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Abstract—This paper focuses on the problem of scaling Com-
binatory Categorial Grammar (CCG)-based plan recognition to
large CCG representations in the context of Real-Time Strategy
(RTS) games. Specifically, we present a technique to scale plan
recognition to large domain representations using Monte-Carlo
Tree Search (MCTS). CCG-based planning and plan recognition
(like other domain-configurable planning frameworks) require
domain definitions to be either manually authored or learned
from data. Prior work has demonstrated successful learning of
these CCG domain definitions from data, but these representa-
tions can be very large for complex application domains. We
propose a MCTS-based approach to search for explanations and
predict the goal of a given sequence of observed actions. We
evaluate our approach on the RTS game AI testbed microRTS.
Our experimental results show our method scales better to these
large, learned CCGs than previous CCG-based approaches.

Index Terms—Plan Recognition, Combinatory Categorial
Grammar, Real-Time Strategy Games

I. INTRODUCTION

Plan recognition focuses on the problem of inferring the
goal of some observed sequence of actions [1]. The problem
of plan recognition has many applications in domains such as
robotics and video games. and thus many different algorithms
have been developed to address this problem. For example,
past work has demonstrated that plan recognition can be
viewed as parsing a stream of observations with a grammar
that defines the possible plans [2]. In this paper, we focus
on using Combinatory Categorial Grammars (CCGs), which
have been shown to effectively represent natural language (and
more recently, shown to effectively represent and recognize
plans in a large number of domains [3], [4]), to perform plan
recognition in the context of Real-Time Strategy (RTS) games.
Specifically, we present a new approach based on Monte-Carlo
Tree Search (MCTS), to scale up to the size of plans that
appear in these type of games.

Prior work demonstrated the successful learning of CCG
lexicons from training data [5], [6] for the problem of CCG-
based plan recognition. However, these learned CCG lexicons
can be very large and complex, and standard Breadth-First
Search (BFS) approaches for plan recognition will not scale
well. For example, consider plan recognition in the domain
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of Real-Time Strategy (RTS) games where a large number of
strategies would have to be encoded into the CCG lexicon
(many of these strategies can be hundreds of actions long).
If we want to use plan recognition to identify the strategy
being deployed by the opponent, this can cause an explosion
in the search space. This paper presents a technique to scale
CCG-based plan recognition to these large CCG lexicons.

Our main contribution is a Monte-Carlo Tree Search
(MCTS)-based plan recognition algorithm that allows us to
scale recognition to larger CCG lexicons. Specifically, we
apply MCTS to search for a set of explanations and to predict
the goal of a sequence of actions given a predefined number of
iterations. We evaluate our approach on the Real-Time Strategy
(RTS) game AI testbed µRTS1. Our results demonstrate that
we can effectively scale plan recognition while maintaining
good recognition performance.

This paper is structured as follows. First, we provide back-
ground on Combinatory Categorial Grammars (CCGs) and
CCG-based plan recognition. Second, we provide related work
in the area of plan recognition. Third, we detail our CCG-
based MCTS plan recognition algorithm. Fourth, we outline
our experimental setup and provide experimental evaluation of
our approach. We conclude with remarks for future work.

II. BACKGROUND

This section describes a restricted form of Combinatory
Categorial Grammars (CCGs), using the definition of CCGs
from Geib [3], and defines CCG-based plan recognition. Each
action in a domain is associated with a set of finite CCG
categories C, composed of two types of categories.

Atomic categories correspond to a set of indivisible cate-
gories A, B, C.. 2 C and can be seen as zero-arity functions.
Complex categories on the other hand are curried functions [7]
and are defined by a finite set of categories of the form Z/X
or Z\X, where Z and X can be either atomic or complex
categories, and X can also be a set of atomic categories.
The operators “\” and “/” each take a set of arguments
(the categories on the right hand side of the slash, X), and
produce the result (the category on the left hand side of the
slash, Z). The slash operators define ordering constraints for

1https://github.com/santiontanon/microrts
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f(Harvest(U1, R1)) ! {Harvest(U1, R1)) : 1}
f(Train(U2, T )) !

{((HeavyRush)/{Attack(U3, U4)})\{Harvest(U1, R1)} : 1}
f(Attack(U3, U4)) ! {Attack(U3, U4)) : 1}

⇡ = [ Harvest(Worker1,Resource1), Train(Barracks1,Heavy), Attack(Heavy1,Base2) ]

1) Harvest(Worker1,Resource1) Train(Barracks1,Heavy) Attack(Heavy1,Base2)

2) Harvest(U1 = Worker1, R1 = Resource1) ((HeavyRush)/{Attack(U3, U4)})\{Harvest(U1, R1)} Attack(U3 = Heavy1, U4 = Base2)
<

3) (HeavyRush)/{Attack(U3, U4)}
>

4) HeavyRush

Fig. 1. Sample CCG (top), example plan ⇡ (middle) and parse of three observed actions for a Heavy Rush (bottom)

plans, indicating where other actions are to be found relative
to an action. Those categories associated with the forward
slash operator are after the action, and those associated with
the backward slash are before it. In summary, categories are
functions that take other functions as arguments. We define
the root of some category G (atomic or complex) if it is the
leftmost atomic category in G. For example, for the complex
category ((C)\{A})\{B}, the root would be C.

CCGs are defined by a plan lexicon, ⇤ = h⌃, C, fi, where ⌃
is a finite set of action types, C is a set of CCG categories (as
defined above), and f is a mapping function such that 8a 2 ⌃,

f(a) ! {ci : p(ci|a), ..., cj : p(cj |a)}

where ci . . . cj 2 C and 8a
Pj

k=i p(ck|a) = 1. This defini-
tion implies that action types can have multiple categories
associated with it in ⇤. Given a sequence of actions, these
probabilities represent the likelihood of assigning a category to
an action for plan recognition. For details on these probabilities
and how they are used for plan recognition, see Geib [3].

We assume that all complex categories are leftward appli-
cable (all arguments with the backward slash operator are
discharged before any forward ones), and we only consider
complex categories with atomic categories for arguments.
We also extend the definitions of action types and atomic
categories to a first-order representation by introducing pa-
rameters to represent domain objects and variables. CCGs with
parameterized actions and categories are defined by Geib [8].

Figure 1 provides an example CCG lexicon with parame-
terized action types and categories for recognizing a heavy
rush strategy in µRTS. Rush strategies consist of quickly
constructing many units of a specific type, and having all those
units attack the enemy. An example of a rush strategy from
the commercial RTS game Starcraft is Zerg rush. For this
lexicon, ⌃ = {Harvest, Train, Attack} and C = {Harvest, At-
tack, ((HeavyRush)/{Attack})\{Harvest}}. The action types
Harvest(U1, R1), Train(U2, T ), and Attack(U3, U4) each
have variable parameters representing different RTS units
U1, U2, U3, U4, resource R1, and unit type T . Since each
action type only has a single category, p(c|a) = 1.

In CCGs, combinators are operators defined over pairs of
adjacent categories that are used to parse sequences of tokens.
The two most common types of combinators are applica-

tion and composition. The application combinator applies an
atomic category to a complex category of arity one while
composition combines two complex categories:

Rightward Application: X/Y Y ! X

Leftward Application: Y X\Y ! X

Rightward Composition: X/Y Y/Z ! X/Z

Intuitively, we can think of application and composition com-
binators as functional application and composition.

We now define a few terminology relevant to CCG-based
plan recognition. We define ⇡ as a sequence of observed ac-
tions �1,�2, . . .�k. Next, we define the CCG plan recognition
problem as PR = (⇡,⇤, s0), where ⇡ is a subsequence of
observed actions, ⇤ is a CCG lexicon, and s0 is the initial
state of the world from where ⇡ was executed. The solution
to the plan recognition problem is a pair (E,G), where G

is a list of top-level goals that are being pursued in ⇡, and
E is a list of explanations or hypotheses that define the
plan structures in ⇡. Figure 1 (bottom) shows the recognition
of the observed sequence of actions ⇡ (Figure 1 (middle)),
which is a plan for the goal of executing a heavy rush in
µRTS. First, a category is assigned to each action and its
parameters bound based on the action (U1 = Worker1, R1 =
Resource1, U3 = Heavy1, U4 = Base2). This results in
the categories shown in line two of Figure 1. The cat-
egory ((HeavyRush)/{Attack(U3, U4)})\{Harvest(U1, R1)}
requires a Harvest(U1, R1) to its left. Binding U1 to Worker1

and R1 to Resource1 unifies Harvest(U1 = Worker1, R1 =
Resource1) with Harvest(U1, R1) and allows leftward appli-
cation to produce (HeavyRush)/{Attack(U3, U4)} shown in
line 3. This category expects a Attack(U3, U4) to the right.
Rightward application can be used to produce HeavyRush.
Since there are no more category arguments or actions, parsing
ends with the hypothesis of the heavy rush plan, HeavyRush.

III. RELATED WORK

Monte-Carlo Tree Search (MCTS) is a well-known algo-
rithm for game-playing and has been applied to both multi-
player [9], [10] and single player games [11]. For a survey
of MCTS algorithms in the literature, see Browne et al.
[12]. Our work focuses on applying traditional MCTS for
plan recognition for the domain of Real-Time Strategy (RTS)



Games. Prior work applied bayesian programs to represent
plan knowledge for plan recognition in RTS games [13]. Our
work focuses on representing plan knowledge using CCGs.

The problem of plan recognition can be viewed in many
different ways. Some approaches view the problem as a plan-
ning problem (known as inverse-planning) [14]–[16]. Another
way to view the problem is in the form of John McCarthy’s
circumscription [17]. Specifically, the seminal work by Kautz
and Allen [18] viewed plan recognition this way and repre-
sented plan knowledge in the form of a plan graph.

Other plan recognition approaches view plan recognition as
a form of parsing from Natural Language Processing using
a formal grammar that defines plan knowledge. To the best
of our knowledge, the first work to provide a correspondence
between the formal theory presented by Kautz and Allen [18]
and Context-Free Grammars (CFGs) was Vilain [2]. This was
done by providing a mapping between plan graphs and CFGs.

Since then, many other grammar formalisms have been used
for plan recognition. Probabilistic State-Dependent Grammars,
an extension of Probabilistic Context-Free Grammar with state
information, have also been used to represent plan knowledge
[19]. The plan recognition algorithm PHATT uses plan tree
grammars [20] while YAPPR represents plan knowledge us-
ing Plan Frontier Fragment Grammars [21], [22]. Our work
focuses on using CCGs for plan recognition.

Plan recognition is tangentially related to goal recognition
and has also been applied to games. One work applied Input-
Output Hidden Markov Models (IOHMM) to recognize player
goals from low-level actions in a top-down action adventure
game [23]. Other works have applied deep learning techniques
for goal recognition, such as stacked denoising autoencoders
[24] and Long Short-Term Memory [25], [26].

The work presented in this paper is closely related to the
application of CCGs for plan recognition. The Breath-First
Search (BFS) CCG-based plan recognition algorithm ELEXIR
was first described by Geib [3]. ELEXIR has demonstrated
a number of advantages over other work including efficient
recognition of partially-ordered plans and multiple interleaved
plans. This work was later extended to recognize plans with
loops [4].

IV. MONTE-CARLO TREE SEARCH ALGORITHM

The complexity of CCG-based plan recognition is defined
by the number of categories per action type in a CCG lexicon,
and the number of actions in an observed action sequence. As
the number of categories per action increases, the branching
factor from search increases. Coupled with a large number
of actions in an observed action sequence, the search space
for plan recognition can significantly increase. As a result,
Breath-First Search (BFS) plan recognition does not scale well
for large CCG lexicons. Prior CCG learning algorithms like
LexGreedy were successfully able to scale learning to long
plans. However, the learned CCG lexicons were too large for
BFS plan recognition. Our solution is the development of an
anytime approximation algorithm plan recognition algorithm.

1: procedure MCTS(⇡,⇤, N,G)
2: T = root
3: for iter = 1 . . . N do
4: n = selection(T )
5: if nE explains ⇡ then
6: backpropagate(T, n, p(nE))
7: else
8: if nv = 0 then
9: reward = simulation(n)

10: backpropagate(T, n, reward)
11: else
12: n0 = expansion(n)
13: if n0 = nil then
14: backpropagate(T, n0, 0)
15: else
16: reward = simulation(n0)
17: backpropagate(T, n0, reward)
18: end if
19: end if
20: end if
21: end for
22: end procedure

Fig. 2. MCTS CCG-based Plan Recognition

1: procedure SELECTION(T )
2: n = Troot

3: N = nchildren

4: while N 6= ; do
5: if n can have more children then
6: return n
7: else
8: s ⇠ U(0, 1)
9: if s > ✏ then

10: N 0 = argmaxn02Nn0
r

11: N 00 = argmaxn02N0n0
v

12: return n0 ⇠ U(N 00)
13: else
14: return n0 ⇠ U(N)
15: end if
16: end if
17: end while
18: end procedure

Fig. 3. MCTS Selection Function

Specifically, we employ Monte-Carlo Tree Search to recognize
sequences of observed actions.

Figure 2 provides high-level pseudocode of our CCG-based
Monte-Carlo Tree Search (MCTS) plan recognition algorithm.
The MCTS algorithm takes as input a sequence of observed
actions ⇡ = h�1, ...,�ki, a CCG lexicon ⇤, the maximum
number of iterations for search N , and a set of query goals
G (goals that we want to recognize). We will describe how to
compute p(g|⇡) (g 2 G) after describing the MCTS algorithm.
In our description of the MCTS approach, we use U to refer
to a uniform distribution and x ⇠ U(X) or k ⇠ U(i, j) as
sampling from a set X from the interval [i . . . j].

Our algorithm starts by initializing a search tree T with a
single root node. Each node in the search tree is defined as
n = hE, ci, r, vi, where E is an explanation of �1 . . .�i 2 ⇡

(where i is the depth of the node and 1  i  k), ci is the



(a) Example Execution

f(Harvest(U1, R1)) ! {Harvest(U1, R1)) : 0.5,

(Harvest(U1, R1))/{Harvest(U2, R2)} : 0.5}
f(Train(U2, T )) !

{((HeavyRush)/{Attack(U3, U4)})\{Harvest(U1, R1)} : 1}
f(Attack(U3, U4)) ! {Attack(U3, U4)) : 1}

(b) CCG Lexicon

Fig. 4. Example of MCTS Execution (Left) with CCG (Right)

1: procedure SIMULATION(n)
2: Let E = nE (explanation in n for �1 . . .�i)
3: for �l 2 �i+1 . . .�k do
4: Let a be the action type of �l

5: C = valid(⇤f(a))
6: c ⇠ U(C)
7: E0 = extend(E, c)
8: E ⇠ U(E0)
9: end for

10: end procedure

Fig. 5. MCTS Simulation Function

category assigned to an observed action �i, r is the reward,
and v is the number of times the node was visited. The root
node (depth 0) is initialized to root = hnil ,nil ,�, 0i.

Each edge in the search tree represents the extension of an
explanation E. Explanations define plan structures found in the
observed actions ⇡ and are represented as a list of atomic or
complex categories. An explanation with multiple categories
means that the agent is pursuing multiple, potentially inter-
leaved plans. Atomic categories in explanations define top-
level plans that the agent is pursuing while complex categories
mean that one of the plans in ⇡ is incomplete, and more actions
are needed to complete that plan. The extension method for
an explanation used by MCTS is similar to the one used by
the ELEXIR plan recognition algorithm [3]. An explanation
E for �1 . . .�i�1 is extended by assigning a category c to
an observed action �i 2 ⇡, and adding it to E. Next, known
CCG combinators (defined in Section II) are used to parse
these categories which results in a new explanation (list of
potentially new atomic or complex categories). See Figure 4a
for an example of a few explanations (explanations are closed
in brackets “[” and “]”).

Our approach follows the standard approach to MCTS:
selection, expansion, simulation, and back-propagation. We
look at each function in detail. First, selection chooses the
next node in the search tree to expand using a tree policy.

Our approach uses ✏-greedy as the tree policy. Algorithm 3
provides pseudocode for the selection function. We refer to
nchildren as the set of node n’s children. First, the function
checks to see if the current node n can have more children
(lines 5-6 of Figure 3). If all children nodes have been
constructed for n, then the ✏-greedy policy selects the next
node based on the highest reward and times visited (lines 8-
15 of Figure 3).

If the selected node n (line 4 of Figure 2) has an explanation
nE for ⇡ (i.e. node is a leaf), there is no need to expand
that node and thus, MCTS back-propagates the reward p(nE)
(line 4-5 of Figure 2). This reward is the probability of the
explanation nE , and will be explained below.

Second, expansion constructs successor nodes N given
the selected node n = hE, ci�1, r, vi from the selection
function. Intuitively, expansion extends the explanation nE for
�1 . . .�i�1 given the next observed action �i and one of its
mapped categories in the lexicon ⇤. First, expansion gets a list
of valid categories C (categories whose leftward arguments
can be parsed) for an observed action �i 2 ⇡. Expansion
then selects a category c

0
i 2 C with a uniform weighted

distribution based on the category’s conditional probabilities
p(c0i|a), where a is the action type of �i. Next, expansion
extends the current explanation E with c

0
i, resulting in a set of

explanations E
0. For each explanation e 2 E

0, the expansion
function constructs a new node n

0 = he, c0i,�, 0i and adds it
to the set of n’s children. The last constructed node is then
returned for simulation.

We note that nodes not returned for simulation will not
be part of the search tree until later. These nodes will have
their times visited set to 0 until they have the opportunity to
be placed into the search tree when the ✏-greedy tree policy
selects them during selection (line 14 of Figure 3). If the
selection function chooses one of these nodes, then MCTS
directly simulates and back-propagates from the node as it was
already constructed during expansion (lines 8-10 in Figure 2).
If there are no valid categories or no explanations are generated



by extending E with c
0
i, then expansion fails (returns nil) and

a reward of 0 is back-propagated (lines 13-14 of Algorithm 2).
Third, simulation “plays” out plan recognition from node

n
0 = hE, c

0
i,�, 0i using a random playout policy. We chose

a random playout policy because it worked well in our
experiments. Figure 5 provides pseudocode for the simulation
function. Given an observed action �l 2 �i+1 . . .�k (where k

is the index of the last observed action, and i + 1  l  k),
simulation first retrieves a list of valid categories C for �i+1

from the set of all mapped categories ⇤f(a), where a is the
action type of �i+1, and samples a category c 2 C uniformly at
random (lines 4-6). Next, simulation extends E0 with c, gets a
list of new explanations, and samples an explanation uniformly
at random (lines 7-8). Once the simulation successfully plays
out plan recognition, a numerical reward, computed as the
probability of the explanation at the leaf node p(E), is
returned. This probability is computed in the same manner
as that described by Geib [3]. Intuitively, this probability
represents how well the explanation describes the observed
actions ⇡. A higher probability explanation means that this
is a more likely description of the plans being executed in
⇡. Finally, back-propagation updates the statistics (reward r

and number of times visited v) along the path from n to
the root. For each ancestor n = hE, ci, r, vi on the path,
back-propagation updates r and normalizes the result, and
increments v.

Plan recognition entails finding a set of the most probable
top-level goals being pursued G 2 G and a set of explanations
E for an observation sequence ⇡. In this work, we assume ⇡

is pursuing a single goal g (i.e. |G| = 1). The result of MCTS
is a tree T where the leaves are explanations for ⇡. Thus,
E is defined as the leaves of T . Given E, we can compute
p(g|⇡) (conditional probability that ⇡ is pursuing g) in the
same manner as ELEXIR [3],

p(g|⇡) =
P

e2Eg
p(e)

P
e2E p(e)

where Eg is the set of explanations where g is the root of at
least one of the categories in the explanation.

Figure 4a provides the execution of a single iteration of
MCTS given the CCG lexicon in Figure 4b and the se-
quence of observed actions ⇡ from Figure 1. For simplic-
ity, we provide these actions as blue circles in Figure 4a
(first action is the top circle). First, the selection function
chooses a node in the tree without children (red box):
n = h[Harvest(U1, R1)],Harvest(U1, R1), 1.0, 1i. Second, the
expansion function constructs a new node n

0 by extending
explanation nE = [Harvest(U1, R1)] (green box). Third, sim-
ulation plays out plan recognition to get an explanation for ⇡
(purple hexagon): [HeavyRush], r = 1.0. Finally, the reward
of 1 is back-propagated through the ancestor nodes (nr =
2.0, n0

r = 1.0, rootr = 0.66, and nv = 2, n0
v = 1, rootv = 3).

V. EXPERIMENTAL EVALUATION

The purpose of MCTS plan recognition is to scale search
to large CCG lexicons while maintaining good performance.

To this end, we run two different experiments to test the
effectiveness of MCTS plan recognition. First, we analyze the
performance of MCTS to understand how well MCTS can
successfully recognize sequences of observed actions. Second,
we analyze the scalability of the search tree against observation
length. For each experiment, we compare against a Breath-
First Search (BFS) plan recognition algorithm in ELEXIR [3].
Both approaches are evaluated on the µRTS domain. µRTS is a
minimalistic RTS game designed to evaluate AI research in an
RTS setting [27]. Compared to commercial RTS games such as
StarCraft, µRTS maintains those properties of RTS games that
make them complex from an AI point of view (i.e. durative
and simultaneous actions, real-time combat, large branching
factors, and full or partial observability). This work focuses on
recognizing strategies in deterministic, fully observable games.

All CCGs are constructed using the CCG learning algorithm
LexGreedy [6]. LexGreedy requires an initial CCG lexicon
⇤init , and a training dataset consisting of sequences of actions
(called plan traces). We use a collection of scripted game
agents to generate learning datasets and ⇤init . The process
is described below.

Plan traces are constructed using replay data from gameplay
of the scripted agents. A replay is a trace of a game represented
as a sequence of state, player action tuples containing the
evolution of the game state as well as the actions performed
by each player during the game. We construct a replay
dataset was created by running a 5-iteration round-robin
tournament using the following built-in scripted agents: PO-
LightRush, POHeavyRush, PORangedRush, POWorkerRush,
EconomyMilitaryRush, EconomyRush, HeavyDefense, Light-
Defense, RangedDefense, WorkerDefense, WorkerRushPlus-
Plus. Each agent played against each other as both player
1 and player 2 on the open maps of the CIG 2018 µRTS
tournament.2 We chose these agents over other agents such
as NaiveMCTS because they execute a defined strategy which
we could use as the goal for learning and plan recognition.
We then generated a learning dataset of plan traces with their
corresponding goals using the replay dataset. For each replay
in the replay dataset, we generated two plan trace/goal pairs:
one for each agent in the replay. Each pair was constructed by
parsing player actions done by an agent, and using the agent
itself as the goal (i.e., the goal of plan recognition will be to
identify which of the agents does a plan trace come from).

LexGreedy has two tunable parameters: abstraction thresh-
old � and pruning threshold ⌧ . � controls the hierarchical
structures constructed during learning, and is defined by a per-
centage of the training dataset. The pruning threshold removes
categories from the lexicon whose conditional probability
p(c|a) (a is an action type, c is a category) that are below
⌧ . For our experiments, we set � = 50% and ⌧ = 0 (which
indicates no pruning of the CCG lexicon). Our MCTS plan
recognition approach also has two tunable parameters: number
of iterations N and ✏-greedy threshold ✏. For our experiments,
we set N = 100, 500, 1000, 2000, 50000, and ✏ = 0.4.

2https://sites.google.com/site/micrortsaicompetition/rules



Fig. 6. Average Number of Categories For Action Types

We evaluate MCTS and BFS using four metrics: average
goal prediction accuracy, average percentage of actions seen
before recognition, average number of explanations generated
for plan recognition, and average recognition execution time.
We compute goal prediction accuracy as follows:

Accuracy = 100 ⇤ Number of correctly predicted goals
Total number of instances

The percentage of actions before recognition is computed as
the minimum number of actions in an observation sequence
required before a plan recognition algorithm predicts the
goal, and continues to predict that goal until the end of the
observation sequence. The explanations generated for plan
recognition are those that explain the observed sequence of
actions given to the plan recognition algorithm. As such, to
compute the number of explanations, we count the number of
leaves in the search tree. Finally, recognition execution time
is the number of seconds that a plan recognition algorithm
executed. We gather these metrics for observations sequences
with a maximum of 5 to 15 actions. All metrics are averaged
over all testing instances, and then averaged over 5 runs. To
provide additional insight for each metric, we also compute the
standard deviation over the 5 runs. For each run, we randomly
shuffled all instances in the learning dataset, and split the
dataset into 80% training and 20% testing.

Figure 6 plots the number of categories for action types
in the learned CCG lexicon against the maximum number of
actions in the observation sequence. All learned CCG lexicon
contain 465 action types, each corresponding to player actions
done in game by the scripted agents. We see that the minimum
number of categories for an action type is 1. This is because
one of the requirements for LexGreedy is that all action types
in the learned CCG must have at least one category associated
with it. We also see that the maximum number of categories for
an action type is rather high, even going up to 100 categories
for a single action type. However, we note that the average
number of categories per action type is quite low. This implies
that our learned CCGs are sparse in that many of the action
types in the CCG are not associated with learned categories.
However, as we will see, this does not reduce the complexity
of plan recognition. Another interesting point is that, the
maximum number of categories for an action type and the

number of categories per action type did not deviate from the
average by a significant amount over the 5 runs.

Figure 7a provides average recognition accuracy for ob-
servation sequences with a maximum of 5 to 15 actions
(higher is better). Overall, we see an expected trend for all
iterations of MCTS and BFS. As the number of iterations
for MCTS increases, the goal prediction accuracy increases.
We also see that, as we increase the number of iterations,
MCTS converges to the performance of BFS. This is because
predicting a goal for BFS and MCTS relies on the set of
generated explanations, and the set of explanations constructed
by MCTS is a subset of the explanations constructed by BFS.
Thus, BFS provides an upper bound on the performance of
CCG-based plan recognition. Furthermore, both MCTS and
BFS outperformed a random predictor. We define a random
predictor as one that chooses a goal at random to recognize
an observation sequence. Since we have 11 possible goals, a
random predictor would have an average accuracy of 9.09%.

We also see that lower number of actions in an observation
sequence requires less iterations of MCTS to converge to BFS.
For example, for observation sequence lengths of 5-8 actions,
we see that we only need 500 iterations of MCTS to converge.
On the contrary, as the number of actions in the observation
sequence increases, we see that complete convergence requires
more iterations. In Figure 7a, we see that 50000 iterations of
MCTS was not enough to completely converge to BFS. Given
this trend, we can see that longer observation sequences will
require more iterations of MCTS.

Figure 7b provides the average percentage of actions re-
quired to recognize the goal of an observation sequence
(lower is better). Similar to that of prediction accuracy, MCTS
converges to the performance of BFS as the number of
iterations increases. We see that by 50000 iterations, MCTS
successfully converges to BFS. Additionally, we also see that
MCTS and BFS do not require all actions in the observation
sequence to recognition a plan (denoted by Upper Limit
in Figure 7b). However, unlike prediction accuracy, lower
iterations of MCTS do not converge at shorter observation
sequence lengths. This is most likely because this metric
depends on the structure of the complex categories in the
lexicon. Categories with more leftward arguments will delay
recognition of a goal to later in the plan while those with more
rightward arguments will allow for earlier recognition.

Figure 8a plots the average number of explanations gen-
erated for plan recognition against the maximum number of
actions in an observation sequence (graphed using logarithmic
scale). Overall, we see that MCTS successfully scales the
number of generated explanations. Furthermore, we also see
that as the number of iterations of MCTS increases, the
number of explanations generated also increases and converges
to BFS. Recall that the number of explanations generated
by MCTS is a subset of the explanations of BFS. Thus,
given an infinite number of iterations, MCTS should converge
to BFS. An interesting observation is that MCTS still has
good performance despite generating less explanations than
BFS. In Figure 7a, 500 iterations of MCTS converged to the



(a) Average Prediction Accuracy (higher is better) (b) Average Percentage of Actions Before Recognition
of Goal (lower is better)

Fig. 7. Average of Performance Metrics for MCTS and BFS

(a) Number of Explanations after Plan Recognition (b) Recognition Time (seconds)

Fig. 8. Average of Scaling Metrics for BFS and MCTS (lower is better)

performance of BFS given observation sequences with 5-8
actions. However, as seen in Figure 8a, MCTS only generated
a fraction of the explanations of BFS. Thus, we believe some
explanations are ignored by MCTS as they may not be needed
to recognize the goal. We also see a steep reduction in the
number of explanations for 6 action observation sequences.
This is due to the complex categories in the generated lexicon
for that length being more leftward than rightward, which
reduces the number of generated explanations [3]. This aligns
with Figure 7b, where both BFS and MCTS needed to see
more actions in the plan prior to recognition.

Figure 8b provides the average amount of time (in sec-
onds) for plan recognition to complete. Overall, we see that
MCTS scales significantly better than BFS after observation
sequences with 13 actions. We also observe that recognition
time is lower for lower number of MCTS iterations. Figure 8b
also shows that the recognition time for MCTS mostly does
not vary significantly from the average.

Both BFS and MCTS with 50000 iterations has a very large
standard deviation in recognition time, and BFS had a large
deviation for the number of explanations for observation se-
quences of 13 actions. We believe this is due to outliers in the
data (observation sequences which generated a large number

of explanations and therefore took longer to execute). Looking
closely at our data, we noticed that, for one of the runs,
BFS generated millions of explanations for one observation
sequence, and took approximately 448 seconds to execute.
Similarly, for MCTS with 50000 iterations, one observation
sequence took approximately 386 seconds. However, looking
at the median number of explanation and recognition time,
we see significantly lower values (359 explanations and 0.72
seconds for BFS, and 3.55 seconds for MCTS with 50000
iterations) than the mean. This confirms that there are outlier
observation sequences that required more time and number
of explanations than other sequences. These outliers are still
important. In Real-Time Strategy games, long recognition time
for even a single observation sequence could prove costly as it
could be the difference between victory and defeat in a game.

For observation sequences with a maximum of 13 actions,
BFS failed to recognize several of the testing instances because
it ran out of memory for one of the runs. To understand why
this happened, we looked the learned CCG lexicon that was
constructed for that run and the observation sequences that
failed. We noticed that one action in particular was repeated
in the sequence: the action for constructing a worker unit. This
action was repeated 6, 7, and even 11 times, which is 85% of



the observation sequence. In the CCG lexicon, this action type
contained 23 categories. Assuming all categories are viable
and can be assigned to each action in the sequence (all leftward
arguments for the categories can be discharged), the number
of possible explanations would explode the search space (for
11 repetitions of the action, we can have 1123 explanations).
Thus, even if the observation sequence length is not very high,
BFS can exhaust all memory for search if the branching factor
is high. However, MCTS did not exhaust all memory for these
observation sequences. This demonstrates the effectiveness of
MCTS in reducing the search space for plan recognition.

VI. CONCLUSION

This paper described a Monte-Carlo Tree Search (MCTS)
CCG-based plan recognition algorithm. Specifically, we em-
ployed traditional MCTS to find a set of explanations and
predict the goal of a given sequence of observed actions. We
demonstrated that traditional MCTS was successful in scaling
for large CCG lexicons while maintaining good performance
(below that of exhaustive search, but significantly better than
a random prediction baseline). We saw that MCTS was able
to significantly reduce the number of explanations generated
during plan recognition compared to BFS. For future work,
we would like to improve our MCTS algorithm by looking
into different optimizations made for MCTS in the literature.
We also would like to look into potentially augmenting MCTS
with machine learning techniques, as they has been shown to
be successful recently in other game playing domains [10].
Finally, we want to look into applying MCTS for the problem
of CCG-based planning.

REFERENCES

[1] C. F. Schmidt, N. S. Sridharan, and J. L. Goodson, “The plan recognition
problem: An intersection of psychology and artificial intelligence,”
Artificial Intelligence, vol. 11, no. 1-2, pp. 45–83, 1978.

[2] M. Vilain, “Getting Serious About Parsing Plans: A Grammatical
Analysis of Plan Recognition.” in Proceedings of the 8th AAAI
Conference on Artificial Intelligence, 1990, pp. 190–197. [Online].
Available: http://www.aaai.org/Papers/AAAI/1990/AAAI90-029.pdf

[3] C. W. Geib, “Delaying commitment in plan recognition using combi-
natory categorial grammars,” in Proceedings of the 21st International
Joint Conference on Artificial Intelligence, 2009, pp. 1702–1707.

[4] C. W. Geib and R. P. Goldman, “Recognizing plans with loops
represented in a lexicalized grammar,” in Proceedings of the 25th
AAAI Conference on Artificial Intelligence, 2011, pp. 958–963.
[Online]. Available: http://www.aaai.org/ocs/index.php/AAAI/AAAI11/
paper/viewFile/3698/3985

[5] C. W. Geib and P. Kantharaju, “Learning Combinatory Categorial
Grammars for Plan Recognition,” in Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, 2018.
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[27] S. Ontañón, “The combinatorial multi-armed bandit problem and its
application to real-time strategy games,” in Proceedings of the 9th AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, 2013, pp. 58–64.


