
978-1-7281-1884-0/19/$31.00 ©2019 IEEE 

G-SpAR: GPU-Based Voxel Graph Pathfinding for 

Spatial Audio Rendering in Games and VR 

Mirza Beig1, Bill Kapralos1, Karen Collins2, and Pejman Mirza-Babaei1 
1University of Ontario Institute of Technology, Oshawa, Canada. 

2Unviversity of Waterloo, Waterloo, Canada.  

 
Abstract— The influx of investment in virtual and augmented 

reality in recent years has brought with it a renewed interest in 

spatial audio. Spatial audio in virtual environments and games has 

been neglected previously due in part due to computationally 

expensive nature of the processing involved. Here we introduce G-

SpAR, a GPU-based spatial audio renderer for the Unity3D game 

engine. The system develops a pathfinding method that shortens 

occlusion and obstruction, increasing performance in-game.  
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I. INTRODUCTION 

Interest in spatial has been increasing in recent years with the 

rapid rise of virtual and augmented reality (VR and AR 

respectively). This explosion of enthusiasm, comes with a need 

for, and greater interest in, further developing spatial audio 

tools. Realistic and effective spatial audio technology has 

existed for many years in high-end simulations. However, the 

challenge with respect to consumer systems is the deployment 

of realistic spatial audio in a computationally inexpensive 

manner that is also platform agnostic, and easy to use given the 

difficulties associated with modeling the human listener (e.g., 

head-related transfer functions (HRTFs)), and the room 

acoustics. Here, we ignore the listener and focus solely on 

recreating the room acoustics (see for example [1] for a detailed 

discussion on simulating listener-specific characteristics). 

Many spatial audio approaches employ geometric acoustics, 

whereby it is assumed that sound and rays behave in a similar 

manner. This is in contrast to wave-based methods whereby the 

aim is to recreate a particular sound field by approximating the 

wave equation using numerical approximations (e.g., finite 

element methods, boundary element methods, and finite 

difference time domain methods instead ([2][3][4]).  

Geometric acoustics models sound propagation as straight 

lines (“rays”) that interact with the surface geometry and 

materials of the virtual environment. The  acoustics  of  an  

environment  is  then modeled  by  tracing  these “sound rays” 

as they propagate through the environment while accounting for 

any interactions between the sound rays and any 

objects/surfaces  they encounter before reacing the listener. 

Mathematical  models  are   used  to  account  for  sound  source  

emission  patterns,  atmospheric scattering, and the medium’s 

absorption of sound energy  as  a  function  of  humidity,  

temperature,  frequency,  and  distance. At the listenera room 

an echogram, which describes the distribution of incident sound 

energy (rays) at the receiver over time, is obtained. The 

echogram is then post-processed to provide a room impulse 

response which is used to filter a sound and recreate the specific 

listening environment. Geometric acoustic models are only 

valid approximations for high frequency sound propagation; 

low frequency wave effects such as diffraction are ignored (see 

[5]). Current graphical-based application (e.g., video games and 

virtual environments), employ advanced graphical rendering 

techniques (such as real-time ray-tracing and radiosity), and 

other advanced lighting and shading techniques that are 

implemented using the graphics processing unit (GPU). As will 

be described in the following section, there is an increased 

demand for the application of such advanced technqiues to 

sound rendering, thus taking advantage of the power inherent 

in GPUs. There have been various approaches to using the GPU 

for spatial sound generation, leading to various interactive rate 

spatial sound methods and techniques. Here, we present the 

GPU-Spatial Audio Renderer (“G-SpAR”), a spatial audio 

rendering component that employs pathfinding and runs on the 

GPU to the acoustics of an environment in a computationally 

efficient manner.   

II. BACKGROUND 

A. Spatial Audio Rendering 

Audio-based ray tracing using the GPU has been 
implemented  by  Jedrzejewski [6] to  compute  the  propagation  
of  acoustic reflections in highly occluded environments. The 
method also allows for the  sound  source  and  the  listener  to  
move  throughout  a  simulation  without  the  need  for  a  long  
pre-computation. Jedrzejewski  takes  advantage  of  the  fact  
that  in  acoustics,  as  opposed to graphics, objects other than 
walls do not contribute significantly  to  the  sound  wave  
modifications  and  therefore can be ignored during the 
computation. As a result, only polygons  that  represent  walls  
are  taken  into  account.  To  make  the  system  more  efficient,  
each  ray  is  intersected  with  a  plane  rather  than  a  polygon. 

Röber  et  al. [7] describe  a  ray-based  acoustical  modeling  
method  that  employs  the  GPU.  Their  framework  was  
designed  along  existing  (computer  graphics)  GPU-based  ray  
tracing  systems  suitably modified  to  handle  sound  wave  
propagation.  The  system accepts  a  3D  polygonal  mesh  of  
up  to  15,000  polygons  and pre-processes it into an accessible 
structure. All signal processing,  including  HRTF  filtering  and  
delay filtering,  is  programmed  as  fragment  shaders  and  for  
each  task,  a  single shader  is  developed. Cheng [8] has also 
developed a GPU-based method for simulating room acoustics 
in real-time. The method computes the reflected and transmitted 
acoustic response from a number of sound sources to a stereo 
listener in arbitrary triangle-based geometry.  



Tsingos and Gascuel developed a method that employs the 
GPU to perform fast sound visibility calculations that can 
account for specular reflections (diffuse reflections were not 
considered), absorption, and diffraction caused by partial 
occluders [9]. Specular reflections are handled using an image 
source approach, while diffraction is approximated by 
computing the fraction of sound that is blocked by obstacles on 
the path from the sound source to the receiver by considering the 
amount of volume of the first Fresnel ellipsoid that is blocked 
by the occluders. Although their approach is not completely 
real-time, it is “capable of achieving interactive computation 
rates for fully dynamic complex environments” [9]. Tsingos and 
Gascuel later introduced another occlusion and diffraction 
method based on the Fresnel-Kirchoff optics-based 
approximation to diffraction [10]. Tsingos et al. [11] describe a 
high quality, GPU-based first order sound scattering modeling 
method that is based on a surface integral formulation and 
Kirchhoff’s approximation. Their method is capable of 
modeling both diffraction and reflection in an arbitrarily 
complex environment. Experiments indicate their method fares 
well with boundary element methods (BEMs), although greater 
work remains to allow for higher order sound scattering and to 
overcome the fact that the method is prone to aliasing. Cowan 
and Kapralos [12] introduced a GPU-based occlusion method 
capable of real-time operation even for complex virtual 
environments and games. Occlusion/diffraction effects are 
computed by rendering the scene (using the GPU) from the 
perspective of the sound source. The method is capable of 
approximating acoustical occlusion and diffraction effects in 
real-time for detailed scenes containing many objects of 
complex shape. It works best in larger, open environments with 
several occluding objects. However, environments with 
interconnecting rooms can be problematic. This issue was 
addressed in later work by the same authors [13]. The method is 
computationally efficient, allowing it to be incorporated into 
real-time virtual environments and games where the scene is 
arbitrarily complex. 

B. Pathfinding 

Several algorithms exist for pathfinding in games, along 
with numerous variations suited for special cases and tasks, 
including breadth-first search (BFS), Dijkstra’s algorithm, and 
its heuristic-guided variant, A-Star (A*)[6]. BFS expands one 
step towards connected vertices every iteration from a given 
source vertex and assumes a virtually non-existent cost of 
traversal each time. It can be used to find the least number of 
steps required to obtain between two points, which may also be 
the shortest path if costs are irrelevant to the results of the search. 
Dijkstra’s algorithm is similar, except that it allows for weighted 
costs for traversal between vertices, allowing for a better 
definition of the shortest path. A* is a variant of Djikstra’s 
algorithm that applies a heuristic to guide the search so that the 
search tends to gravitate towards the most likely shortest path. 
As a result, it is more performant than Djikstra’s algorithm when 
requiring a single path to a target for any given source. The use 
of pathfinding provides an opportunity for optimization by 
reducing the requirement to a single source, shortest path 
problem. All sound sources in the virtual environment are 
perceived by a single listener. For this reason, A* is unlikely to 
be useful when there are more than a few sound sources in the 
scene as each source requires a unique, or partially unique 

traversal for the heuristics-guided algorithm. By using an 
expanding BFS-type search, the shortest path to every vertex in 
the graph can be resolved from a single source. With respect to 
performance, the addition of sound sources is then insignificant 
since a path to the vertex containing the sound source already 
exists. However, real-time pathfinding on a large enough dataset 
remains a complex and intensive task that can impact 
performance. As such, the operations involved are often offset 
to worker threads or solved in sequential steps over several 
frames with a limit to the maximum number of vertices or paths 
processed in a single update cycle to prevent impacting the 
performance of a real-time application too severely (Unity does 
this automatically as part of their built-in pathfinding solution).  

C. GPU-Based Pathfinding 

Various libraries for GPU-graph processing do exist, 
including NVIDIA’s nvGraph, and Gunrock – both of which 
build upon NVIDIA’s GPU parallel computing platform. 
Despite the availability of these libraries, we have not found any 
complete implementations of a fully 3D GPU-accelerated 
pathfinding algorithm for real-time use in games, and existing 
research that has been done in this area has yet to be tested on 
modern, consumer-level GPUs such as those found in today’s 
gaming PCs. Prior work regarding parallel processing for 
pathfinding algorithms has employed parameters that do not 
apply to most game scenarios. For example, Bleiweiss [14] uses 
the A* algorithm on the GPU with a maximum testing block of 
20 × 20 nodes, which is unlikely to provide a sufficient 
resolution for realistic pathfinding applications in most games, 
since the detail of the level geometry and obstacles would be 
overly simplified. 

III. G-SPAR: VOXEL-BASED GPU SPATIAL AUDIO 

By considering existing sound propagation pathfinding 
methods that have been used in popular games for play-by-
sound mechanics, such as Overwatch (2016), we accelerated the 
process for dynamic 3D environments through the use of general 
purpose GPU (GPGPU) technology that is hardware agnostic. 
As a fall back, the system can still use the CPU, for easy cross-
platform deployment to mobile and other lower-end hardware 
systems. The decision of whether to use the GPU is left to the 
discretion of the developer. Dynamically switching between 
CPU-only and GPU-assisted processing during runtime is also 
fully supported, allowing developers to profile the execution 
time of G-SpAR components themselves from within their 
application to determine which one should be used. We built G-
SpAR to work with Unity, one of the most common game 
development engines. One important feature that makes Unity 
an ideal choice for virtual environments is the built-in 3D audio 
spatialization integration that includes HRTF transforms. G-
SpAR employs component-based approximations that enhance 
existing solutions for environmental occlusion and obstruction 
modelling using four distinct methods that are each suited for 
scaling on their target platforms (e.g., lower-end mobile devices, 
and modern high performance gaming PCs) and the nature of 
the sound source environment (dynamic/static).  

A. Raycast and Lightmap Methods 

The first method is a simple on/off state raycast system that 
checks the line of sight between the sound source and the 
listener. If the line of sight is obstructed, the sound signal is 



occluded either completely or partially using a low-pass filter. 
This is a commonly used techniques in games of recent years. 

The second method makes use of precomputed lighting 
information positioned at the sound source that, instead of being 
applied over the surface geometry in the game as a lightmap, is 
sampled directly as a texture to retrieve information about the 
sound throughout the scene. Light and sound sometimes behave 
in a similar manner when encountering physical surfaces. With 
this in mind, the high-quality information within the lightmap 
can be used as a “soundmap” to model the room acoustics. 
However, this approach is limited as it only works in 2.5D space 
(flat plane and height), and the sound source must be in a fixed 
location, as the texture is projected to the surface (not 
volumetric), and cannot be calculated in real-time without a 
significant performance impact. Depending on the size and 
configuration of compression for each texture, it may also 
introduce long load times and significantly increased storage 
requirements. Pre-computed lighting may require significant 
time to calculate and render into a texture. However, this 
approach provides the opportunity for creative use, since 
different light types can be used for a sound source and multiple 
lights representing the propagation of that sound source can be 
baked into a soundmap 

B. Pathfinding Method 

The third method uses 2.5D pathfinding and has the added 
benefit that a portion of the geometry in the scene can be 
dynamic. The pathfinding data is used to calculate the shortest 
distance that the sound would have to travel around the level 
geometry to reach the listener. This data is then compared to the 
direct point-to-point distance and the difference is used to filter 
the frequency and intensity of the source. Since calculating the 
path using a navigation mesh in 2.5D is quicker, this data is all 
processed using the CPU. Using this information, simple 
propagation can be modelled by taking the last visible corner 
(the last point determined by a raycast) of the path from the 
listener to the source and projecting a virtual sound source some 
distance equal to the remaining distance of the path from this 
corner to the source in the direction of the corner from the 
listener. When the GPU component of G-SpAR is completed, a 
path from any point on the node graph is possible, but we trace 
only a path for the two points we need between  the listener and 
the source. The number of paths traced depends on the number 
of sound sources. Pathfinding-based sound propagation and/or 
occlusion has been consistently used in AAA video game titles 
such as Tom Clancy’s Rainbow Six Siege (2015) for “play by 
sound” mechanics. Some of the limitations of the pathfinding-
based propagation systems in these games involve limited 
spatial dimensions and limited or simulated environment 
dynamics [15]. Our implementation of pathfinding-based sound 
propagation and occlusion is also scalable to mobile devices and 
can handle fully destructible environments. 

C. GPU-Based Voxel Graph Pathfinding 

The final method—and our particular innovation—builds 
upon the pathfinding-based solution described above for 
approximating audio propagation while also circumventing the 
2.5D limitation entirely by sampling the current scene as a voxel 
graph and making use of the highly parallel nature of modern 
GPUs to process this data. Combined with additional 
optimizations on the CPU, the extreme throughput of the GPU 

here allows for multiple (potentially several thousands of) real-
time pathfinding calculations to be completed within a single 
frame to use as raw data for DSP once retrieved back to the CPU. 
As a result, the entire implementation down to the end of the 
DSP chain, even with multiple active sound sources and 
dynamic level geometry can be run in a complex-geometry at 
over 60 frames per second. To our knowledge, this technique is 
unique and serves as both a proof of concept and an actual 
implementation of this kind of GPGPU computing for 
approximating the acoustics of sound. 

IV. IMPLEMENTATION AND SYSTEM DETAILS 

To implement G-SpAR, we created a complete framework 
from the CPU to the GPU using C# and Unity’s device-
independent compute shader language. This provided maximum 
control over the pipeline allowing us to test multiple algorithms 
and still retain the potential for multi-platform deployment later 
on. A complete source code listing is available (see [16]). 

 

Fig. 1. High-level flow diagram of the overall structure of G-SpAR. NavMesh 

obstacles are handled directly by Unity’s system, whereas GPU pathfinder 

obstacles update node states on the CPU which are then re-sent to the GPU. 

An overview of the system can be seen in Fig. 1. Pathfinding 
primarily functions through three custom components and a 
single compute shader. There are two component scripts that 
handle all the pathfinding-related operations on either only the 
CPU using Unity’s NavMesh system, or both the CPU and GPU 
using our pathfinding implementation (including the data as it is 
transferred to and from the compute shader). Both return similar 
results and have almost identical function names – the difference 
is in how they retrieve those results for their roles as the 
“pathfinder”. Of special interest here is the latter, which involves 
the GPU. The third component (labelled as the DSP processor) 
selects which pathfinder to use, and processes the results to 
control low-pass, reverb, and intensity filters applied to a 
specific audio stream. There is only a single active pathfinder 
required for each type in the scene (so at most there will be the 
CPU pathfinder and GPU pathfinder), but there may be multiple 
DSP processors attached to GameObjects (that is, Unity’s base 
class objects) that have Unity’s AudioSource component (that 



is, the audio clip playback component), for manipulating the 
audio through DSP filters. 

The process begins on the CPU through a pre-processing 
stage that first takes into account all of the static geometry in the 
scene for the duration of the session when the pathfinder 
component first “awakes” on scene load. This geometry must be 
specifically designated and assigned to a layer that is configured 
on the pathfinder component to use as a search mask. The 
pathfinder is given a three-dimensional vector representing the 
discrete scale of the area in which the algorithm will operate as 
an axis-aligned “room” or grid. The resolution of this grid is then 
defined by another value that represents the uniform cell size. 
The representation of a single cell in the pathfinder is through a 
custom C# struct called a node. A node is defined by an 
accumulative array index, its vector [x, y, z] index, and world 
position. It is essentially a vertex in the pathfinding graph. A 
global array of nodes containing all of the cell data is then 
created, along with two additional global integer and Boolean 
arrays that will record the traversable state of that node and 
whether the state may have been changed by dynamic geometry. 
Both the integer and Boolean arrays are of the same size as the 
node array and are treated and used as Boolean variables 
specifying whether the node is traversable and whether its 
traversable state may have been changed as a result of dynamic 
geometry moving into the node respectively. However, since the 
integer array is passed to the compute shader, it must be stored 
as an array of integers due to the minimum stride of compute 
buffers being four bytes. The pathfinder then scans each cell area 
and performs an axis-aligned box test to check for colliders, 
marking the integer value in the traversable array as either 0 for 
not traversable, and 1 for traversable.  

The next stage of the pathfinder takes place in the update 
loop (every frame) and contains the code for the compute shader 
kernel dispatches. Here, Djikstra’s algorithm was found to be 
more performant due to its more reserved use of compute shader 
kernel dispatches. Optimizations are set in place to determine if 
the pathfinder must engage the GPU. In the main update loop, 
dynamic obstacles are handled at a variable frequency that can 
be set by the user. In this case, we used a default minimum 
update delay value of 0.125 s. If an obstacle is detected, the axis-
aligned bounding box defining its collider is used to mark all 
nodes within that area as “dirty” and checked again using an 
isolated box test for traversable state updates. The array 
containing these states is then sent to the GPU in one call. It is 
important to minimize large data transfers between the CPU and 
GPU, as this can create a performance bottleneck. Therefore, the 
node data is passed in only once at the start of the scene while 
the traversable state is stored in a separate array consisting only 
of integers rather than being a part of the full struct. This allows 
dynamic scene geometry to update the traversable state of nodes 
without having to communicate unchanged data between the 
host and device. The amount of data transferred depends on the 
size of the buffer (number of nodes) multiplied by the length of 
the individual elements in bytes. Although not previously viable, 
advances in technology have allowed for much faster transfer 
speeds, making the possibility of large-scale data handovers and 
solutions between the host and device possible.  

Next, we check whether the listener GameObject has moved 
to a position that is different from a previous update cycle, 
otherwise there is no need to update the internal grid paths at all. 

If the dynamic obstacle check is executed and obstacles are 
found, or if the listener has moved to a new cell, the pathfinder 
marks the grid for updating and dispatches the required shader 
kernels for execution. This is an inherently useful advantage of 
using a discrete grid for pathfinding, as the listener is effectively 
treated as the player’s ear. If the player is not moving and the 
scene remains static, then there is no need to recalculate new 
paths since the results are guaranteed to be the same when using 
a BFS search, which calculates a path to every vertex in the 
graph. The faster the player moves and the higher the resolution 
of the grid, the more likely it is that an update will be required 
and the pathfinder will engage the GPU. For GPU 
benchmarking, we moved the player at a constant maximum 
speed of 10 m/s (this is close to the maximum recorded sprint 
speed for humans), or 10 cells/s. This results in an actual 
maximum potential update frequency of 10/s and conforms to a 
game-like scenario with a grounded player character in VR. 
Unlike multi-frame CPU solutions, updated feedback is 
guaranteed on movement within the same frame. If an update to 
the grid is required, the pathfinder sends the position of the 
listener to the compute shader and begins a loop that dispatches 
an expand frontier kernel for Djikstra’s algorithm indirectly, as 
well as another kernel directly with a single active thread to 
monitor completion. In DirectCompute, when dispatching a 
kernel directly, the number of threads to execute on [x, y, z] are 
pre-determined in the call, whereas an indirect dispatch takes in 
an argument buffer that can be updated on the GPU-side as a 
means for dynamic parallelism, where the number of threads 
launched per dispatch can change through code executed on the 
GPU. Once the second kernel determines that expansion has 
completed and there are no more nodes left to explore on the 
frontier, the first kernel becomes inactive until all dispatch calls 
from the pathfinder’s loop have been exhausted. At this point, 
the grid is up-to-date and all nodes stored on the GPU have the 
correct neighbor indices that can be traced to the starting vertex 
node. The pathfinder can then dispatch a final calculation kernel 
once that can be used to update and retrieve an array of indices 
containing all the path data in sequence (calculated in parallel, 
per path), and another array containing the length of all the paths 
in meters. The length of the path is a sum of the distances 
between the corners. The DSP processor component works 
individually on every AudioSource GameObject in the scene 
and must be attached as an additional component to each one to 
have it work in conjunction with the pathfinder. This replicates 
existing solutions that use pathfinding as the base for 
approximating propagation, except that it can query paths using 
the custom GPU pathfinder for results (it can switch between 
choosing the appropriate pathfinder at runtime). 

A raycast from every DSP processor’s position (based on its 
GameObject Transform component which provides position, 
rotation and scale information), is executed towards the listener. 
A hit triggers an indication of some obstruction, which in turn 
creates a request to the target pathfinder for a path to the current 
DSP processor. The length of this path is compared to the direct, 
straight-line distance between the sound source and the listener, 
and the difference ratio to the maximum range of the audio 
source is then used as an input to various functions with exposed 
properties in Unity. Additional propagation is modelled in the 
DSP processor by sampling the last visible corner from the 
perspective of the listener, and using that to instantiate a 



duplicate sound source positioned the remaining distance away 
from the angle the listener to the corner. This is an 
approximation of the last reflected sound wave reaching the 
listener and also simulates sound that “curves” or diffracts 
around corners so that its position is not heard as strongly 
directly from its initial position, but can be used to trace back to 
the original source if the player carefully aligns themselves and 
follows the duplicate sound. While the GPU-accelerated 3D 
pathfinding component of the system is limited to high-
performance platforms that support compute shaders, the 2.5D 
CPU variant is fully compatible with all platforms that Unity 
supports. The pathfinder component is not tied to the sound part 
of the system and can be used for other tasks in a game by simply 
requesting a path from any other part of the game loop. It is an 
approximation that can be used as-is, or in conjunction with 
other systems such as Steam Audio or Google Resonance to fill 
in the gap for real-time, dynamic occlusion modelling. 

V. BENCHAMARKING RESULTS 

TABLE I.  ALL SYSTEMS USED FOR BENCHMARKING 

Platform CPU GPU RAM 

Windows 10 

desktop 

Intel Core i7-

6700K @ 4.00 

GHz (8 CPUs) 

NVIDIA 

GeForce 

GTX1070 

@ 1506 

MHz (8096 

MB) 

32,768 MB 

Android 7.0 

Smartphone 

Qualcomm 

Snapdragon820 

@ 2.15 GHz (4 

CPUs) 

Qualcomm 

Adreno 530 

@ 624MHz 

4,096 MB  

 

    

 

G-SpAR was deployed on Windows 10, and Android 7 devices 

(see Table I). For optimization during development, 

performance was monitored using Unity’s built-in profiler. We 

developed a custom profiler integrated into the global 

pathfinder manager that recorded execution times for the entire, 

framerate-unlocked application (disabled vertical 

synchronization), and isolated execution times for the spatial 

audio system over a specified duration. The parameters 

recorded were the average execution time (calculated as the 

sum of values over the recording duration divided by the 

number of frames executed), and the minimum and maximum 

execution times. From these we derived the rounded integer 

frame rates. Performance tests were recorded with a duration of 

60.0 s (even with the frame rate of the application unlocked, the 

maximum frames per second that can be executed by mobile 

devices is fixed at 60, 30 or lower due to mandatory vertical 

synchronization). 

A. Test Scene 

The test scene consisted of 10 sound sources spread out in a 
volume of 100 m3 with a player size to scale of about 2.0 m. The 
player moved at the maximum speed of 10 m/s at all times for 

the GPU tests with dynamic obstacle delay values (when 
enabled) set to either 0.125 s or 0.0 s (see benchmark tests). 
There was one physics-enabled dynamic object in the scene as a 
large 4 m3 cube to ensure the dynamic obstacle part of the 
pathfinder would execute. The actual playable area was 100 m 
× 10 m × 100 m, but the full 100 m3 node block was processed 
(see Fig. 2). The uniform node size was fixed to 1.0 m. 

 

Fig. 2. Benchmarking level in Unity’s editor with 10 sound sources. 

Windows 10 significantly outperformed Android 7 and 
easily executed and updated the GPU pathfinder every frame 
while maintaining an average of just over 60 fps. At its worst, 
the GPU-based spatial audio components took 18.55 ms, and at 
its best, it took 11.25 ms while engaging and exchanging buffer 
data with the GPU. If dynamic obstacle updates were throttled 
to execute at a fixed frequency of eight times per second (every 
0.125 s), the average performance jumped significantly to over 
700 fps for the runtime total, and over 900 fps for just the spatial 
audio: the timings are separated into total runtime average and 
spatial audio runtime averages to account first for all parameters, 
and then only on G-SpAR’s calculations. With limited dynamic 
updates, the Spatial Audio Max was 19.94 ms, which is 
comparable to the spatial audio Max with full dynamic updates 
every frame timing in at 18.55 ms. This is expected, as the 
amount of data to process will be nearly identical, except that 
updates will execute at a lower frequency. This is also why the 
Spatial Audio Min was much lower for GPU (Dynamic 0.125) 
at 0.39 ms than for GPU (Dynamic 0.0), since during the frames 
when dynamic updates are not being processed, the GPU 
pathfinder behaves the same as if all geometry is static. The 
Spatial Audio Min for GPU (Static) confirms this with a similar 
Spatial Audio Min to GPU (Dynamic 0.125). A summary of the 
Windows 10 results for the runtime and spatial audio tests are 
available in Tables II and III respectively. 

The Android 7 was not performant to the point of being 
useful in an actual game that would require sustaining 30-60 fps. 
As mentioned earlier, when the dynamic geometry part of the 
GPU pathfinder is inactive, it behaves as if having only static 
geometry, and therefore, the spatial audio Min between GPU 
(Static) and GPU Dynamic (0.125) should be similar. The large 
gap between the runtime values is most likely due to the 
Android’s overall low performance with the GPU pathfinder. Of 
the systems capable of GPU-accelerated spatial audio 
processing, the Android resulted in the worst performance by a 
large margin. Instead of the GPU (Dynamic 0.125) measurement 
being similar to GPU (Static), it is much closer to GPU 
(Dynamic 0.0), indicating that it was never able to “rest” 
between frames, since by the time the next frame could be 
processed, over 1/8th of a second had passed. The significantly 



lower GPU (Static) Spatial Audio Min can be explained by 
considering the value being in range of the CPU Spatial Audio 
Max. While there is no movement for GPU (Static), no 
recalculation is performed on the GPU, and any overhead is 
from having the GPU pathfinder pipeline running. This is 
reported in Unity’s profiler, and can be inferred visually on the 
Android, which does not produce frame-lag if simply idling 
without character movement across graph cells (during which 
the benchmark total is at least 60 fps), but then suddenly 
produces lag when moving. During the benchmark, the character 
is supposed to be moving at an average of 10 cells/s, but in one 
frame, due to the time delta between frames, the character may 
not have moved enough to engage the GPU via triggering a 
recalculation and graph update. A summary of the Android 7 
results for the runtime and spatial audio tests are available in 
Tables IV and V respectively. 

TABLE II.  SUMMARY OF RUNTIME TESTS ON WINDOWS 10 

Pathfinder Runtime 

Total Min 

Runtime 

Total Max 

Runtime 

Total Avg 

CPU  0.56 ms  

(1,774 fps) 

3.88 ms  

(258 fps) 

0.90 ms  

(1,107 fps) 

GPU  

(Static) 

0.78 ms  

(1,275 fps) 

16.67 ms  

(60 fps) 

1.32 ms  

(758 fps) 

GPU  

(Dynamic 

0.125) 

0.80 ms  

(1,257 fps) 

21.93 ms  

(46 fps) 

1.57 ms  

(638 fps) 

GPU  

(Dynamic 

0.0) 

12.06 ms  

(83 fps) 

20.20 ms  

(49 fps) 

16.07 ms  

(62 fps) 

TABLE III.  SUMMARY OF SPATIAL AUDIO TESTS ON WINDOWS 10 

Pathfinder Spatial 

Audio Min  

Spatial 

Audio Max 

Spatial 

Audio Avg 

CPU  0.23 ms  

(4,264 fps) 

2.51 ms  

(399 fps) 

0.26 ms  

(3,884 fps) 

GPU  

(Static) 

0.37 ms  

(2,711 fps) 

16.02 ms  

(62 fps) 

0.85 ms  

(1,177 fps) 

(758 fps) 

GPU  

(Dynamic 

0.125) 

0.39 ms  

(2,552 fps) 

19.94 ms  

(50 fps) 

1.09 ms  

(916 fps) 

GPU  

(Dynamic 

0.0) 

11.25 ms  

(89 fps) 

18.55 ms  

(54 fps) 

14.99 ms  

(67 fps) 

 

B. In-Game Test Methods 

To test and confirm the applicable performance of the system 
in a VR environment, we developed a fully functional 3D game 
optimized for deployment using the system on mobile and 
desktop/VR platforms. The game places an emphasis on the 

purposeful manipulation of sound and light in its gameplay 
mechanics across multiple levels, and demonstrates how G-
SpAR can be used in an actual development scenario. The game 
emphasizes play-by-sound mechanics to the point of even 
allowing players to catch the attention of a lingering enemy AI 
using their voice through a microphone, which is then projected 
into the game world and propagated to the AI as if it were 
originally sourced from inside the virtual environment. The bulk 
of the gameplay takes place in a darkened underground labyrinth 
faintly lit by incandescent light bulbs and torches. The player 
must safely navigate the labyrinth using the faint cues of light 
and propagated sound to solve puzzles, find/collect keys, and 
avoid a dangerous lingering enemy AI that can detect the 
player’s movements (including in-game interactions) using 
simulated hearing and sight. To escape to the next area, they 
must use the keys they find on chests scattered throughout the 
level without alerting the enemy and then activate a 
“teleportation monolith”. The dimensions of all of the rooms in 
the game are smaller than the dimensions of the rooms in the 
benchmarking environment and despite physics, AI, lighting, 
and other active game-relevant calculations, runtime 
performance was smooth. All sounds emitted in 3D were 
spatialized with HRTFs using Unity’s native Oculus integration. 
This did not include environmental propagation. The keys, the 
enemy AI, and other select sources in the game use G-SpAR to 
convey additional important information about the game state 
using sound, such as obstruction and occlusion, allowing players 
to “hear” what they’re looking to find (or avoid) by tracking 
sounds around corridors. However, the enemy similarly 
“listens” to the player, and taking into account how the sound 
should propagate path-wise, may attempt to navigate to any 
disturbances it detects. The listening behaviour reads in all 
disturbances logged to a global sound source “monitor”, which 
holds the position and initial volume of the source. Player 
footsteps and interactions are added to the monitor. The player 
can take advantage of this behavior to deceive the enemy by 
purposefully creating noise in one area and then sneaking away 
as it approaches to investigate.  

The majority of interactions in the game produce 3D 
spatialized sounds based on physics such as the player running 
into and against walls or other objects, and object-to-object 
collisions such as impacts and scrapes (accounting for relative 
velocity and pressure). In addition to providing a constant 
stream of sonic information to the player, this has additional 
gameplay consequences in the underground labyrinth where this 
information can also be decoded by the enemy. Interactions with 
objects in the environment, such as doors and chests (both 
featuring squeaky hinges), can attract enemy attention. The 
enemy has spatialized and propagated footsteps, growls, barks, 
and leaves a trail of emissive particles. Additionally, its eyes 
glow and a spotlight attached to the head brightens anything the 
enemy is looking at, such as walls. The player uses these cues to 
remain aware of the enemy’s position at all times. If the enemy 
catches the player, the player is killed and the level is restarted. 
In other words, spatial sound was an important component not 
just as background audio, but as an interactive element of the 
game that demands attention from the player. During runtime, 
our propagation system can be switched between being entirely 
inactive (using Unity’s default implementation), using only the 
CPU for 2.5D processing, or additionally taking advantage of 



the GPU to simulate fully 3D propagation acoustics so that the 
differences can be observed. Runtime measurements were 
performed using the same custom profiler as described above. 
The second level of the game was tested as it contained the 
largest and most complex design with the most interactions and 
longest likely gameplay length. All measurements were 
recorded over a duration of 60.0 s. The same systems were used 
and the GPU pathfinder was benchmarked when possible, with 
the dynamic frequency set to run every 0.125 s (the gameplay 
did not require dynamic geometry updates every frame). The 
playable area’s bounding volume for the level was 
approximately 50 m × 15 m × 60 m. The node size was set to 
0.48 m to accommodate finer details in the level geometry than 
that of the benchmark level. Finally, the player moved at a 
variable rate between no movement, crouching slow/fast, 
walking, and running at full speed. This results in a move speed 
range between 0.0 m/s to 4 m/s while performing any of the 
interactions that were part of the level. 

TABLE IV.  SUMMARY OF RUNTIME TESTS ON ANDROID 7 

Pathfinder Runtime 

Total Min 

Runtime 

Total Max 

Runtime 

Total Avg 

CPU  6.83 ms  

(146 fps) 

49.33 ms  

(20 fps) 

16.78 ms  

(60 fps) 

GPU  

(Static) 

13.15 ms  

(76 fps) 

980.62 ms  

(1 fps) 

534.07 ms  

(2 fps) 

GPU  

(Dynamic 

0.125) 

529.80 ms  

(2 fps) 

1195.18 ms  

(1 fps) 

817.41 ms  

(1 fps) 

GPU  

(Dynamic 

0.0) 

493.09 ms  

(2 fps) 

1272.30 ms  

(1 fps) 

863.54 ms  

(1 fps) 

 

TABLE V.  SUMMARY OF SPATIAL AUDIO TESTS ON ANDROID 7 

Pathfinder Spatial 

Audio Min  

Spatial 

Audio Max 

Spatial 

Audio Avg 

CPU  0.65 ms  

(1532 fps) 

23.05 ms  

(43 fps) 

1.27 ms  

(790 fps) 

GPU  

(Static) 

5.42 ms  

(184 fps) 

961.99 ms  

(1 fps) 

519.63 ms  

(2 fps) 

GPU  

(Dynamic 

0.125) 

515.32 ms  

(2 fps) 

1181.29 ms  

(1 fps) 

799.50 ms  

(1 fps) 

GPU  

(Dynamic 

0.0) 

478.23 ms  

(2 fps) 

1253.31 ms  

(1 fps) 

845.64 ms  

(1 fps) 

 

 

 

TABLE VI.  SUMMARY OF GAME  TESTS ON WINDOWS 10 

Pathfinder Runtime 

Total Min 

Runtime 

Total Max 

Runtime 

Total Avg 

CPU  1.66 ms  

(603 fps) 

8.87 ms  

(113 fps) 

2.09 ms  

(479 fps) 

GPU  

(Dynamic 

0.125) 

2.47 ms  

(404 fps) 

15.06 ms  

(66 fps) 

3.50 ms  

(286 fps) 

TABLE VII.  SUMMARY OF SPATIAL AUDIO GAME  TESTS ON WINDOWS 10 

Pathfinder Spatial 

Audio Min  

Spatial 

Audio Max 

Spatial 

Audio Avg 

CPU  0.60 ms  

(1671 fps) 

4.92 ms  

(203 fps) 

0.71 ms  

(1416 fps) 

GPU  

(Dynamic 

0.125) 

0.77 ms  

(1294 fps) 

13.41 ms  

(75 fps) 

2.01 ms  

(497 fps) 

TABLE VIII.  SUMMARY OF GAME  TESTS ON ANDROID 7 

Pathfinder Runtime 

Total Min 

Runtime 

Total Max 

Runtime 

Total Avg 

CPU  7.48 ms  

(134 fps) 

74.66 ms  

(13 fps) 

17.05 ms  

(59 fps) 

GPU  

(Dynamic 

0.125) 

426.60 ms  

(2 fps) 

623.78 ms  

(2 fps) 

531.89 ms  

(2 fps) 

TABLE IX.  SUMMARY OF SPATIAL AUDIO  TESTS ON ANDROID 7 

Pathfinder Spatial 

Audio Min  

Spatial 

Audio Max 

Spatial 

Audio Avg 

CPU  2.12 ms  

(472 fps) 

28.21 ms  

(35 fps) 

3.46 ms  

(289 fps) 

GPU  

(Dynamic 

0.125) 

396.82 ms  

(3 fps) 

570.02 ms  

(2 fps) 

476.69 ms  

(2 fps) 

 
A summary of the Windows 10, and Android 7 results is 

provided in Tables VI, VII and Tables VIII, IX respectively. 
Results are similar to those of our benchmark levels, with a 
noticeable increase in the Runtime Average as a result of 
increased overall environment complexity (graphics quality, 
particle systems, physics, player calculations, interactions, etc.). 
This is not necessarily evidenced in Table 4, although Unity’s 
profiler reported increased times used by several components 
unrelated to the spatial audio system. Regardless, the spatial 
audio times are also worse for both the CPU and GPU spatial 
audio systems than the benchmark level. The explanation for the 



CPU system can be attributed to the greatly increased NavMesh 
complexity. 

The GPU system was also less performant than the 
benchmark level due to a significantly higher node density, 
despite the smaller bounding volume area. The benchmark level 
node size was 1.0 m, but for the second game level it is less than 
half of that at 0.48 m. If the node size was not changed, the total 
number of nodes would be the same as the bounding volume in 
m3, which is 45,000. However, because of the reduced size and 
the square-cube law, the actual total node count is 403,000 and 
the density is about eight times as high. This means that as the 
player moves at full speed (4 m/s), they may trigger up to 
approximately 16 (4 × 4) GPU graph recalculations / updates per 
second with forward movement even with static geometry, as 
opposed to 10 for the benchmark level. Updates may be faster 
for ungrounded movement where the player may accelerate 
downwards from the effects of gravity (e.g., after jumping off 
the ground, stairs, stacked boxes, etc.) 

VI. SUMMARY 

Here we have presented G-SpAR, a cross-platform, generic 
solution for dynamic occlusion and obstruction that is more 
advanced than the simple raycast and binary techniques most 
often used in games. We have developed a solution that 
circumvents many of the current limitations in existing spatial 
audio technologies to provide a perceptual approximation of 
spatial cues from the environment, including occlusion, 
reflection, and diffraction. Leveraging the parallel nature of 
modern GPUs for processing large amounts of data with a built-
in CPU fallback, we were able to integrate a hardware-
independent sound propagation system into a cross-platform 
game as a demonstration of the viability of this implementation. 
Moreover, our system requires minimal setup, effectively to the 
point of simply “tagging” sound sources with a custom 
component that makes the pathfinding requests, while a global 
manager defines the overall pathfinding variables to use at 
runtime. Our system is not as accurate in modelling sound 
propagation as that of more fine-tuned geometrical acoustics and 
computationally expensive wave-based acoustical modelling. 
However, sacrificing some accuracy implies that the system is 
noticeably faster at runtime, requires no time-consuming offline 
precomputation stage, and is able to perform the calculations 
within a single frame without the need for asynchronous delays. 
Future tests can determine if players notice the discrepancy in 
accuracy, or have a preference for a particular method of spatial 
rendering. From desktops to mobile smartphones, runtime 
measurements in an isolated benchmark level and complete 
game environment demonstrate our low impact on high-end 
GPUs and scalability to suboptimal hardware when using only 
the CPU. One current-gen smartphone was able to run the GPU 
simulation at interactive rates. Although the GPU part of the 
system is still not suitable for mobile devices when considering 
large simulation bounds (such as those tested), it is likely that in 
the future more powerful mobile GPUs will give way to better 
GPGPU capability, thus improving performance and the 
viability of GPU-accelerated spatialized sound for large scenes 
on smartphones. Moreover, further improvements and research 
can still be undertaken into optimizing the GPU algorithm 
through exploring the viability of storing level data in different, 

more easily traversable and efficient graph-like structures, such 
as octrees, or simply storing the data offline from a 
precomputation stage, separate from the runtime part. Finally, 
future work will also examine the effectiveness of G-SpAR via 
human-based listening tests in order to quantify its accuracy.  
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