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Abstract—Understanding and predicting player monetization
is very important, because the free-to-play revenue model is so
common. Many game developers now face a new challenge of
getting users to buy in the game rather than getting users to buy
the game. In this paper, we present a method to predict what
percentage of all players will eventually monetize for a limited
follow-up game data set. We assume that the data is described
by a survival analysis based cure model, which can be applied
to unlabeled data collected from any free-to-play game. The
model has latent variables, so we solve the optimal parameters
of the model with the Expectation Maximization algorithm. The
result is a simple iterative algorithm, which returns the estimated
monetization percentage and the estimated monetization rate in
the data set.

Index Terms—Free-to-play, Monetization, Survival Analysis

I. INTRODUCTION

Total revenue from video games reached approximately 110
billion dollars in 2018 [1]. As the gaming industry has grown,
the revenue models have also evolved. Most revenue in the past
was from game purchases and subscriptions whereas today
free-to-play games account for the majority of all game titles
and revenues [1]. Money is made through advertisements, pre-
mium upgrades and in-app purchases. However, only around
5 % of players in a successful free-to-play game can be
expected to monetize [2]. These developments have made
it important to understand exactly how many percentage of
players monetize and why they do so.

The goal of this paper is to present a method to predict
the proportion of all players that will monetize over time.
Our method belongs to the field of game analytics, which
is concerned with understanding player behavior. Game de-
velopers often want to perform real-time analytics when they
are developing or planning to launch a game. A data set is
generated by tracking players for a certain duration, which
we call the follow-up. However, data that is collected over
a limited duration presents challenges. The data sets can be
divided into a scale between two extremes:

1) Extensive historical game data spanning maybe years.
2) A completely new game data set with short follow-ups.
The first setting allows the usage of supervised machine

learning models, since it is known which users made the

purchases and can thus be generalized to the same game.
However, in the second setting a new game with only few
observed purchases may be dealt with and the data set is
unsupervised because the correct answers are not known for
most of the players. Players who have not yet made a purchase
are difficult to separate from those who will never purchase.
The first setting is well suited for academic research. The
second setting occurs when game developers want to use real-
time analytics to understand their current game. They want
to know as soon as possible how profitable a game can be
expected to be, as they do not want to expend finances on
advertising if the game is expected to be unprofitable.

Game literature has demonstrated that it is possible to train
machine learning models with good predictive performance
in the first setting, many of which were featured in a recent
competition [3]. Research has been more limited in the second
setting. Our method works in the second setting, for a new
game with only a short period of data collection. However, at
least one player must have made a purchase before the method
can be used. Many real world data sets are somewhere between
these two extremes and the approaches could complement each
other. We focus on the monetization percentage and rate in this
paper, but in principle our latent variable formulation could be
used together with many supervised machine learning models
to train them on unsupervised data due to a limited follow-up.

This article is organized as follows: first there is a short
literature review, then the method is described along with
survival analysis and mixture cure model theory, after that
the data used for testing the method is described, and finally
the results are presented and discussed.

II. RELATED WORK

Regression and machine learning have been used in studies
to predict player purchases in various problem formulations
for labeled historical data. Random Forest, linear SVM, and
Decision Tree were used first in [4] to classify whether a player
would buy an in-game item after a match. Both general in-
game items purchases and hard currency purchases were pre-
dicted. Similarly, given purchasing and non-purchasing players
with two weeks of history before the purchase, Decision Tree,
Logistic Regression, and SVM were used in [5] to predict
which group the player belonged to, with a focus on the game
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agnostic features. In [6], both classification and regression
were used to predict whether the user would make a first
purchase and how many purchases would occur. Decision
Trees, Random Forests, and Support Vector Machines were
used with data set balancing methods. Finally, in [7] two linear
regressions were used to model the number of purchases and
the number of coins purchased at a given level. The focus
was on understanding the impact of gating mechanisms on
retention and monetization.

Survival analysis has been used in gaming for various other
tasks, see [8] for a review. Noncontractual probability models
used in marketing [9] are closest to our approach. These
models predict player purchase counts over time, given a data
set in the second setting. However, one of the most popular
models (BG/NBD) was tested in free-to-play games and the
authors found that the model struggled with covering real data
[10]. It has been suggested that further research should be
conducted to redesign or adjust existing models, in order to
examine better assumptions for free-to-play games. In a recent
approach [11], a model-free method was developed to measure
the mean customer lifetime value (LTV) in the second setting,
but this approach did not predict into the future. Studies have
also investigated how the first purchase predicts overall LTV
[12], which is very useful when used together with our model.

III. METHOD

In this section we present the method. The first subsection
shows how game data is assumed to follow a simple mix-
ture cure model, which is an extension of standard survival
analysis. The second subsection shows how the monetization
percentage and conversion rate can be predicted by finding
optimal model parameters via the Expectation Maximization
algorithm (EM-algorithm).

A. Monetization as a mixture cure model

Survival analysis is a field of statistics used to analyze
time-to-event data with limited follow-ups. The type of event
depends on the field where the data are collected. In medical
research the event is often the death of a patient and in industry
the event might be that a certain part of a machine breakdowns.
Limited follow-up causes data censoring, which means that
it is not possible to know all the event times because the
follow-up ends before some of the events occurred. In standard
survival analysis, each individual is assumed to eventually
have the event, and this event happens once, at most, even
though observations may be censored [13].

In this paper, the event is that a player makes his first
purchase, and the event time is the calendar time from a player
starting to play the game to purchasing something for the first
time. Game developers cannot wait indefinitely to collect the
data, which leads to a censored data set. Players that did not
make a purchase during the time interval when the data were
collected are censored.

Two random variables are observed when the data are
collected [14]. One of them is the event time T which is either
the purchasing time T ∗ or the censoring time C whichever is

smaller: T = min (T ∗, C). The other variable is the censoring
indicator δ = I (C ≤ T ∗) which represents whether a player
purchased something before censoring or was censored by the
follow-up. Realizations of these random variables are denoted
with ti = min (t∗i , ci) and δi = I (ci ≤ t∗i ) and they are
observed for every player.

In this paper, we assume that the purchase time
T ∗ ∼ Exp (λ) and the censoring time C is implied by the data
collection time. The assumption of purchase time following
the exponential distribution is a special case of the playtime
principle introduced in [15] and has been used to model player
survival [16]. The distribution of T is defined by a survival
function S [17], which describes the probability of purchasing
after time t. We use the following exponential model

S (t) = P (T > t) = e−λt. (1)

Hazard function h describes the instantaneous risk that a player
purchases at time t given that he did not do so until that time.
In the exponential model the risk is constant [14]:

h (t) = lim
∆t→0

P (t < T < t+ ∆t|T > t)

∆t
= λ. (2)

The third function needed to describe the situation is a
probability density function

f (t) = h (t)S (t) , (3)

which is the density of purchases at time t.
The assumption of standard survival analysis, that all in-

dividuals eventually purchase, probably does not apply in
free-to-play games since many players seem to never buy
anything. This would mean that there are players of two kinds,
monetizing and unmonetizing, and the whole population is
a mixture of the two sub-populations. Hence a mixture cure
model [18] is required in order to properly model this situation.
All unmonetizing players are always censored, but also some
of the monetizing players might be censored if they were not
followed for long enough. Thus the division into censored
and purchased players does not provide sufficient information
about the number of monetizing players and a third variable,
a monetizing indicator, is needed.

The monetizing indicator ζ describes whether a player will
monetize or not: ζ = 0 for the monetizing population and
ζ = 1 for the unmonetizing. The probabilities that a player is
a monetizing or an unmonetizing player are P (ζ = 0) = π
and P (ζ = 1) = 1 − π, respectively. Monetizing indicator
ζ ∼ Bern (1− π) and is partly latent because the value of it is
known only for those players that made a purchase before the
censoring. In a mixture cure model, the survival function is a
weighted sum of the survival functions of the subpopulations:
S (t) = πSm (t) + (1− π)Su (t), where the weight π is the
percentage of monetizing individuals in the whole sample,
Sm (t) = e−λt and Su (t) ≡ 1. Given that the purchase
time follows the exponential distribution there are now two
parameters that describe the model: ΨΨΨ = (π, λ). They are
monetization percentage and conversion rate.



An example of this kind of data is shown in Fig. 1. In the
example there are 50 players, of whom nine are monetizing.
It can be seen that two monetizing players have not purchased
before censoring. The players have started within three units
of the calendar time and censoring occurs five time units after
the first player arrived. This results in different follow-ups for
the players. In reality the monetization status of players, i.e.
the colors in the figure, are not known, and it is necessary to
infer from the data set how many players are going to make
a purchase.

Fig. 1. Simulated data example with 50 players: 9 monetizing and 41
unmonetizing. The data was generated with parameters (π, λ) = (0.1, 1.0).

B. Fitting the mixture cure model

We can infer the monetization percentage and the conversion
rate by finding the model parameter vector ΨΨΨ. The likeli-
hood function L shows how likely the probability distribution
samples are, given values for the parameters. The maximum
likelihood estimate Ψ̂ΨΨ is the parameter vector that maximizes
the likelihood function, i.e. parameter values that make the
given data most likely. In survival analysis the likelihood
function

L (ΨΨΨ) =

n∏
i=1

f (ti|ΨΨΨ)
1−δi S (ti|ΨΨΨ)

δi , (4)

where n is the sample size. However, the logarithm of it,

l (ΨΨΨ) =

n∑
i=1

{(1− δi) log f (ti|ΨΨΨ) + δi logS (ti|ΨΨΨ)} , (5)

is often used instead [19]. Since the logarithm is a strictly
increasing function, the maximum likelihood estimate Ψ̂ΨΨ is
the same for both (4) and (5). In the maximum likelihood
estimation the parameter values converge in probability to the
true parameter values as n→∞ [20].

If the latent monetizing status ζi is somehow known for
every player, the data is said to be complete and the solution
is both simple and intuitive. The total number of players is
denoted with n = n0 + n1, where n0 stands for the number
of monetizing players and n1 is the number of unmonetizing
players. In order to find the maximum likelihood estimate, the

roots of the partial derivatives of (4) or (5) with respect to π
and λ are found separately. Then the parameters simply are

π̂ = n0

n and λ̂ = n0∑
i:ζi=0 ti

. (6)

In other words, the monetization percentage is the fraction
of players that purchase something. The conversion rate is the
number of monetized players divided by their total exposure
time. When considering the fact that E [T ] = 1/λ, it can be
seen that the expected purchase time is the average of exposure
times in the monetizing population.

However, there is a latent variable in the mixture cure
model since it is not known which players are monetizing.
The latent variable makes it impossible to find an equation
for the maximum likelihood estimate. EM-algorithm [21] is
an iterative algorithm that is suitable for maximum likelihood
estimation in situations where there are missing data or latent
variables. In a situation like this, the observed data is said
to be incomplete. As shown in the appendix, this results in
an iterative algorithm, which updates the current value of the
parameter π(k) by

π(k) =
1

n

[ ∑
i:δi=1

π(k−1)e−λ
(k−1)ti

1−π(k−1)+π(k−1)e−λ
(k−1)ti

+
∑
i:δi=0

1

]
(7)

and the current value of λ(k) is calculated with

λ(k) =
∑
i:δi=0 1∑

i:δi=1
π(k−1)e−λ

(k−1)ti

1−π(k−1)+π(k−1)e−λ
(k−1)ti

ti+
∑
i:δi=0 ti

. (8)

These estimates converge to the global maximum of the
log-likelihood function when k →∞. The values of the log-
likelihood function (5), and the method iterations (7) and (8)
are illustrated in Fig. 2 for the data represented in Fig. 1.

Fig. 2. Values of the log-likelihood as a function of π and λ. The path of
the EM-algorithm iterations is presented as a curve from the initial guess
ΨΨΨ(0) = (0.5, 0.5) to the maximum likelihood estimate

(
π̂, λ̂

)
= (0.1, 1.7).

There were also some problematic cases when the model did
not work correctly. A zero-frequency problem is present when
almost all players are censored and there is no information
showing that some of the censored players never monetize. In
such a situation the model is not able to distinguish between
the survival analysis model and the mixture cure model, and
the method predicts what the survival analysis assumes, i.e.
that every player monetizes eventually. This problem can be



avoided by using Laplace smoothing [22] which is a method
that makes all classes (unmonetizing and monetizing popu-
lations in our case) possible by adding pseudo-observations
to the data. It is enough to add one unmonetizing pseudo-
observation with infinite follow-up to the data to avoid the
zero-frequency problem and obtain reasonable results in rea-
sonable computation time. The algorithm should not be run
at all when none of the players have been observed to make
a purchase because then λ(k) = 0 for all k ≥ 1 and the
convergence rate of the algorithm is not defined. In this kind
of situation the monetization percentage is defined as zero.

IV. DATA SETS

Based on the formulas derived, the model was implemented
with the R programming language. We tested the model on
both generated and real data.

A. Generated data

There is no publicly available person level data set with
many free-to-play games. One of our primary motivations is
to apply the algorithm to completely new games with limited
follow-ups, therefore we simulated different sample sizes n,
follow-up times c, and monetization percentages π and then
calculated the estimate π̂ for each data set.

In the first experiment, we calculated the monetization
percentage estimates for different sample sizes and follow-up
times, given a true value of π = 0.10. The effect of sample size
n was tested with values 100, 500, 1000 and 5000. The follow-
up time c was tested with censoring times that are defined in
a way that there is 25 %, 50 %, 75 % or 100 % probability
for the monetizing players to purchase before censoring.
For each combination, we conduct a thousand experiments
r = 1, ..., 1000. In each experiment, we sampled a player data
set of size n, where the observed time ti = min (t∗i , c), and
calculated the predicted value of π̂r using the EM-algorithm.
The resulting distribution of π̂r is compared to the true value.

In the second experiment, we tested the effect of the true
monetization percentage on the estimate. That effect was tested
with monetization percentages of 0.01, 0.05, 0.1, 0.5 and
0.75. Follow-up times are defined the same way as in the
first simulation but with 10–100 % probabilities to purchase
before censoring. The effect of the sample size was tested with
10 different sample sizes varying from 100 to 1000 by 100.
For each (n, π, c) triplet, 1000 estimates were computed and
averaged.

B. Real data

The real data were collected from a free-to-play mobile
game. The game was in-development during data collection,
and many developments were made to each version over the
game development cycle. Periodical user acquisition tests were
used to evaluate the current performance. In these tests, a
group of players was obtained by using paid advertisement in
social networks and the behavior of the players was recorded.

The number of players varies between different versions and
only a small percentage of the players purchased an item as

can be seen in Table I. The game probably improved moneti-
zation from version 1.18 to version 1.21, but the subsequent
development in the 1.3x series had no large effect on the
percentage of purchasing players. The time to monetization
was the calendar time from the beginning of the first session
to the first purchase. The censoring times were defined as the
time from the first session to the data collection time.

TABLE I
NUMBERS OF PLAYERS AND MONETIZED PLAYERS IN THE REAL DATA.

Version # of players # of monetized players π
1.18 1604 6 0.004
1.21 309 6 0.019
1.31 1691 24 0.014
1.32 1582 21 0.013
1.33 1211 18 0.015
1.35 2364 35 0.015

We used this data to create censored data sets that replicate
the actual version user test. We took the first player’s the first
session and defined censored data sets by varying the data
collection date as 1, ..., D days of calendar time from this time.
Maximal follow-up D denotes the actual data collection date,
after which we have no data. This created censored players
with different follow-up times, exactly the same way the data
set would be obtained if it was updated at the end of each day
after the test began. Since there are no purchases for months
after the last purchase in each version, we assumed that the
final data collection is effectively uncensored in that we can
directly see who monetized and who did not.

V. RESULTS AND DISCUSSION

A. Simulation

The results of the first simulation are shown in Fig. 3.
Where we know the monetizing players in advance we present
the complete data parameters for comparison. It can be seen
that for complete data the peak of the density function is
always at true value π = 0.1, i.e. the method is unbiased.
Nonetheless, even with the complete data, there is some
variance, which decreases as the sample size becomes larger.
For our method in Fig. 3, the incomplete data estimates may be
initially slightly biased downward. The variance is somewhat
larger, as there is less information. Both parameter estimates
converge in probability as we increase the sample size or the
follow-up, but this occurs surprisingly slowly for the sample
size in the incomplete data case. Maximum likelihood theory
guarantees that even the limited follow-up estimates become
asymptotically unbiased as the sample size is increased. Fig.
3 however demonstrates, that even 5 000 samples are not
sufficient if the real monetization percentage is small.

The results of the second simulation shown in Fig. 4 provide
additional description of the bias. Relative bias is the differ-
ence between the estimate and the real value divided by the
real value. The estimate is negatively biased when the follow-
up is very short, and unbiased when the follow-up approaches
infinity, i.e. the complete data case. The values between these



Fig. 3. Simulated estimates of monetization percentage π.

extremes vary depending on the real monetization percentage.
For small monetization percentages, which are common in
free-to-play games, there is a wide range of censoring times
when the estimate is positively biased. The model seems to
predict the true value when around 20 % have monetized, with
a negative bias before and a positive bias after.

This bias is related to the identifiability issues we encoun-
tered with the model without a single pseudo-observation.
The problem we had was to identify the cure model from
the alternative explanation π̂ = 1, λ̂ ≈ 0 offered by the
standard model. With small samples and short follow-up times,
both models are at times almost equally likely according to
maximum likelihood. The positive bias can be explained by
a model that is more tilted to the standard model direction,
whereas the negative bias exists because the single pseudo-
observation obtains considerable weight with only a few
monetized players.

B. Real data

There are two assumptions in the model about the data
which need to be verified for the real data. The assumptions
are:

1) the event time is exponentially distributed and
2) there are some unmonetizing players, i.e. π < 1.

Assumption 1 is verified with Q–Q-plot which compares
the quantiles of observed event times to the quantiles of an
exponential distribution. The Q–Q-plots are shown in Fig. 5.
There are some exceptions with very late purchase times, but
most of the points are along a straight line. This suggests that
we may assume event times to follow exponential distribution,
for the purposes of estimating the monetization fraction.

Akaike’s information criterion [23] is used to verify assump-
tion 2. This method consists of calculating an AIC value for

Fig. 4. Relative bias for monetization percentages π as a function of censoring
time and sample size.

Fig. 5. Q–Q-plots of the event times of each version.

each possible model and the smaller the value, the better the
model describes the data. The value is calculated with

AIC = 2np − log
(
L̂
)
, (9)

where np is the number of parameters in a model and
L̂ = L

(
Ψ̂ΨΨ
)

. A maximum likelihood estimate is calculated
for the incomplete data likelihood function because the values
of the monetizing indicator ζ are not known and the value
of the complete data likelihood function cannot be calculated.
AIC values in Table II show that the mixture cure model is
better than the regular survival model at explaining the data
for every game version. This is not surprising, given our prior
knowledge about free-to-play monetization.

We show both the computed estimate π̂ and the percentage
of monetized players so far at each censoring time for every
game version in Fig. 6. Obviously the percentage of monetized
players increases as there are new monetized players. The
value decreases if the number of monetized players does



TABLE II
AIC VALUES FOR MIXTURE CURE AND REGULAR SURVIVAL MODELS.

Version Model
π < 1 π = 1

1.18 135.6720 154.0050
1.21 114.0415 132.1888
1.31 450.3302 501.7088
1.32 401.4259 436.8337
1.33 338.0034 364.8098
1.35 659.8481 693.9284

not increase at the same rate as the total number of players
increases. At first, the estimates are greater than the monetized
percentages as they extrapolate to the true value, but as the
follow-up time is increased, both estimates become equal to
the supposed true value.

The larger the purchase times, the smaller the λ̂, and the
more slowly the value of survival function (1) decreases. More
players are then expected to monetize than have been observed
so far, implying that the estimate π̂ is larger than the real
value. This effect cannot be seen with version 1.21 because
all purchase times are small. As can be seen also in Fig.
6, the actual monetization percentage is revealed when no
more purchases occur and the survival function decreases to
practically zero at this point. This seems to happen within
some months, depending on the version of the game.

Fig. 6. Estimates of monetization percentage π of the real data compared to
the true value at each censoring time.

C. Future work: prior distributions

The results suggest that the model, where some players
monetize and some never do, is a correct interpretation of
the data. However, they also demonstrate that it is difficult
to estimate the monetization percentage reliably, even with
complete data, since there is often little actual information.
For example, with 100 players, 5 % monetization percentage,

and a follow-up until 20 % are expected to monetize, we have
on average 100 ·0.05 ·0.2 = 1 monetized player. In fact, many
such samples do not include even a single monetized player.

This causes two issues as regards the parameter estimates:
bias and variance. The results show that the estimated moneti-
zation percentage varies significantly in different samples and
that the cure model has some bias. These challenges could be
addressed in practical applications by using prior distributions.
Maximum likelihood is a sensitive method, because it simply
chooses parameters that make each sample most likely. How-
ever, we have prior knowledge that most free-to-play games
have around 1–5 % monetization rates. A prior distribution
and Bayesian inference could be used to reflect this fact [24].
Given correct assumptions, this would result in lower bias
and lower variance. For the monetization percentage π, a
natural prior is the Beta(a,b) distribution. Three examples of
beta distribution with different parameter values are visualized
in Fig. 7. In fact, maximum likelihood corresponds to using
an uniform prior Beta(1,1) and the one pseudo-observation
we added corresponds to a Beta(1,2) distribution. This makes
the value π̂ = 1.0 impossible, with a uniformly increasing
likelihood of smaller values. A weakly enforced prior with 5 %
mean monetization could be created by adding 1 monetizing
player and 19 unmonetizing players, or Beta(2,20) prior.

Fig. 7. Possible prior distributions for the monetization percentage π.

VI. CONCLUSION

The method introduced in this paper can be used to predict
what percentage of all players will eventually monetize in
limited follow-up game data sets. The prediction is made by
applying a survival analysis based cure model to unlabeled
data collected from any free-to-play game. The model is an
iterative algorithm that returns the monetization percentage
and the conversion rate in the data set. In the appendix,
we motivate the formulas by the Expectation Maximization
algorithm, which solves the optimal values for the parameters.

We found that the model can be used for prediction, but that
for some data sets there are potential difficulties in identifying
between the standard model and the cure model. There is
only a little actual information in the data concerning limited
sample sizes and follow-up times, because the monetization
percentage is very small. This introduces some bias and
variance to the estimates. The variance of the estimates can
be quite large when the sample size and the follow-up time
are limited. The bias and variance can both be reduced



with longer follow-up times and larger samples, or using
prior distributions. The same results were observed with both
generated data and real data.

We motivated the method by contrasting historical labeled
game data and completely new unlabeled game data. As dis-
cussed, most game data sets are between these two extremes.
In this case, the approaches are complementary. The latent
variable formulation can be used to infer the probabilities for
the labels, which can be trained using supervised learning
techniques. For example, in medicine the model has been
extended with covariates X as ζ ∼ LogReg

(
β
T
X
)

and

T ∼ CoxPH
(
β
T
X
)

[18]. In gaming, a similar approach
could be used to predict monetization status using player
features, even though it is not known for certain who has
monetized. The latent variable formulation can be applied to
other problems, such as churn prediction, which is a very
popular machine learning prediction task.

APPENDIX

We derive the iteration formulas (7) and (8) using the EM-
algorithm in this section. These formulas find the maximum
likelihood estimate in the incomplete data case. EM-algorithm
finds the maximum likelihood estimate Ψ̂ΨΨ for incomplete
data by taking advantage of conditional expectation value of
complete data likelihood function Lc. The algorithm consists
of two parts:

1) E-step: estimate the missing data by taking the expecta-
tion of the complete data likelihood function

Q
(
ΨΨΨ;ΨΨΨ(k)

)
= EΨΨΨ(k) {logLc (ΨΨΨ) |yyy} and (10)

2) M-step: find a vector ΨΨΨ(k+1) ∈ ΩΩΩ for which

Q
(
ΨΨΨ(k+1);ΨΨΨ(k)

)
≥ Q

(
ΨΨΨ;ΨΨΨ(k)

)
(11)

for all ΨΨΨ ∈ ΩΩΩ, where ΩΩΩ is the space of possible
parameter values.

These two phases are repeated until convergence is achieved.
It is shown in [21] and [25] that the algorithm converges to
a local maximum of the likelihood function. In our case the
log-likelihood function is concave, which implies that there
is only one maximum and it is the global maximum. Thus
these estimates converge to the global maximum of the log-
likelihood function when k → ∞. We first derive a formula
for (10) and then we obtain the maximum of (11) by finding
the roots of the partial derivatives with respect to π and λ
separately. At first the conditional probabilities are shown in
table III.

TABLE III
PROBABILITIES OF EVENT TIME T CONDITIONED ON MONETIZING

INDICATOR ζ

P (T |ζ) T = t T > t
ζ = 1 0 1
ζ = 0 λe−λt e−λt

Then the formulas of marginals of survival and density
functions in this mixture cure model case are

S (t) = P (T > t)

= P (T > t|ζ = 0)P (ζ = 0) + P (T > t|ζ = 1)P (ζ = 1)

= e−λt · π + 1 · (1− π)

= 1− π + πe−λt

(12)

and

f (t) = P (T = t)

= P (T = t|ζ = 0)P (ζ = 0) + P (T = t|ζ = 1)P (ζ = 1)

= λe−λt · π + 0 · (1− π)

= πλe−λt.
(13)

Now the formulas of incomplete data likelihood and log-
likelihood functions are functions (4) and (5) having functions
(12) and (13) substituted. The EM-algorithm requires the
complete data likelihood function which is

Lc (ΨΨΨ | ttt, δδδ, ζζζ) =

n∏
i=1

(
πλe−λti

)1−δi
·
[
(1− π)

I(ζi=1) (
πe−λti

)I(ζi=0)
]δi (14)

and the logarithm of it is

lc (ΨΨΨ|ttt, δδδ, ζζζ) =

n∑
i=1

{(1− δi) [log π + log λ− λti]

+ δi [I (ζi = 1) log (1− π)

+ I (ζi = 0) (log π − λti)]} .

(15)

The last thing needed to define (10) is the probability to be
an unmonetizing player conditioned on purchase time. These
probabilities are calculated with the Bayes’ theorem:

P
(
ζi = j|T > ti,ΨΨΨ

(k−1)
)

=
P(T>ti|ζi=j,ΨΨΨ(k−1))P (ζi=j)

P(T>ti|ζi=0,ΨΨΨ(k−1))P (ζi=0)+P(T>ti|ζi=1,ΨΨΨ(k−1))P (ζi=1)

(16)

and

P
(
ζi = j|T = ti,ΨΨΨ

(k−1)
)

=
P(T=ti|ζi=j,ΨΨΨ(k−1))P (ζi=j)

P(T=ti|ζi=0,ΨΨΨ(k−1))P (ζi=0)+P(T=ti|ζi=1,ΨΨΨ(k−1))P (ζi=1)
,

(17)

and the results are shown in table IV.

TABLE IV
PROBABILITIES OF MONETIZING INDICATOR ζ CONDITIONED ON EVENT

TIME T

P (ζ|T ) ζ = 1 ζ = 0

T > t 1−π
1−π+πe−λt

πe−λt

1−π+πe−λt
T = t 0 1



The resulting E-step function in a reduced form is

Q
(
ΨΨΨ|ΨΨΨ(k−1)

)
= Eζ|T,ΨΨΨ(k−1) [lc (ΨΨΨ|ttt, δδδ, ζζζ)]

=

n∑
i=1

1∑
j=0

P
(
ζi = j|T > ti,ΨΨΨ

(k−1)
)δi

· P
(
ζi = j|T = ti,ΨΨΨ

(k−1)
)1−δi

lc (ΨΨΨ|ti, δi, ζi)

=
∑
i:δi=0

[
1−π(k−1)

1−π(k−1)+π(k−1)e−λ
(k−1)ti

log (1− π)

+ π(k−1)e−λ
(k−1)ti

1−π(k−1)+π(k−1)e−λ
(k−1)ti

(log π − λti)
]

+
∑
i:δi=1

[log π + log λ− λti] .

(18)

Finally the formulas (7) and (8) are achieved by solving the
roots of the partial derivatives of (18) with respect to π and λ
separately.
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