fact
that in acoustics, as opposed to graphics, objects other than
walls do not contribute significantly to the sound wave
modifications and therefore can be ignored during the
computation. As a result, only polygons that represent walls
are taken into account. To make the system more efficient,
each ray is intersected with a plane rather than a polygon.

Röber et al. [7] describe a ray-based acoustical modeling
method that employs the GPU. Their framework was
designed along existing (computer graphics) GPU-based ray
tracing systems suitably modified to handle sound wave
propagation. The system accepts a 3D polygonal mesh of
up to 15,000 polygons and pre-processes it into an accessible
structure. All signal processing, including HRTF filtering and
delay filtering, is programmed as fragment shaders and for
each task, a single shader is developed. Cheng [8] has also
developed a GPU-based method for simulating room acoustics
in real-time. The method computes the reflected and transmitted
acoustic response from a number of sound sources to a stereo
listener in arbitrary triangle-based geometry.

Tsingos and Gascuel developed a method that employs the
GPU to perform fast sound visibility calculations that can
account for specular reflections (diffuse reflections were not
considered), absorption, and diffraction caused by partial
occluders [9]. Specular reflections are handled using an image
source approach, while diffraction is approximated by
computing the fraction of sound that is blocked by obstacles on
the path from the sound source to the receiver by considering the
amount of volume of the first Fresnel ellipsoid that is blocked
by the occluders. Although their approach is not completely
real-time, it is “capable of achieving interactive computation
rates for fully dynamic complex environments” [9]. Tsingos and
Gascuel later introduced another occlusion and diffraction
method based on the Fresnel-Kirchoff optics-based
approximation to diffraction [10]. Tsingos et al. [11] describe a
high quality, GPU-based first order sound scattering modeling
method that is based on a surface integral formulation and
Kirchhoff’s approximation. Their method is capable of
modeling both diffraction and reflection in an arbitrarily
complex environment. Experiments indicate their method fares
well with boundary element methods (BEMs), although greater
work remains to allow for higher order sound scattering and to
overcome the fact that the method is prone to aliasing. Cowan
and Kapralos [12] introduced a GPU-based occlusion method
capable of real-time operation even for complex virtual
environments and games. Occlusion/diffraction effects are
computed by rendering the scene (using the GPU) from the
perspective of the sound source. The method is capable of
approximating acoustical occlusion and diffraction effects in
real-time for detailed scenes containing many objects of
complex shape. It works best in larger, open environments with
several occluding objects. However, environments with
interconnecting rooms can be problematic. This issue was
addressed in later work by the same authors [13]. The method is
computationally efficient, allowing it to be incorporated into
real-time virtual environments and games where the scene is
arbitrarily complex.

B. Pathfinding

Several algorithms exist for pathfinding in games, along
with numerous variations suited for special cases and tasks,
including breadth-first search (BFS), Dijkstra’s algorithm, and
its heuristic-guided variant, A-Star (A*)[6]. BFS expands one
step towards connected vertices every iteration from a given
source vertex and assumes a virtually non-existent cost of
traversal each time. It can be used to find the least number of
steps required to obtain between two points, which may also be
the shortest path if costs are irrelevant to the results of the search.
Dijkstra’s algorithm is similar, except that it allows for weighted
costs for traversal between vertices, allowing for a better
definition of the shortest path. A* is a variant of Djikstra’s
algorithm that applies a heuristic to guide the search so that the
search tends to gravitate towards the most likely shortest path.
As a result, it is more performant than Djikstra’s algorithm when
requiring a single path to a target for any given source. The use
of pathfinding provides an opportunity for optimization by
reducing the requirement to a single source, shortest path
problem. All sound sources in the virtual environment are
perceived by a single listener. For this reason, A* is unlikely to
be useful when there are more than a few sound sources in the
scene as each source requires a unique, or partially unique

traversal for the heuristics-guided algorithm. By using an
expanding BFS-type search, the shortest path to every vertex in
the graph can be resolved from a single source. With respect to
performance, the addition of sound sources is then insignificant
since a path to the vertex containing the sound source already
exists. However, real-time pathfinding on a large enough dataset
remains a complex and intensive task that can impact
performance. As such, the operations involved are often offset
to worker threads or solved in sequential steps over several
frames with a limit to the maximum number of vertices or paths
processed in a single update cycle to prevent impacting the
performance of a real-time application too severely (Unity does
this automatically as part of their built-in pathfinding solution).

C. GPU-Based Pathfinding

Various libraries for GPU-graph processing do exist,
including NVIDIA’s nvGraph, and Gunrock – both of which
build upon NVIDIA’s GPU parallel computing platform.
Despite the availability of these libraries, we have not found any
complete implementations of a fully 3D GPU-accelerated
pathfinding algorithm for real-time use in games, and existing
research that has been done in this area has yet to be tested on
modern, consumer-level GPUs such as those found in today’s
gaming PCs. Prior work regarding parallel processing for
pathfinding algorithms has employed parameters that do not
apply to most game scenarios. For example, Bleiweiss [14] uses
the A* algorithm on the GPU with a maximum testing block of
20 × 20 nodes, which is unlikely to provide a sufficient
resolution for realistic pathfinding applications in most games,
since the detail of the level geometry and obstacles would be
overly simplified.

III. G-SPAR: VOXEL-BASED GPU SPATIAL AUDIO

By considering existing sound propagation pathfinding
methods that have been used in popular games for play-by-
sound mechanics, such as Overwatch (2016), we accelerated the
process for dynamic 3D environments through the use of general
purpose GPU (GPGPU) technology that is hardware agnostic.
As a fall back, the system can still use the CPU, for easy cross-
platform deployment to mobile and other lower-end hardware
systems. The decision of whether to use the GPU is left to the
discretion of the developer. Dynamically switching between
CPU-only and GPU-assisted processing during runtime is also
fully supported, allowing developers to profile the execution
time of G-SpAR components themselves from within their
application to determine which one should be used. We built G-
SpAR to work with Unity, one of the most common game
development engines. One important feature that makes Unity
an ideal choice for virtual environments is the built-in 3D audio
spatialization integration that includes HRTF transforms. G-
SpAR employs component-based approximations that enhance
existing solutions for environmental occlusion and obstruction
modelling using four distinct methods that are each suited for
scaling on their target platforms (e.g., lower-end mobile devices,
and modern high performance gaming PCs) and the nature of
the sound source environment (dynamic/static).

A. Raycast and Lightmap Methods

The first method is a simple on/off state raycast system that
checks the line of sight between the sound source and the
listener. If the line of sight is obstructed, the sound signal is

occluded either completely or partially using a low-pass filter.
This is a commonly used techniques in games of recent years.

The second method makes use of precomputed lighting
information positioned at the sound source that, instead of being
applied over the surface geometry in the game as a lightmap, is
sampled directly as a texture to retrieve information about the
sound throughout the scene. Light and sound sometimes behave
in a similar manner when encountering physical surfaces. With
this in mind, the high-quality information within the lightmap
can be used as a “soundmap” to model the room acoustics.
However, this approach is limited as it only works in 2.5D space
(flat plane and height), and the sound source must be in a fixed
location, as the texture is projected to the surface (not
volumetric), and cannot be calculated in real-time without a
significant performance impact. Depending on the size and
configuration of compression for each texture, it may also
introduce long load times and significantly increased storage
requirements. Pre-computed lighting may require significant
time to calculate and render into a texture. However, this
approach provides the opportunity for creative use, since
different light types can be used for a sound source and multiple
lights representing the propagation of that sound source can be
baked into a soundmap

B. Pathfinding Method

The third method uses 2.5D pathfinding and has the added
benefit that a portion of the geometry in the scene can be
dynamic. The pathfinding data is used to calculate the shortest
distance that the sound would have to travel around the level
geometry to reach the listener. This data is then compared to the
direct point-to-point distance and the difference is used to filter
the frequency and intensity of the source. Since calculating the
path using a navigation mesh in 2.5D is quicker, this data is all
processed using the CPU. Using this information, simple
propagation can be modelled by taking the last visible corner
(the last point determined by a raycast) of the path from the
listener to the source and projecting a virtual sound source some
distance equal to the remaining distance of the path from this
corner to the source in the direction of the corner from the
listener. When the GPU component of G-SpAR is completed, a
path from any point on the node graph is possible, but we trace
only a path for the two points we need between the listener and
the source. The number of paths traced depends on the number
of sound sources. Pathfinding-based sound propagation and/or
occlusion has been consistently used in AAA video game titles
such as Tom Clancy’s Rainbow Six Siege (2015) for “play by
sound” mechanics. Some of the limitations of the pathfinding-
based propagation systems in these games involve limited
spatial dimensions and limited or simulated environment
dynamics [15]. Our implementation of pathfinding-based sound
propagation and occlusion is also scalable to mobile devices and
can handle fully destructible environments.

C. GPU-Based Voxel Graph Pathfinding

The final method—and our particular innovation—builds
upon the pathfinding-based solution described above for
approximating audio propagation while also circumventing the
2.5D limitation entirely by sampling the current scene as a voxel
graph and making use of the highly parallel nature of modern
GPUs to process this data. Combined with additional
optimizations on the CPU, the extreme throughput of the GPU

here allows for multiple (potentially several thousands of) real-
time pathfinding calculations to be completed within a single
frame to use as raw data for DSP once retrieved back to the CPU.
As a result, the entire implementation down to the end of the
DSP chain, even with multiple active sound sources and
dynamic level geometry can be run in a complex-geometry at
over 60 frames per second. To our knowledge, this technique is
unique and serves as both a proof of concept and an actual
implementation of this kind of GPGPU computing for
approximating the acoustics of sound.

IV. IMPLEMENTATION AND SYSTEM DETAILS

To implement G-SpAR, we created a complete framework
from the CPU to the GPU using C# and Unity’s device-
independent compute shader language. This provided maximum
control over the pipeline allowing us to test multiple algorithms
and still retain the potential for multi-platform deployment later
on. A complete source code listing is available (see [16]).

Fig. 1. High-level flow diagram of the overall structure of G-SpAR. NavMesh

obstacles are handled directly by Unity’s system, whereas GPU pathfinder

obstacles update node states on the CPU which are then re-sent to the GPU.

An overview of the system can be seen in Fig. 1. Pathfinding
primarily functions through three custom components and a
single compute shader. There are two component scripts that
handle all the pathfinding-related operations on either only the
CPU using Unity’s NavMesh system, or both the CPU and GPU
using our pathfinding implementation (including the data as it is
transferred to and from the compute shader). Both return similar
results and have almost identical function names – the difference
is in how they retrieve those results for their roles as the
“pathfinder”. Of special interest here is the latter, which involves
the GPU. The third component (labelled as the DSP processor)
selects which pathfinder to use, and processes the results to
control low-pass, reverb, and intensity filters applied to a
specific audio stream. There is only a single active pathfinder
required for each type in the scene (so at most there will be the
CPU pathfinder and GPU pathfinder), but there may be multiple
DSP processors attached to GameObjects (that is, Unity’s base
class objects) that have Unity’s AudioSource component (that

is, the audio clip playback component), for manipulating the
audio through DSP filters.

The process begins on the CPU through a pre-processing
stage that first takes into account all of the static geometry in the
scene for the duration of the session when the pathfinder
component first “awakes” on scene load. This geometry must be
specifically designated and assigned to a layer that is configured
on the pathfinder component to use as a search mask. The
pathfinder is given a three-dimensional vector representing the
discrete scale of the area in which the algorithm will operate as
an axis-aligned “room” or grid. The resolution of this grid is then
defined by another value that represents the uniform cell size.
The representation of a single cell in the pathfinder is through a
custom C# struct called a node. A node is defined by an
accumulative array index, its vector [x, y, z] index, and world
position. It is essentially a vertex in the pathfinding graph. A
global array of nodes containing all of the cell data is then
created, along with two additional global integer and Boolean
arrays that will record the traversable state of that node and
whether the state may have been changed by dynamic geometry.
Both the integer and Boolean arrays are of the same size as the
node array and are treated and used as Boolean variables
specifying whether the node is traversable and whether its
traversable state may have been changed as a result of dynamic
geometry moving into the node respectively. However, since the
integer array is passed to the compute shader, it must be stored
as an array of integers due to the minimum stride of compute
buffers being four bytes. The pathfinder then scans each cell area
and performs an axis-aligned box test to check for colliders,
marking the integer value in the traversable array as either 0 for
not traversable, and 1 for traversable.

The next stage of the pathfinder takes place in the update
loop (every frame) and contains the code for the compute shader
kernel dispatches. Here, Djikstra’s algorithm was found to be
more performant due to its more reserved use of compute shader
kernel dispatches. Optimizations are set in place to determine if
the pathfinder must engage the GPU. In the main update loop,
dynamic obstacles are handled at a variable frequency that can
be set by the user. In this case, we used a default minimum
update delay value of 0.125 s. If an obstacle is detected, the axis-
aligned bounding box defining its collider is used to mark all
nodes within that area as “dirty” and checked again using an
isolated box test for traversable state updates. The array
containing these states is then sent to the GPU in one call. It is
important to minimize large data transfers between the CPU and
GPU, as this can create a performance bottleneck. Therefore, the
node data is passed in only once at the start of the scene while
the traversable state is stored in a separate array consisting only
of integers rather than being a part of the full struct. This allows
dynamic scene geometry to update the traversable state of nodes
without having to communicate unchanged data between the
host and device. The amount of data transferred depends on the
size of the buffer (number of nodes) multiplied by the length of
the individual elements in bytes. Although not previously viable,
advances in technology have allowed for much faster transfer
speeds, making the possibility of large-scale data handovers and
solutions between the host and device possible.

Next, we check whether the listener GameObject has moved
to a position that is different from a previous update cycle,
otherwise there is no need to update the internal grid paths at all.

If the dynamic obstacle check is executed and obstacles are
found, or if the listener has moved to a new cell, the pathfinder
marks the grid for updating and dispatches the required shader
kernels for execution. This is an inherently useful advantage of
using a discrete grid for pathfinding, as the listener is effectively
treated as the player’s ear. If the player is not moving and the
scene remains static, then there is no need to recalculate new
paths since the results are guaranteed to be the same when using
a BFS search, which calculates a path to every vertex in the
graph. The faster the player moves and the higher the resolution
of the grid, the more likely it is that an update will be required
and the pathfinder will engage the GPU. For GPU
benchmarking, we moved the player at a constant maximum
speed of 10 m/s (this is close to the maximum recorded sprint
speed for humans), or 10 cells/s. This results in an actual
maximum potential update frequency of 10/s and conforms to a
game-like scenario with a grounded player character in VR.
Unlike multi-frame CPU solutions, updated feedback is
guaranteed on movement within the same frame. If an update to
the grid is required, the pathfinder sends the position of the
listener to the compute shader and begins a loop that dispatches
an expand frontier kernel for Djikstra’s algorithm indirectly, as
well as another kernel directly with a single active thread to
monitor completion. In DirectCompute, when dispatching a
kernel directly, the number of threads to execute on [x, y, z] are
pre-determined in the call, whereas an indirect dispatch takes in
an argument buffer that can be updated on the GPU-side as a
means for dynamic parallelism, where the number of threads
launched per dispatch can change through code executed on the
GPU. Once the second kernel determines that expansion has
completed and there are no more nodes left to explore on the
frontier, the first kernel becomes inactive until all dispatch calls
from the pathfinder’s loop have been exhausted. At this point,
the grid is up-to-date and all nodes stored on the GPU have the
correct neighbor indices that can be traced to the starting vertex
node. The pathfinder can then dispatch a final calculation kernel
once that can be used to update and retrieve an array of indices
containing all the path data in sequence (calculated in parallel,
per path), and another array containing the length of all the paths
in meters. The length of the path is a sum of the distances
between the corners. The DSP processor component works
individually on every AudioSource GameObject in the scene
and must be attached as an additional component to each one to
have it work in conjunction with the pathfinder. This replicates
existing solutions that use pathfinding as the base for
approximating propagation, except that it can query paths using
the custom GPU pathfinder for results (it can switch between
choosing the appropriate pathfinder at runtime).

A raycast from every DSP processor’s position (based on its
GameObject Transform component which provides position,
rotation and scale information), is executed towards the listener.
A hit triggers an indication of some obstruction, which in turn
creates a request to the target pathfinder for a path to the current
DSP processor. The length of this path is compared to the direct,
straight-line distance between the sound source and the listener,
and the difference ratio to the maximum range of the audio
source is then used as an input to various functions with exposed
properties in Unity. Additional propagation is modelled in the
DSP processor by sampling the last visible corner from the
perspective of the listener, and using that to instantiate a

duplicate sound source positioned the remaining distance away
from the angle the listener to the corner. This is an
approximation of the last reflected sound wave reaching the
listener and also simulates sound that “curves” or diffracts
around corners so that its position is not heard as strongly
directly from its initial position, but can be used to trace back to
the original source if the player carefully aligns themselves and
follows the duplicate sound. While the GPU-accelerated 3D
pathfinding component of the system is limited to high-
performance platforms that support compute shaders, the 2.5D
CPU variant is fully compatible with all platforms that Unity
supports. The pathfinder component is not tied to the sound part
of the system and can be used for other tasks in a game by simply
requesting a path from any other part of the game loop. It is an
approximation that can be used as-is, or in conjunction with
other systems such as Steam Audio or Google Resonance to fill
in the gap for real-time, dynamic occlusion modelling.

V. BENCHAMARKING RESULTS

TABLE I. ALL SYSTEMS USED FOR BENCHMARKING

Platform CPU GPU RAM

Windows 10

desktop

Intel Core i7-

6700K @ 4.00

GHz (8 CPUs)

NVIDIA

GeForce

GTX1070

@ 1506

MHz (8096

MB)

32,768 MB

Android 7.0

Smartphone

Qualcomm

Snapdragon820

@ 2.15 GHz (4

CPUs)

Qualcomm

Adreno 530

@ 624MHz

4,096 MB

G-SpAR was deployed on Windows 10, and Android 7 devices

(see Table I). For optimization during development,

performance was monitored using Unity’s built-in profiler. We

developed a custom profiler integrated into the global

pathfinder manager that recorded execution times for the entire,

framerate-unlocked application (disabled vertical

synchronization), and isolated execution times for the spatial

audio system over a specified duration. The parameters

recorded were the average execution time (calculated as the

sum of values over the recording duration divided by the

number of frames executed), and the minimum and maximum

execution times. From these we derived the rounded integer

frame rates. Performance tests were recorded with a duration of

60.0 s (even with the frame rate of the application unlocked, the

maximum frames per second that can be executed by mobile

devices is fixed at 60, 30 or lower due to mandatory vertical

synchronization).

A. Test Scene

The test scene consisted of 10 sound sources spread out in a
volume of 100 m3 with a player size to scale of about 2.0 m. The
player moved at the maximum speed of 10 m/s at all times for

the GPU tests with dynamic obstacle delay values (when
enabled) set to either 0.125 s or 0.0 s (see benchmark tests).
There was one physics-enabled dynamic object in the scene as a
large 4 m3 cube to ensure the dynamic obstacle part of the
pathfinder would execute. The actual playable area was 100 m
× 10 m × 100 m, but the full 100 m3 node block was processed
(see Fig. 2). The uniform node size was fixed to 1.0 m.

Fig. 2. Benchmarking level in Unity’s editor with 10 sound sources.

Windows 10 significantly outperformed Android 7 and
easily executed and updated the GPU pathfinder every frame
while maintaining an average of just over 60 fps. At its worst,
the GPU-based spatial audio components took 18.55 ms, and at
its best, it took 11.25 ms while engaging and exchanging buffer
data with the GPU. If dynamic obstacle updates were throttled
to execute at a fixed frequency of eight times per second (every
0.125 s), the average performance jumped significantly to over
700 fps for the runtime total, and over 900 fps for just the spatial
audio: the timings are separated into total runtime average and
spatial audio runtime averages to account first for all parameters,
and then only on G-SpAR’s calculations. With limited dynamic
updates, the Spatial Audio Max was 19.94 ms, which is
comparable to the spatial audio Max with full dynamic updates
every frame timing in at 18.55 ms. This is expected, as the
amount of data to process will be nearly identical, except that
updates will execute at a lower frequency. This is also why the
Spatial Audio Min was much lower for GPU (Dynamic 0.125)
at 0.39 ms than for GPU (Dynamic 0.0), since during the frames
when dynamic updates are not being processed, the GPU
pathfinder behaves the same as if all geometry is static. The
Spatial Audio Min for GPU (Static) confirms this with a similar
Spatial Audio Min to GPU (Dynamic 0.125). A summary of the
Windows 10 results for the runtime and spatial audio tests are
available in Tables II and III respectively.

The Android 7 was not performant to the point of being
useful in an actual game that would require sustaining 30-60 fps.
As mentioned earlier, when the dynamic geometry part of the
GPU pathfinder is inactive, it behaves as if having only static
geometry, and therefore, the spatial audio Min between GPU
(Static) and GPU Dynamic (0.125) should be similar. The large
gap between the runtime values is most likely due to the
Android’s overall low performance with the GPU pathfinder. Of
the systems capable of GPU-accelerated spatial audio
processing, the Android resulted in the worst performance by a
large margin. Instead of the GPU (Dynamic 0.125) measurement
being similar to GPU (Static), it is much closer to GPU
(Dynamic 0.0), indicating that it was never able to “rest”
between frames, since by the time the next frame could be
processed, over 1/8th of a second had passed. The significantly

lower GPU (Static) Spatial Audio Min can be explained by
considering the value being in range of the CPU Spatial Audio
Max. While there is no movement for GPU (Static), no
recalculation is performed on the GPU, and any overhead is
from having the GPU pathfinder pipeline running. This is
reported in Unity’s profiler, and can be inferred visually on the
Android, which does not produce frame-lag if simply idling
without character movement across graph cells (during which
the benchmark total is at least 60 fps), but then suddenly
produces lag when moving. During the benchmark, the character
is supposed to be moving at an average of 10 cells/s, but in one
frame, due to the time delta between frames, the character may
not have moved enough to engage the GPU via triggering a
recalculation and graph update. A summary of the Android 7
results for the runtime and spatial audio tests are available in
Tables IV and V respectively.

TABLE II. SUMMARY OF RUNTIME TESTS ON WINDOWS 10

Pathfinder Runtime

Total Min

Runtime

Total Max

Runtime

Total Avg

CPU 0.56 ms

(1,774 fps)

3.88 ms

(258 fps)

0.90 ms

(1,107 fps)

GPU

(Static)

0.78 ms

(1,275 fps)

16.67 ms

(60 fps)

1.32 ms

(758 fps)

GPU

(Dynamic

0.125)

0.80 ms

(1,257 fps)

21.93 ms

(46 fps)

1.57 ms

(638 fps)

GPU

(Dynamic

0.0)

12.06 ms

(83 fps)

20.20 ms

(49 fps)

16.07 ms

(62 fps)

TABLE III. SUMMARY OF SPATIAL AUDIO TESTS ON WINDOWS 10

Pathfinder Spatial

Audio Min

Spatial

Audio Max

Spatial

Audio Avg

CPU 0.23 ms

(4,264 fps)

2.51 ms

(399 fps)

0.26 ms

(3,884 fps)

GPU

(Static)

0.37 ms

(2,711 fps)

16.02 ms

(62 fps)

0.85 ms

(1,177 fps)

(758 fps)

GPU

(Dynamic

0.125)

0.39 ms

(2,552 fps)

19.94 ms

(50 fps)

1.09 ms

(916 fps)

GPU

(Dynamic

0.0)

11.25 ms

(89 fps)

18.55 ms

(54 fps)

14.99 ms

(67 fps)

B. In-Game Test Methods

To test and confirm the applicable performance of the system
in a VR environment, we developed a fully functional 3D game
optimized for deployment using the system on mobile and
desktop/VR platforms. The game places an emphasis on the

purposeful manipulation of sound and light in its gameplay
mechanics across multiple levels, and demonstrates how G-
SpAR can be used in an actual development scenario. The game
emphasizes play-by-sound mechanics to the point of even
allowing players to catch the attention of a lingering enemy AI
using their voice through a microphone, which is then projected
into the game world and propagated to the AI as if it were
originally sourced from inside the virtual environment. The bulk
of the gameplay takes place in a darkened underground labyrinth
faintly lit by incandescent light bulbs and torches. The player
must safely navigate the labyrinth using the faint cues of light
and propagated sound to solve puzzles, find/collect keys, and
avoid a dangerous lingering enemy AI that can detect the
player’s movements (including in-game interactions) using
simulated hearing and sight. To escape to the next area, they
must use the keys they find on chests scattered throughout the
level without alerting the enemy and then activate a
“teleportation monolith”. The dimensions of all of the rooms in
the game are smaller than the dimensions of the rooms in the
benchmarking environment and despite physics, AI, lighting,
and other active game-relevant calculations, runtime
performance was smooth. All sounds emitted in 3D were
spatialized with HRTFs using Unity’s native Oculus integration.
This did not include environmental propagation. The keys, the
enemy AI, and other select sources in the game use G-SpAR to
convey additional important information about the game state
using sound, such as obstruction and occlusion, allowing players
to “hear” what they’re looking to find (or avoid) by tracking
sounds around corridors. However, the enemy similarly
“listens” to the player, and taking into account how the sound
should propagate path-wise, may attempt to navigate to any
disturbances it detects. The listening behaviour reads in all
disturbances logged to a global sound source “monitor”, which
holds the position and initial volume of the source. Player
footsteps and interactions are added to the monitor. The player
can take advantage of this behavior to deceive the enemy by
purposefully creating noise in one area and then sneaking away
as it approaches to investigate.

The majority of interactions in the game produce 3D
spatialized sounds based on physics such as the player running
into and against walls or other objects, and object-to-object
collisions such as impacts and scrapes (accounting for relative
velocity and pressure). In addition to providing a constant
stream of sonic information to the player, this has additional
gameplay consequences in the underground labyrinth where this
information can also be decoded by the enemy. Interactions with
objects in the environment, such as doors and chests (both
featuring squeaky hinges), can attract enemy attention. The
enemy has spatialized and propagated footsteps, growls, barks,
and leaves a trail of emissive particles. Additionally, its eyes
glow and a spotlight attached to the head brightens anything the
enemy is looking at, such as walls. The player uses these cues to
remain aware of the enemy’s position at all times. If the enemy
catches the player, the player is killed and the level is restarted.
In other words, spatial sound was an important component not
just as background audio, but as an interactive element of the
game that demands attention from the player. During runtime,
our propagation system can be switched between being entirely
inactive (using Unity’s default implementation), using only the
CPU for 2.5D processing, or additionally taking advantage of

the GPU to simulate fully 3D propagation acoustics so that the
differences can be observed. Runtime measurements were
performed using the same custom profiler as described above.
The second level of the game was tested as it contained the
largest and most complex design with the most interactions and
longest likely gameplay length. All measurements were
recorded over a duration of 60.0 s. The same systems were used
and the GPU pathfinder was benchmarked when possible, with
the dynamic frequency set to run every 0.125 s (the gameplay
did not require dynamic geometry updates every frame). The
playable area’s bounding volume for the level was
approximately 50 m × 15 m × 60 m. The node size was set to
0.48 m to accommodate finer details in the level geometry than
that of the benchmark level. Finally, the player moved at a
variable rate between no movement, crouching slow/fast,
walking, and running at full speed. This results in a move speed
range between 0.0 m/s to 4 m/s while performing any of the
interactions that were part of the level.

TABLE IV. SUMMARY OF RUNTIME TESTS ON ANDROID 7

Pathfinder Runtime

Total Min

Runtime

Total Max

Runtime

Total Avg

CPU 6.83 ms

(146 fps)

49.33 ms

(20 fps)

16.78 ms

(60 fps)

GPU

(Static)

13.15 ms

(76 fps)

980.62 ms

(1 fps)

534.07 ms

(2 fps)

GPU

(Dynamic

0.125)

529.80 ms

(2 fps)

1195.18 ms

(1 fps)

817.41 ms

(1 fps)

GPU

(Dynamic

0.0)

493.09 ms

(2 fps)

1272.30 ms

(1 fps)

863.54 ms

(1 fps)

TABLE V. SUMMARY OF SPATIAL AUDIO TESTS ON ANDROID 7

Pathfinder Spatial

Audio Min

Spatial

Audio Max

Spatial

Audio Avg

CPU 0.65 ms

(1532 fps)

23.05 ms

(43 fps)

1.27 ms

(790 fps)

GPU

(Static)

5.42 ms

(184 fps)

961.99 ms

(1 fps)

519.63 ms

(2 fps)

GPU

(Dynamic

0.125)

515.32 ms

(2 fps)

1181.29 ms

(1 fps)

799.50 ms

(1 fps)

GPU

(Dynamic

0.0)

478.23 ms

(2 fps)

1253.31 ms

(1 fps)

845.64 ms

(1 fps)

TABLE VI. SUMMARY OF GAME TESTS ON WINDOWS 10

Pathfinder Runtime

Total Min

Runtime

Total Max

Runtime

Total Avg

CPU 1.66 ms

(603 fps)

8.87 ms

(113 fps)

2.09 ms

(479 fps)

GPU

(Dynamic

0.125)

2.47 ms

(404 fps)

15.06 ms

(66 fps)

3.50 ms

(286 fps)

TABLE VII. SUMMARY OF SPATIAL AUDIO GAME TESTS ON WINDOWS 10

Pathfinder Spatial

Audio Min

Spatial

Audio Max

Spatial

Audio Avg

CPU 0.60 ms

(1671 fps)

4.92 ms

(203 fps)

0.71 ms

(1416 fps)

GPU

(Dynamic

0.125)

0.77 ms

(1294 fps)

13.41 ms

(75 fps)

2.01 ms

(497 fps)

TABLE VIII. SUMMARY OF GAME TESTS ON ANDROID 7

Pathfinder Runtime

Total Min

Runtime

Total Max

Runtime

Total Avg

CPU 7.48 ms

(134 fps)

74.66 ms

(13 fps)

17.05 ms

(59 fps)

GPU

(Dynamic

0.125)

426.60 ms

(2 fps)

623.78 ms

(2 fps)

531.89 ms

(2 fps)

TABLE IX. SUMMARY OF SPATIAL AUDIO TESTS ON ANDROID 7

Pathfinder Spatial

Audio Min

Spatial

Audio Max

Spatial

Audio Avg

CPU 2.12 ms

(472 fps)

28.21 ms

(35 fps)

3.46 ms

(289 fps)

GPU

(Dynamic

0.125)

396.82 ms

(3 fps)

570.02 ms

(2 fps)

476.69 ms

(2 fps)

A summary of the Windows 10, and Android 7 results is

provided in Tables VI, VII and Tables VIII, IX respectively.
Results are similar to those of our benchmark levels, with a
noticeable increase in the Runtime Average as a result of
increased overall environment complexity (graphics quality,
particle systems, physics, player calculations, interactions, etc.).
This is not necessarily evidenced in Table 4, although Unity’s
profiler reported increased times used by several components
unrelated to the spatial audio system. Regardless, the spatial
audio times are also worse for both the CPU and GPU spatial
audio systems than the benchmark level. The explanation for the

CPU system can be attributed to the greatly increased NavMesh
complexity.

The GPU system was also less performant than the
benchmark level due to a significantly higher node density,
despite the smaller bounding volume area. The benchmark level
node size was 1.0 m, but for the second game level it is less than
half of that at 0.48 m. If the node size was not changed, the total
number of nodes would be the same as the bounding volume in
m3, which is 45,000. However, because of the reduced size and
the square-cube law, the actual total node count is 403,000 and
the density is about eight times as high. This means that as the
player moves at full speed (4 m/s), they may trigger up to
approximately 16 (4 × 4) GPU graph recalculations / updates per
second with forward movement even with static geometry, as
opposed to 10 for the benchmark level. Updates may be faster
for ungrounded movement where the player may accelerate
downwards from the effects of gravity (e.g., after jumping off
the ground, stairs, stacked boxes, etc.)

VI. SUMMARY

Here we have presented G-SpAR, a cross-platform, generic
solution for dynamic occlusion and obstruction that is more
advanced than the simple raycast and binary techniques most
often used in games. We have developed a solution that
circumvents many of the current limitations in existing spatial
audio technologies to provide a perceptual approximation of
spatial cues from the environment, including occlusion,
reflection, and diffraction. Leveraging the parallel nature of
modern GPUs for processing large amounts of data with a built-
in CPU fallback, we were able to integrate a hardware-
independent sound propagation system into a cross-platform
game as a demonstration of the viability of this implementation.
Moreover, our system requires minimal setup, effectively to the
point of simply “tagging” sound sources with a custom
component that makes the pathfinding requests, while a global
manager defines the overall pathfinding variables to use at
runtime. Our system is not as accurate in modelling sound
propagation as that of more fine-tuned geometrical acoustics and
computationally expensive wave-based acoustical modelling.
However, sacrificing some accuracy implies that the system is
noticeably faster at runtime, requires no time-consuming offline
precomputation stage, and is able to perform the calculations
within a single frame without the need for asynchronous delays.
Future tests can determine if players notice the discrepancy in
accuracy, or have a preference for a particular method of spatial
rendering. From desktops to mobile smartphones, runtime
measurements in an isolated benchmark level and complete
game environment demonstrate our low impact on high-end
GPUs and scalability to suboptimal hardware when using only
the CPU. One current-gen smartphone was able to run the GPU
simulation at interactive rates. Although the GPU part of the
system is still not suitable for mobile devices when considering
large simulation bounds (such as those tested), it is likely that in
the future more powerful mobile GPUs will give way to better
GPGPU capability, thus improving performance and the
viability of GPU-accelerated spatialized sound for large scenes
on smartphones. Moreover, further improvements and research
can still be undertaken into optimizing the GPU algorithm
through exploring the viability of storing level data in different,

more easily traversable and efficient graph-like structures, such
as octrees, or simply storing the data offline from a
precomputation stage, separate from the runtime part. Finally,
future work will also examine the effectiveness of G-SpAR via
human-based listening tests in order to quantify its accuracy.

ACKNOWLEDGMENT

The authors acknowledge the funding of this work as part of
a larger project on sound in games by the Social Sciences and
Humanities Research Council of Canada (SSHRC). The
financial support of Natural Sciences and Engineering Research
Council of Canada (NSERC) is also acknowledged..

REFERENCES

[1] B. Kapralos, M. Jenkin, and E. Milios. Virtual audio systems. Presence:
Teleoperators and Virtual Environments, 17(6): 527–549, 2008.

[2] N. Tsingos, I. Carlbom, G. Elko, T. Funkhouser, and B. Kubli. Validation
of acoustical simulations in the “Bell Labs Box.” IEEE Computer
Graphics and Applications, 22(4), 28–37, 2002.

[3] L. Savioja. Modeling techniques for virtual acoustics. PhD thesis,
Telecommunications Software and Multimedia Laboratory, Helsinki
University of Technology. Helsinki, Finland, 1999.

[4] R. Mehra, N. Raghuvanshi, L. Savioja, M.C. Lin, and D. Manocha. An
efficient GPU-based time domain solver for the acoustic wave equation.
Applied Acoustics 73:83–94, 2012.

[5] L. Savioja and U.P. Svensson. “Overview of geometrical room acoustic
modeling techniques," Journal of the Acoustical Society of America
138(2), 708–730 (2015).

[6] M. Jedrzejewski, Computation of Room Acoustics on Programmable
Video Hardware. Master’s thesis, Polish-Japanese Institute of
Information Technology, Warsaw, Poland, 2004.

[7] N. Röber, U. Kaminski, and M. Masuch. Ray acoustics using
computer graphics technology. In Proc. of the International Conference
on Digital Audio Effects, Bordeaux, France, Sep. 10-15, 2007.

[8] Z. Cheng. 2014. Design of a real-time GPU accelerated acoustic
simulation engine for interactive applications. Ph.D. Dissertation.
University of Illinois at Urbana Champaign.
http://hdl.handle.net/2142/50364

[9] N. Tsingos, and N. Gascuel. Soundtracks for computer animation: Sound
rendering in dynamic environments with occlusion. Graphics Interface
’97, pp. 9-16 (1997).

[10] N. Tsingos, and N. Gascuel. Fast rendering of sound occlusion and
diffraction effects for virtual acoustic environments. In Proc. 104th
Convention of the Audio Engineering pp. 1–14 (1998).

[11] N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom. Modeling acoustics
in virtual environments using the uniform theory of diffraction. 28th
Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 2001), pp. 545–552, (2001).

[12] B. Cowan and B. Kapralos. "GPU-based real-time acoustical occlusion
modeling," Virtual Reality, 14: 3. pp. 183–196 (2010).

[13] B. Cowan and B. Kapralos. "Interactive rate acoustical
occlusion/diffraction modeling for 2D virtual environments & games," In
Proc. 2015 6th International Conference on Information, Intelligence,
Systems and Applications (IISA), Corfu, (2015).

[14] A. Bleiweiss. "GPU Accelerated Pathfinding," In Proc. 23rd ACM
SIGGRAPH/ EUROGRAPHICS Symposium on Graphics Hardware, pp.
65 – 74 (2008).

[15] S. Lawlor and T. Neumann, "Overwatch - The Elusive Goal: Play by
Sound," In Proc. Game Developer's Conference, 14 - 18 March, San
Francisco, https://www.gdcvault.com/play/1023317/Overwatch-The-
Elusive-Goal-Play (2016).

[16] M. Beig. Scalable immersive audio for virtual environments. Master’s
Thesis., Computer Science, University of Ontario Institute of
Technology, may, 2018.

