
Automatic Generation of Diverse Cavern Maps
with Morphing Cellular Automata

Matthew Kreitzer, Daniel Ashlock, and Rajesh Pereira

Abstract—Cellular automata can be used to rapidly generate
complex images, but controlling the character of those images
can be difficult. This study continues experimentation with
fashion-based cellular automata that generate cavern-like level
maps and provides the beginning of a mathematical theory.
Fashion-based automata are defined by a competition matrix
with different cell states competing to capture territory. This
study co-evolves pairs of competition matrices to permit the
evolution of automata rules that can be spatially morphed
to provide substantially more diverse types of maps than
earlier systems using fashion-based cellular automata. As in
earlier studies, the cellular automata rules function in local
neighborhoods, meaning that the level generation system scales
smoothly to any desired level map size. This reusability also
permits variation of the type of morph used: a variety of
spatial morphing styles are tested with the evolved rules. The
theoretical treatment includes the derivation of a normal form
for the cellular automata rules that informs the design of the
fitness function and has application to understanding the fitness
landscape of fashion based automata.

I. INTRODUCTION

This study continues earlier work using a cellular au-
tomaton to design level maps resembling a network of
caverns [4]. The properties that make this representation for
automatic content generation of level maps desirable include
a very high level of scalability, transparent reusability, and,
when morphing is enabled, diversity of type of territory
within maps. Morphing, the continuous change of the cellular
automaton rule across space, is a technique for substantially
enhancing the diversity of features within a map. The rules
for the cellular automata used in this study take the form
of square matrices with real-valued entries. These matrices
are competition matrices that give a score for each possible
cell/state pair in the cellular automata.

If M and N are such competition matrices, then we
consider the line of matrices

λ ·M + (1− λ) ·N 0 ≤ λ ≤ 1

This line, in matrix space, represents a continuously varying
collection of automata rules. If we compute λ from a spatial
feature – like the horizontal coordinate on the map – then
we can create a continuously varying rule that permits a

Matthew Kreitzer, Daniel Ashlock, and Rajesh Pereira are
with the Department of Mathematics and Statistics at the
University of Guelph, in Guelph, Ontario, Canada, N1G 2W1,
{mkreitze|dashlock|pereirar}@uoguelph.ca

The authors thank the University of Guelph and Canadian Natural Sci-
ences and Engineering Research Council of Canada (NSERC) for supporting
this work.

different appearance in the map as different locations as λ
changes. This is what is meant by a morph between two
matrices. An example of a morph is shown in Figure 2. If
we choose two matrices that yield good cavern maps, that
were evolved independently, then the morph between those
matrices usually contains solid barriers or completely empty
regions.

In this study, pairs of cellular automaton rules are co-
evolved based on the quality of a map generated by their
horizontal morph. This co-evolution is needed to allow the
rules to work together effectively.

A cellular automaton has three components:
1) A collection of cells divided into neighborhoods of

each cell,
2) A set of states that cells can take on,
3) A rule that maps the set of possible cell states of a

neighborhood to a new state for the cell with which
the neighborhood is associated.

The idea of using a cellular automata to create cavern
maps originated in [19]. The automata used here employed
a majority based rule.

The use of fashion based cellular automata, the sort
which appear in this study, originated in [3]. This study
was extended to explore additional control parameters in
[4] where the idea of performing morphs between cellular
automata rules was first tested, highlighting the need for later
studies to co-evolve rules. This study, working on pairs of
independently evolved rules, found that morphing between
distinct, evolved rules was problematic. In [5], a variety of
fitness functions for co-evolving pairs of rules that have the
property that morphing between rules behaves well were
tested.

This study takes the most successful of the fitness func-
tions located in this study, performs a parameter study to
improve the performance of the evolutionary algorithm, and
demonstrates several different morphing styles for creating
maps.

Cellular automata (CA) are a type of discrete dynamical
system that exhibits self-organizing behavior. When a cell
population is updated, according to local transition rules,
it can form complex patterns. The updating may be syn-
chronous, as it is in this study, or asynchronous. CA are
potentially valuable models for complex natural systems that
contain large numbers of similar components experiencing
local interactions[32], [23]. This paper applies them to create
cavern-like level maps for games. The automata in this
study are called fashion-based cellular automata because the

978-1-7281-1884-0/19/$31.00 c©2019 IEEE

updating rule may be thought of as following the current
fashion within each neighborhood.

CA have been applied to the study of a diverse range of
topics, such as structure formation[14], heat conduction[15],
language recognition[22], traffic dynamics[20], modelling of
biological phenomena [17], and cryptography[2], to name a
few. CA have also been used for image and sound generation.
Serquera and Miranda of the Interdisciplinary Center for
Computer Music Research, UK, have many publications on
the use of CA for sound synthesis [24], [1]. Much of their
work consists of mapping the histogram sequence of a CA
evolution onto a sound spectrogram, which produces spectral
structures that unfolds in a patterned fashion over time.
The authors claim that the mapping produces a “natural”
behavior, and can replicate acoustic instruments[25].

CA have also been applied in the arts. They have been used
to produce artistic images[13], [21], and their use has been
extended to the fields of architecture and urban design[26],
[16]. An interesting application has been the use of CA
in simulating the emergence of the complex architectural
features found in ancient Indonesian structures, such as the
Borobudur Temple [27]. Ashlock and Tsang[13] produced
evolved art using 1-dimensional CA rules. These systems
produced aesthetically pleasing images. In [11] a good deal
of information about the fitness landscape of a particular type
of cellular automata was derived.

Fig. 1. A von Neumann neighborhood of a cell showing the four neighbors
used in updating.

A. Previous Work in Level Map ACG

In addition to the FBCA studies [19], [3], [4], [5] men-
tioned above, there have been a number of efforts to use
evolutionary computation to automatically design level maps.
Procedural content generation (PCG) consists of finding
algorithmic methods of generating content for games. Search
based PCG [30] uses search methods rather than composing
algorithms that generate acceptable content in a single pass.
Both sorts of content generation can suffer materially from

scaling problems which can be addressed by problem decom-
position with an off-line and an on-line phase to the software
[8].

Automated level generation in video games can arguably
be traced back to a number of related games from the 1980s
(Rogue, Hack, and NetHack) and the task of automated level
generation has recently received substantial interest from
the research community. In [28], levels for 2D sidescroller
and top-down 2D adventure games are automatically gener-
ated using a two population feasible/infeasible evolutionary
algorithm. In [29] multiobjective optimization is applied
to the task of search-based procedural content generation
for real time strategy maps. This study gives an alternate
representation for tasks similar to those done in [6] which
introduced checkpoint based fitness functions for evolving
maze-like levels. This work was extended in [7] by having
multiple types of walls that defined multiple mazes that
co-existed in a single level map. Related work includes
generating distinct co-existing maps with designed tactical
properties [7]. The study in [8] prototyped tile assembly
to generate large maps and [9] defines a state conditioned
representation that could generate level maps of landscape
height maps.

The remainder of this study is structured as follows.
Section II supplies the background on the representation
used to evolve fashion-based cellular automata. Section III
gives theoretical properties of fashion based cellular automata
presenting a normal form and proving mathematical facts
useful for designing the fitness function. The design of
experiments is given in Section IV while section V gives and
discusses results. Section VI draws conclusions and outlines
potential next steps.

II. BACKGROUND

We begin by precisely defining fashion-based cellular
automata. The automata in this study have a cell space
consisting of 101 × 101 grids of cells. The left and right
and the top and bottom sides of the grid are considered
to be adjacent to one another, making the grid toroidal.
The neighborhoods of cells in the grid are von Neumann
neighborhoods of the sort shown in Figure 1. The number
of cell states used is n = 6, a number inherited from
a companion study [5]. A single cellular automata rule is
specified as a n × n real matrix M , indexed by cell states,
with entry Mi,j giving the score a cell with state i gets if it
has a neighbor in state j. In section IV, details of how to store
two co-evolving matrices, including the variation operators
used by evolution, are given.

When used to generate a map, the automata is updated
synchronously. As noted earlier, the matrix is used as a com-
petition matrix, giving the score a cell in one state obtained
from having a cell of another state in its neighborhood. The
updating rule computes the score of each cell, based on its
state and the states of its neighbors. Each cell then either
stays in the same state, if its score is at least as high as those
of its neighbors, or adopts the state of its highest scoring
neighbor if that score is higher than its own. This is though

Fig. 2. An example of a map generated by morphing between two CA rules with the λ parameter changing laterally. Notice how the character of the map
changes from left to right, the direction in which the morph acts.

of as “following the fashion” of the neighborhood. Fashion-
based automata leave homogeneous regions homogeneous, a
property that enriches the space of rules with automata that
generate cavern-like levels.

The use of six states reflects the fact that six states are
enough to encode quite complex automata, balanced against
the fact that increasing the number of states increases the size
of the search space enormously. Elementary combinatorics
shows that the five cell-neighborhood, in the presence of
n possible states, may be thought of as placing four balls
(representing the neighbor cells) in n-boxes (representing
possible states those neighbors may take on), together with
n possible states for the central cell of the neighborhood.
The number of possible neighborhood states and hence
rules implicitly encoded by a competition matrix is given
in Equation 1. For the balls-in-boxes counting formula, see
[31].

#rules = n×
(
n+ 3

4

)
(1)

For the six states this implies a competition matrix specifies
756 rules for the cellular automaton.

As there are many different matrix norms, it should be
noted that the norm used in this paper is the Euclidean norm
(also sometimes called the Frobenius norm or the Hilbert
Schmidt norm).

Definition 1: Let A be an n by n real matrix, then the
Euclidean norm of A (denoted as ‖A‖) is defined as follows:
‖A‖ =

√∑n
i=1

∑n
j=1(Ai,j)2.

We note that similar to the Euclidean norm on vectors,
the Euclidean norm on matrices satisfies the following
Pythagorean property: if A and C are n by n real matrices
with

∑n
i=1

∑n
j=1Ai,jCi,j = 0, then ‖A + C‖2 = ‖A‖2 +

‖C‖2.

III. THE FITNESS LANDSCAPE AND A NORMAL FORM

An important observation is that updating of the automata
is always based on comparisons of sums of four numbers,
the scores a cell with a given state obtains against the states
of its neighbors. These numbers consist of four entries from
the same row of the matrix, the row that gives the scores of
a state against all other states and itself. Since the only thing
that matters is which total is largest in these comparisons,
there is a good deal of freedom in specifying the competition
matrix that yields a CA updating rule.

Definition 2: If two matrices M and N yield exactly the
same updating behavior when used to drive an FBCA rule
then they are said to be behaviorally equivalent. We write
M ∼b N .

It is obvious that behavioral equivalence is an equivalence
relation in the formal sense. With this notion of equivalence
available we can derive lemmas that lead to a normal form for
matrices driving a given FBCA rule and help us design the
fitness function used in this study. For the remainder of the
section, assume all matrices are n× n real valued matrices.

Lemma 1: Recall that J denotes a matrix with all entries
equal to 1. Then

M ∼b (M + cJ)

for any constant c.
Proof:
Adding c to every entry of the matrix adds 4c to both sides
of every comparison and so does not change their outcome.
This demonstrates behavioral equivalence. 2

Lemma 2: If k > 0 is a constant

M ∼b (k ·M)

Proof:
The transformation of the matrix scales both sides of every
comparison by the same positive value – yielding no change
in comparisons and hence behavior, yielding a proof of
behavioral equivalence. 2

An implication of these lemmas is that every competition
matrix used to drive an FBCA rule is behaviorally equivalent
to a matrix with all its entries positive and with entries that
sum to 1. The means that a matrix M ∼b M∗, where M∗

is both in the positive orthant of matrix space and in the
hyperplane of matrices whose entries sum to 1.

We now consider a special matrix of this type:

C =
1

n2
J

which has all its entries equal. If this matrix is used to drive
a CA rule then all comparisons are of equal numbers and so
no state every changes (recall a neighbor must have a higher
score to take over a cell). We call call C the frozen matrix
and its associated updating rule the frozen rule. We now have
the tools needed to create a normal form for competition
matrices.

Theorem 1: There is a hypersphere of finite hypervolume
containing all possible FBCA behaviors.
Proof:
The first two lemmas, and the fact C has constant entries,
means that

M ∼b C + t · (M∗ − C)

for any scalar t > 0. This gives us a ray, in matrix space, of
behaviorally equivalent matrices, starting at but not including
C. The matrices on this line may be normalized by dividing
by the sum of their entries, which are all positive, to place
them in the plane of constant sum one. These normalized
matrices form a ray of behaviorally equivalent matrices
within the constant sum plane. Let us assume that M∗ has
been normalized so that its entries sum to one. Then

‖C + t · (M∗ − C)‖2 = ‖C‖2 + t2‖M∗ − C‖2

=
1

n2
+ t2‖M∗ − C‖2

by the Pythagorean property. For any fixed r > 1
n , we can

select a t such that the Euclidean norm of the matrix, C +
t · (M∗ − C) is r. Obtaining a matrix consisting entirely of
positive entries only requires that r not be too large. The
matrix C is the center of this hypersphere. Since r is finite,
this hypersphere of n by n matrices whose entries sum to
one and having Euclidean norm r has finite hypervolume.

Definition 3: For any matrix M the equivalent matrix,
within the hypersphere defined in the proof of Theorem 1,
is the normal form of M , denoted Mnorm.

Let us motivate the derivation of the normal form. It
is possible to find two behaviorally equivalent matrices at
arbitrarily large Euclidean distance from one another, treating
the entries of the matrix as Euclidean coordinates and using
the Euclidean distance. A hypersphere has a finite diameter
and so the normal forms are all at a finite distance from
one another. The normal form removes both scaling and dis-
placement, sources of behaviorally irrelevant distance, from
the matrices. The distance between normal forms, thus, gives
a more meaningful measure of behavioral similarity. The
problem of behavior similarity and behavioral equivalence,
however, has another wrinkle.

Definition 4: For a matrix M used to drive an FBCA rule,
define ∆(M) as the smallest difference between any two of
the numbers that can be compared during updating of the
cellular automata.

Lemma 3: If M and N differ in only one position by an
amount less than ∆(M)/4 then M ∼b N .
Proof:
The largest change in a value being compared during up-
dating of the automata is four times the largest change to
a matrix entry. In this case, that is less than ∆ and so, by
the definition of ∆, not enough to change the outcome of a
comparison, demonstrating behavioral equivalence. 2

The implication of this lemma tells us a good deal about
the fitness landscape. Any matrix M for which ∆(M) > 0
lies in a connected set of behaviorally equivalent matrices
within the hypersphere of normal forms. We call this set

the grain associated with the behavior. This means that
many behaviors occupy regions of the fitness landscape
with support of positive size. Note that the frozen behavior
occurs at a single point (all coordinates equal) within the
hypersphere.

The existence of grains means that, when a map is
generated by morphing between two rules, there will be
stretches of constant behavior within the map, corresponding
to the intersection of the line of morphing with a grain. Open
questions include the size of grains and their relationship to
one another within the fitness landscape.

IV. DESIGN OF EXPERIMENTS

We begin this section with an explanation of the fitness
function. This fitness function was first defined in [5], but
the explanation given here is more extensive and ties into
the theory developed in Section III.

A. The Fitness Function

The fitness function used in this study is the most suc-
cessful of eight different functions used in [5]. The basis
of the fitness function uses a map with white and non-white
cells, treating white cells as empty, that attempts to maximize
the total path length from the middle of the left face of the
grid of cells to the middle of the other three faces. A fixed
initial random state for the grid of cells, used in all fitness
evaluation, is updated 20 times using the cellular automata to
create the map that undergoes quality evaluation. A simple
dynamic programming algorithm [10] is used to compute
the shortest open path between the centers of the face of
the grid and the sum of the three distances from the center
of the left face to the center of the other faces is the base
fitness value. If one of the faces cannot be reached, the map
is awarded a base fitness of zero. The fitness function is
subsequently multiplied by three secondary rewards, which
leaves a zero penalty fitness at zero. The first modifier is the
density modifier. The user specifies a desired fraction α of
non-empty cells in the final map. The actual fraction β is
computed and then the basic fitness is multiplied by

Rd =
1

(α− β)2 + 0.4
(2)

The number 0.4 was chosen to make the maximum mul-
tiplicative reward 2.5, when α = β, in order to give it a
similar scale to the other rewards. Based on the work in [5],
this study uses α = 0.7.

The second modifier, the diversity modifier multiplies the
basic fitness by the entropy of the relative density of cell
states that appear in the map. The number of cells of each
type are computed and normalized to one to give a rate of
empirical occurrence pi of cell type i. The entropy is then

Re = −
n−1∑
i=0

pi · log2(pi) (3)

The maximum reward is log2(n) where n is then number
of states the automata possesses. The reward Re is greatest

when the distribution among state types is as even as possi-
ble. For the six cell states available in the system used for
testing, this reward has a maximum value of Log2(6) ∼= 2.58.
The third modifier used is the angular modifier. This modifier
is used to combat the fact demonstrated in Lemma 2 that
means matrices that are scalar multipliers of one another are
behaviorally equivalent. If we regard a matrix as a vector in
Rn2

, then we can reward being far from lying on the same
behavioral line resulting from scaling if we reward having a
larger angle between these vectors. Recall that if ~v1 and ~v2
are non-zero vectors and θ is the angle between then then

cos(θ) =
v1 · v2

||v1|| · ||v2||
(4)

The cosine is largest when the angles are most similar so the
angular reward is given as the reciprocal of the cosine. In
terms of the matrix entries (M1)i,j and (M2)i,j this is:

Rθ =
‖M1‖‖M2‖∑n

i=1

∑n
j=1(M1)i,j · (M2)i,j

(5)

Since this reward is the reciprocal of the cosine of an
angle, it has a potential maximum value of infinity, as the
angle approaches a right angle, but this did not occur in
practice. Among the runs in the earlier study using this fitness
function the maximum cosine-based reward observed was
2.43.

To summarize, if TPL is the total path length from the
middle of the left face to the middle of the other faces, then
the overall fitness is

fitness = Rd ×Re ×Rθ × TPL

B. The evolutionary algorithm

The goal of the evolutionary algorithm designed in this
study is to achieve a pair of n×n matrices that can generate
a spatially varying morphed cellular automata with good map
properties. We must specify how the matrices are stored for
evolution. We are using six states in the automata; state 0
encodes empty space and states 1-5 encode different types
of filled space. The two matrices evolved for the morph are
6 × 6. We store the data structure as a vector of 72 real
numbers in the range 0 ≤ Mi,j ≤ 1. The first thirty-six
members are the entries of the first matrix, read row-wise.
The second thirty-six entries designate the second matrix,
read in the same fashion.

When two pairs of matrices are selected for reproduction,
they are copied into child structures and new rules are
generated with two point crossover. After crossover, mutation
is performed. From one to a maximum number of mutations
(MNM) positions are chosen in each child and those entries
replaced with new numbers from the interval [0,1]. The
number of positions used it, itself, chosen uniformly at
random. Selection of parents and population members to
be replaced is performed with size seven single tournament
selection. This model of evolution functions by picking seven
population members. Within the group of seven, the two most

fit are chosen as parents and the two least fit are replaced
with the children.

The evolutionary algorithm is run for 10,000 instances of
tournament selection called mating events. Two parameter
setting experiments are performed. The first uses a population
size of 360 and MNM values 1, 3, 5, 7, and 9. The second
uses population sizes 40, 120, 360, 1080, and 3240 are used
with MNM set to 7. Note that one set of runs is used
in both parameter setting studies. The values 360 and 7
were used exclusively in the earlier study; this study is the
first to perform parameter setting one the morphing cellular
automata. We will see that 360 was a good choice while
MNM = 7 was not.

We say that the two matrices specified by a single member
of the evolving population of map-specifiers are co-evolved
because they undergo joint fitness evaluation and so must
adapt to one another in a fashion that permits all the inter-
mediate rules to achieve a high score according to the quality
measure. This is a critical feature of the system for producing
usefully morphable rules, as can be seen for examples made
with matrices that are not co-evolved, as in [4].

The number of mating events chosen, 10,000, was selected
to permit experiments to terminate in a reasonable amount
of time. It seemed likely, looking at upward trends in
fitness, that additional evolution time would pay additional
benefits, and so one additional experiment was performed
using 100,000 mating events and the parameter values of
population size 360 and MNM = 1 that yielded the best
results. We refer to this collection of thirty runs and the long
experiment. In order to verify that the long experiment was
a good idea we computed the time of last innovation for the
nine other experiments. This is the fraction of the 10,000
updatings that passed before the last time the best fitness in
the population increased by at least 1.0.

V. RESULTS AND DISCUSSION

Figure 3 shows the thirty best-of-run results from the
runs that used the best parameter settings and extended
evolutionary time. The automata are deterministic and all
use the same starting conditions, meaning that no two behav-
iorally equivalent matrices appear as best-of-run results. The
algorithm can clearly produce behaviorally diverse results.

The results of the two parameter studies appear in Figure
4 (mutation rate) and Figure 5 (population size). Pleasantly,
both studies give unambiguous results. The lowest mutation
rate is the best and the middle population size is superior.

The results for time of last innovation, shown in Figure
6, demonstrate that many or most of the individual runs
were still improving at updating 10,000. The repetition of
the experiment with MNM = 1 and population size 360
that was run for 100,000 updatings achieved considerably
higher fitness. While the maximum fitness in any of the nine
parameter setting runs was 3562.5, the maximum fitness in
the long experiment was 5410.42 and thirteen of the thirty
best fitness values in the long experiment exceeded 3562.5.

One of the strongest results in [4] is that FBCA may be
reused to generate additional maps with similar appearance,

Fig. 3. Renderings of the cellular automata that achieved best fitness in the 30 replicates using MNM = 1 and population size 360 from the long
experiment.

Fig. 4. Fitness distributions of best results from 30 replicates of the
evolutionary algorithm in the mutation rate study.

but different details. Figure 7 demonstrates that the morphing
cellular automata have this quality as well.

A. Alternate rendering by morphing differently

The morphing rules used to generate CA in this study
calculated λ in terms of the left-to-right horizontal position.
Suppose, instead, we create craters, ridges, or hills with
minimum elevation zero and maximum elevation one and
then condition λ on the height in a landscape. The tech-
nique for generating such numerical height maps is given
in [9]. Examples of rendering morphs with these alternate
landscapes are shown in Figure 8.

The alternate morphs shown in Figure 8 do not maintain
the connectivity required during the fitness evaluation. This
can be fixed by using a desired morph as the morph employed
during fitness evaluation or my relatively simple dynamic
programming based repair. These images to show the poten-
tial of the technique to use a variety of morphs to achieve
diverse terrain types.

Fig. 5. Fitness distributions of best results from 30 replicates of the
evolutionary algorithm in the population size study.

VI. CONCLUSIONS AND NEXT STEPS

This study has demonstrated that it is practical to co-
evolve pairs of matrices so that a morph, in the form of
a line in matrix space, can be made to generate a level
map that exhibits a substantially greater diversity of local
appearances created using a single fashion-based automata.
The reusability of CA rules for generating maps also survived
from the single matrix version of the experiments.

This study improves our understanding of the behavior of
the FBCA rules enough that it is worth making a broader ex-
ploration of the potentials of the system including additional
fitness functions and increasing the number of states in the
cellular automata.

An effort was made in this study to keep the relative impor-
tance of the multiplicative fitness modifiers roughly similar.
Studying different schemes, such as raising the modifiers
to distinct powers, would permit them to be reweighed, a
potentially profitable area for future study.

Fig. 6. Shown is the distribution of the time of last innovation in each of
the nine experiments performed in the parameter setting study.

A. Changing the representation

The representation used in this study for pairs of real
matrices is direct, encoding the matrices as lists of numbers.
A novel generative representation for evolving matrices was
introduced in [12] and it was used to generate matrices that
served as rules for fashion based cellular automata in [18].
The automata produced were qualitatively quite different
from those produced by direct evolution and so it is likely the
optima in matrix space located with this novel representation
are in a different part of the space.

It is clearly possible to modify the generative matrix rep-
resentation to evolve pairs of matrices and perform morphing
experiments, paralleling those in this study. It is also practical
to extract the final numerical matrices from the generative
representation for examination and possible use as seeds in
an evolutionary algorithm where evolved matrices are used
in initial populations. An interesting question is if the distinct
qualitative character of the generatively encoded matrices
would be preserved if they were subject to additional evolu-
tion.

B. Evolving partner matrices

This study co-evolves pairs of matrices. Another approach
that could be investigated is to fix a matrix that produces and
interesting type of cavern map as half of a morphing pair
and evolve the other half to find good partners. If multiple
partners were evolved, then a morph could proceed in a
fashion employing distinct morphs in distinct parts of the
space.

It would also be interesting to see if some matrices
admitted a greater diversity of partners than others. If so, such
high-partnering matrices would be useful design elements for
additional work.

C. Exploiting theory

The theory developed in this section created a normaliza-
tion from an infinite gene space to one that was bounded but

Fig. 7. Eight renderings of a single co-evolved morphing cellular automata
using different initial conditions. The matrix used to make these pictures
was taken from the long experiment.

still contains all possible CA behaviors. The normal form
also permits phenotypically meaningful comparisons at the
genotype level. This creates the potential for clustering and
phylogenetic analysis of the CA-rules produced by evolution,
which is potentially valuable.

The major application of the theory in this study was to
explain the utility of the angular modifier to fitness. The
theory has untapped potential for the design of additional
fitness functions and strongly suggests that multi-criteria
optimization might be valuable as well.

The fact there are finitely many neighborhood configura-
tions possible means that the number of behavior equivalence
classes of matrices, and so of CA behaviors is finite. The or-
ganization of these behaviors into grains implies the presence
of an interesting structure to the fitness landscape that could
be exploited in the future to improve search. The notion of
behavioral equivalence and the normal form for the matrices

Fig. 8. Examples of morphs using λ-landscapes. In these morphs, λ is derived from, respectively, the height of a ridge, a hill, and a crater.

make novelty search a natural target for future work.

REFERENCES

[1] A. Adamatzky, J. Serquera, and E.R. Miranda. Automata-2008: Theory
and Applications of Cellular Automata: “Cellular automata sound
synthesis: From histograms to spectrograms”. Luniver Press, 2008.

[2] P. Anghelescu. Encryption algorithm using programmable cellular
automata. IEEE 2011 World Congress on Internet Security (WorldCIS),
pages 233 – 239, 2011.

[3] D. Ashlock. Evolvable fashion-based cellular automata for generating
cavern systems. In Proceedings of the 2015 IEEE Conference on
Computatational Intelligence in Games, pages 306–313, 2015.

[4] D. Ashlock and L. Bickley. Rescalable, replayable maps generated
with evolved cellular automata. In Acta Physica Polonica (B),
Proceedings Supplement, volume 9(1), pages 13–22, 2016.

[5] D. Ashlock and M. Kreitzer. Evolving diverse cellular automata based
level maps. to appear in the proceedings of the SEDA wargames
conference, 2019.

[6] D. Ashlock, C. Lee, and C. McGuinness. Search based procedural
generation of maze like levels. IEEE Transactions on Computational
Intelligence and AI in Games, 3(3):260–273, 2011.

[7] D. Ashlock, C. Lee, and C. McGuinness. Simultaneous dual level
creation for games. Computational Intelligence Magazine, 2(6):26–
37, 2011.

[8] D. Ashlock and C. McGuinness. Decomposing the level generation
problem with tiles. In Proceedings of CEC 2011, pages 849–856,
2011.

[9] D. Ashlock and C. McGuinness. Landscape automata for search based
procedural content generation. In Proceedings of IEEE CIG 2013,
pages 9–16, 2013.

[10] D. Ashlock and C. McGuinness. Graph-based search for game design.
Game and Puzzle Design, 2(2):68–75, 2016.

[11] D. Ashlock and S. McNicholas. Fitness landscapes of evolved cellular
automata. IEEE Transaction on Evolutionary Computation, 17(2):198–
212, 2013.

[12] D. Ashlock and G. A. Ruz. A novel representation for boolean
networks designed to enhance heritability and scalability. In Proceed-
ings of the 2017 IEEE Conference on Computational Intelligence in
Bioiformatics and Computational Biology, pages 1–8, Piscataway NJ,
2017. IEEE Press.

[13] D. Ashlock and J. Tsang. Evolved art via control of cellular automata.
In IEEE Congress on Evolutionary Computation, 2009, pages 3338 –
3344, May 2009.

[14] A.A. Burbelko, E. Fras, W. Kapturkiewicz, and D. Gurgul. Modelling
of dendritic growth during unidirectional solidification by the method
of cellular automata. Materials Science Forum, 649:217–222, 2010.

[15] A.A. Burbelko and D. Gurgul. Simulation of austenite and graphite
growth in ductile iron by means of cellular automata. Archives of
Metallurgy and Materials, 55(1):53–60, 2010.

[16] M. Devetakovic, L. Petrusevski, M. Dabic, and B. Mitrovic. Les
folies cellulaires an exploration in architectural design using cellular
automata. 12th Generative Art Conference, pages 181–192, 2009.

[17] G. B. Ermentrout and L. Edelstein-Keshet. Cellular automata ap-
proaches to biological modeling. Journal of Theoretical Biology,
160(1):97 – 133, 1993.

[18] C. Gregor, D. Ashlock, G. A. Ruz, D. McKinnon, and D. Kribs. A
novel linear representation for evolving matrices. Sumitted to the IEEE
Transactions on Evolutionary Computation, 2019.

[19] Lawrence Johnson, Georgios N. Yannakakis, and Julian Togelius.
Cellular automata for real-time generation of infinite cave levels. In
Proceedings of the 2010 Workshop on Procedural Content Generation
in Games, PCGames ’10, pages 10:1–10:4, New York, NY, USA, 2010.
ACM.

[20] M. E. Lrraga and L. Alvarez-Icaza. Cellular automaton model for
traffic flow based on safe driving policies and human reactions.
Physica A, 389(23):5425–5438, 2010.

[21] G. Monro. Emergence and generative art. Leonardo - MIT Press,
42(5):476–477, 2009.

[22] K. Nakamura and K. Imada. Incremental learning of cellular automata
for parallel recognition of formal languages. In Proceedings of the 13th
international conference on Discovery science, DS’10, pages 117–131,
Berlin, Heidelberg, 2010. Springer-Verlag.

[23] E. Sapin, O. Bailleux, and J. Chabrier. Research of complexity in
cellular automata through evolutionary algorithms. Complex Systems,
11, 1997.

[24] J. Serquera and E. R. Miranda. Cellular automata sound synthesis
with an extended version of the multitype voter model. In Audio
Engineering Society Convention 128, 5 2010.

[25] J. Serquera and E.R. Miranda. Applications of Evolutionary Compu-
tation: “Evolutionary Sound Synthesis: Rendering Spectrograms from
Cellular Automata Histograms”. Springer Berlin / Heidelberg, 2010.

[26] V. Singh and N. Gu. Towards an integrated generative design
framework. Design Studies, in press, 2011.

[27] H. Situngkir. Exploring ancient architectural designs with cellular
automata. BFI Working Paper No. WP-9-2010, 2010.

[28] N. Sorenson and P. Pasquier. Towards a generic framework for
automated video game level creation. In Proceedings of the European
Conference on Applications of Evolutionary Computation (EvoAppli-
cations), volume 6024, pages 130–139. Springer LNCS, 2010.

[29] Julian Togelius, Mike Preuss, and Georgios N. Yannakakis. Towards
multiobjective procedural map generation. In PCGames ’10: Pro-
ceedings of the 2010 Workshop on Procedural Content Generation in
Games, pages 1–8, New York, NY, USA, 2010. ACM.

[30] Julian Togelius, Georgios Yannakakis, Kenneth Stanley, and Cameron
Browne. Search-based procedural content generation. In Applications
of Evolutionary Computation, volume 6024 of Lecture Notes in
Computer Science, pages 141–150. Springer Berlin / Heidelberg, 2010.

[31] J. H. van Lint and R. M. Wilson. A Course in Combinatorics, second
edition. Cambridge University Press, New York, NY, 2001.

[32] S. Wolfram. Universality and complexity in cellular automata. Physica
D: Nonlinear Phenomena, 10(1-2):1–35, 1984.

