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Abstract—In the free online game industry, churn prediction
is an important research topic. Reducing churn rate of a game
significantly helps with the success of the game. Churn prediction
helps a game operator identify possible churning players and
keep them engaged in the game via appropriate operational
strategies, marketing strategies, and/or incentives. Most churn
prediction models are based on game-specific features, which
limits their applicability to other games that do not share those
features. In this paper, we consider developing universal features
for churn predictions for long-term players. In particular, we
mine player time spending regularity from data sets of two
free online games. We leverage information from players’ in-
game time spending regularity in the form of universal features
for churn prediction. Experiments show that our developed
features are better at predicting churners, compared to the
baseline features. The performance of our developed features
is satisfactory even without game-specific features.

Index Terms—free-to-play games, churn prediction, data min-
ing, supervised learning, feature engineering

I. INTRODUCTION

Free online games allow players to access games for free.
As in other freemium products and services, revenue of a
free online game company depends on in-game purchases,
and a larger player base indicates greater potential revenue.
Retaining current players is usually much easier and less costly
than recruiting new players. Therefore, these game companies
strive to identify potential churners in order to retain them via
proper operational strategies and incentive mechanisms.

Recent efforts on churn prediction in game industry have
employed various methods and models such as binary predic-
tions, survival ensembles and Cox model, and have utilized
different features including playtime, login frequency, player
in-game state and player in-game activity such as purchases;
see, e.g., [1]–[9]. In [10], the churn prediction model is built
based on user-app relationships in a game launcher platform.

However, almost all of the aforementioned work leverages
game-specific features that are different for different games
or may exist in one game but not in others. This limits
their applicability. There is a lack of research in identifying
universal features to identify potential churners that may work
for most of the online games. In this paper, we consider
the players’ in-game time spending to develop such universal
features for churn prediction. The players’ in-game time
spending is one of the most fundamental records in any game
database, irrespective of any game-specific characteristics. It is
also more reliable than other records such as the players’ login
data that sometimes depends on network conditions instead of
the player behavior.

Specifically, we consider long-term players, who stay in the
game for a sufficiently long period of time, and calculate the
empirical distributions and related entropies of these players’
in-game time spending. After observing the differences of
related entropies of these players’ in-game time spending
between churners and non-churners, we develop universal
features for churner prediction based on these distributions
and entropies.

To the best of our knowledge, this paper is the first to take
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advantage of data of long-term players’ in-game time spend-
ing distribution, mine corresponding in-game time spending
regularity for each player, and develop features from player
in-game time spending regularity. The main contributions of
our work are listed below.

• We model the long-term player in-game time spending
regularity based on the data of players’ in-game time
spending distribution.

• We inspect churners’ and non-churners’ evolvement of
in-game time spending regularity across two free online
games. Then we the propose features based on player
time spending regularity of long-term players.

• We conduct experiments to evaluate our developed
features across the two free online games’ data sets and
show that these features could help achieve a better
prediction performance than the baseline features.

The rest of the paper is organized as follows. Section II
describes the game data sets we use. Section III explains how
we split up the the in-game time of a player into periods and
how different player time spending distributions can be defined
to capture the player time spending regularity of a player.
Section IV illustrates how churners and non-churners evolve
differently over time. Section V presents the process of feature
engineering from player in-game time spending regularity and
Section VI evaluates the performance of our proposed features.
Section VII concludes the paper.

II. FREE ONLINE GAME DATA SETS

This paper utilizes non-game-specific time spending data
sets of two free online games Thirty-six Stratagems [11] and
Thirty-six Stratagems Mobile [12].

A. Background of Thirty-six Stratagems and Thirty-six

Stratagems Mobile

Thirty-six Stratagems and Thirty-six Stratagems Mobile are
two free online games published by Yoozoo Games. These
two games share similar in-game topics. Thirty-six Stratagems

runs on PC platform, while Thirty-six Stratagems Mobile runs
on mobile platforms. They are operated separately by different
game operators and have many differences in their respective
gaming design, mechanisms, and events. In both Thirty-six

Stratagems and Thirty-six Stratagems Mobile, millions of
registered players manage their own resources, engage in land
wars, and play as ancient lords. Each player develops his/her
city, trains troops, and interacts with others in exchange for
resources and honors [13]. The reasonable number of active
players and the diverse in-game mechanisms make the data
from these two games highly suitable to extract and evaluate
our proposed features. Fig. 1 shows sample screenshots of the
two games.

B. Data Selection

Since a short playing time implies little information, we
consider those long-term players who have played the game
for at least 15 days.

(a) Thirty-six Stratagems

(b) Thirty-six Stratagems Mobile

Fig. 1. Screenshots of Thirty-six Stratagems and Thirty-six Stratagems Mobile.

To define churners and non-churners in the free online game,
notice that the churners are unlikely to withdraw their accounts
even if they stop playing the game for a long time. We thus
define a churner as a player who does not access the game
consecutively for a certain number of days. Motivated by
[9], in both Thirty-six Stratagems and Thirty-six Stratagems

Mobile, we define a churner as a player who stops playing for
more than 3 days, because we find that in our data sets, over
95% of such players do not return to the game.

For our analysis, we randomly select a set of long-term
players with the same numbers of churners and non-churners
for both games. Among the players in the data set of Thirty-six

Stratagems that were registered from April 23, 2018 to July
16, 2018, 7194 long-term players in total (3597 churners and
3597 non-churners) are randomly selected with corresponding
10865221 in-game time spending records. Among the players
in the data set of Thirty-six Stratagems Mobile that were
registered from November 1, 2018 to December 14, 2018,
3062 long-term players in total (1531 churners and 1531 non-
churners) are randomly selected with corresponding 3225601
in-game time spending records. Those selected players all
played in the same version of the corresponding game and
had a consistent game experience.

III. PLAYER TIME SPENDING DISTRIBUTION

The player time spending distribution describes how a
player allocates his/her time spent in a given game. In this
section, we consider the time spending distributions at dif-
ferent aggregation levels during the latest playing periods of
a player. As will be seen later, these distributions will be the



basis for the proposed feature engineering and churn prediction
method.

A. Latest Playing Times and Periods

We consider the latest n days of playing times of a user. Let
tu,d,r be the playing time spent by user u, on day d, within
hour r, where d = 1, 2, ..., n, r = 1, 2, ..., 24. For example,
for n = 15, if user 2 kept playing the game for 15 days
continuously and his/her latest playing date is December 15th,
then t2,15,1 = 0.1 means user 2 spent 0.1 hour on December
15th between 0AM and 1AM. Similarly, t2,1,2 = 0.4 means
user 2 spent 0.4 hour on December 1st between 1AM and
2AM. A different user may have a different latest playing date.
For example, if user 3’s latest playing date is November 20th,
then t3,15,4 = 0.7 means user 3 spent 0.7 hour on November
20th between 3AM and 4AM. Formally, d indexes the n+1�
d-th day to the latest playing date.

We partition n days into m periods of equal days, assuming
n is divisible by m. For example, if n = 15, m = 5, then each
period has 3 days and the first period includes days in the set
D1 = {1, 2, 3} and the second period includes days in the set
D2 = {4, 5, 6}. Formally, the k-th period includes days in

Dk =
n
(k � 1)

n

m
+ i : i = 1, 2, ...,

n

m

o
, k = 1, 2, ...,m.

Based on the latest playing times, we will calculate empir-
ical probability distributions related to the in-game time spent
by a player.

B. Daily Time Spending Distribution

We first consider the total in-game time spent on each
day and how each player distributes his in-game time over
different days of a period. To this end, we define the individual
(empirical) probability of the in-game time spending for player
u on day d within period k as

pind(d|u, k) =
P24

r=1 tu,d,rP
w2Dk

P24
r=1 tu,w,r

.

For instance, consider the latest n = 15 days of playing
the game for a certain player, with m = 5 periods of 3
days. Assume that during the first period player u spends 5
hour, 6 hours, and 8 hours on the 1st, 2nd, and 3rd days,
respectively. Then within the first period, the probabilities
of the daily in-game time spending of this player over the
3 days are pind(1|u, 1) = 5

5+6+8 , pind(2|u, 1) = 6
5+6+8 ,

pind(3|u, 1) = 8
5+6+8 .

In addition, in order to capture the daily time spending
distribution of the entire game community of N users, we
introduce a “global” probability of the total daily time spend-
ing of all the players on the d-th day within the k-th period
as

pglobal(d|k) =

PN
u=1

P24
r=1 tu,d,rPN

u=1

P
w2Dk

P24
r=1 tu,w,r

.

C. Hourly Time Spending Distribution

We next consider the in-game time spent in each hour and
how it is distributed over different days of a period. We define
the empirical probability of the in-game time spending for
player u in hour r on day d within period k as

Pind(d|u, k, r) =
tu,d,rP

w2Dk
tu,w,r

.

For instance, consider the same example as in the last sub-
section, and assume that during the first period player u spent
0.1 hour, 0.2 hour, and 0.3 hour in the hour 8 : 00 � 9 : 00
on the 1st, 2nd, and 3rd days, respectively. Then within the
first period, the probabilities of the in-game time spending in
the hour 8 : 00 � 9 : 00 of this player over the first period
are Pind(1|u, 1, 9) = 0.1

0.1+0.2+0.3 , Pind(2|u, 1, 9) = 0.2
0.1+0.2+0.3 ,

and Pind(3|u, 1, 9) = 0.3
0.1+0.2+0.3 .

Similarly, in order to capture the hourly time spending
distribution of the entire game community, we introduce a
global probability of the time spending of all the players in
hour r on the d-th day within the k-th period as

pglobal(d|k, r) =

PN
u=1 tu,d,rPN

u=1

P
w2Dk

tu,w,r

.

The afore-introduced player time spending distributions will
be the basis to extract new features for the churn prediction.

IV. PLAYER TIME SPENDING REGULARITY: CHURNERS
VERSUS NON-CHURNERS

Since we aim to predict possible churners in this paper,
for each game, the data set is divided into a training data set
and a test data set via a 50% : 50% split. In this section,
we examine player time spending patterns of churners and
non-churners from the training data set at different timescales
for each game, with the aim to identify possible differentiator
between churners and non-churners.

A. Entropy and In-game Time Speeding Pattern

Based on the player time spending distributions introduced
in Section III and motivated by [14], we use the notion of
entropy from information theory as the metric to characterize
variance and change in the in-game time spent by a player [15].
Given a probability distribution p(·), its entropy is defined as

H(p) =
X

x

p(x) log
1

p(x)
.

A higher entropy means a more even distribution and more
regular time spending pattern, and a smaller entropy implies a
less even distribution and more irregular/casual time spending
pattern.

For each game and the data set described in Section II, we
consider the latest n = 15 days playing time and divide it into
5 m = 5 periods of 3 days. We calculate the corresponding
time spending distributions and entropies for each player. The
mean entropies and 95% confidence intervals of churners and



Fig. 2. The mean entropies of the distributions of hourly time spending of Thirty-six Stratagems players in different periods. The orange dashed line shows
the non-churners, while the blue solid line shows the churners.

Fig. 3. The mean entropies of the distributions of hourly time spending of Thirty-six Stratagems Mobile players in different periods. The orange dashed line
shows the non-churners, while the blue solid line shows the churners.

(a) Thirty-six Stratagems (b) Thirty-six Stratagems Mobile

Fig. 4. The mean entropies of the distributions of daily time spending of
players in different periods. The orange dashed line shows the non-churners,
while the blue solid line shows the churners.

non-churners in different periods are shown in Fig. 4, Fig.
2, and Fig. 3. Fig. 4 illustrates the entropy distributions of
churners and non-churners in the two games on a granularity
of each day, while Fig. 2 and Fig. 3 illustrate the entropy
distributions on a granularity of each hour for the two games

respectively.
We see that non-churners have significantly a higher mean

value of entropy than churners, in both daily and hourly time
spending distributions and in both games. This implies that
non-churners have much more regular in-game time spending
pattern than churners. Moreover, the entropies of non-churners
exhibit a small decrease as the time goes on, while that of
churners exhibit a significant decrease. This implies that non-
churners have a more regular in-game time spending pattern
than churners across different timescales, while churners spend
their in-game time more and more casually as the time goes
on.

A further look at the hourly entropies in Fig. 2 and Fig. 3
shows that the above mentioned difference between churners
and non-churners is more significant in the hours from 8 : 00
to 24 : 00 and less significant from 0 : 00 to 8 : 00. This
is consistent with the fact that 0 : 00 � 8 : 00 is the most
common sleep time, and it is hard for the majority of players
(churners or non-churners) to maintain a regular in-game time



Fig. 5. The mean cross-entropies of the distributions of hourly time spending of Thirty-six Stratagems players in different periods. The orange dashed line
shows the non-churners, while the blue solid line shows the churners.

Fig. 6. The mean cross-entropies of the distributions of hourly time spending of Thirty-six Stratagems Mobile players in different periods. The orange dashed
line shows the non-churners, while the blue solid line shows the churners.

(a) Thirty-six Stratagems (b) Thirty-six Stratagems Mobile

Fig. 7. The mean cross-entropies of the distributions of daily time spending of
players in different periods. The orange dashed line shows the non-churners,
while the blue solid line shows the churners.

spending pattern during that period of time.

B. Cross-entropy and Correlation with Aggregate Pattern

We now examine how each player compares to the entire
game community that he/she is playing with over the same
corresponding playing period using the notion of cross-entropy

from information theory. Given an individual player’s time
distribution pind and the global time distribution pglobal, the
cross entropy between these two distributions is defined as:

H(pind, pglobal) =
X

x

pind(x) log
1

pglobal(x)
.

A smaller cross-entropy means that the time spending pattern
of a player is more similar to that of the game community as
a whole.

For each game, we calculate the corresponding global time
spending distributions and cross-entropies. The mean cross-
entropies and 95% confidence intervals are shown in Fig.
7, Fig. 5, and Fig. 6. We see from Fig. 7 that there is no
significant difference in the cross-entropy of the daily in-game
time distribution between churners and non-churners.

On the other hand, Fig. 5 and Fig. 6 show that non-
churners have a significantly higher mean value of cross-
entropy in the hourly in-game time distribution than churners.
Further, the difference between churner and non-churner is
more significant in the hours from 8 : 00 to 24 : 00 and less



significant from 0 : 00 to 8 : 00. This characteristics of the
hourly cross-entropy is similar to that of the hourly entropy
presented in the last subsection.

C. Player Time Spending Regularity for Churn Prediction

To summarize, churners and non-churners exhibit different
in-game time spending regularities or patterns as captured by
the entropies in the time spending distributions:

• Churners have lower entropies and larger time spending
irregularity, as well as larger decrease in entropy than
non-churners as the time moves on.

• Churners have increasingly lower cross-entropies in the
hourly time spending distribution with the game commu-
nity as the time moves on.

In the next two sections, we will exploit these differences to
engineer entropy-based features for churn prediction.

V. FEATURE ENGINEERING

The observation in Section IV shows that churners and non-
churners exhibit different in-game time spending regularity
that can be captured by the corresponding entropies. In this
section, we propose several features based on entropies that
will be used for churn prediction in the next section.

A. Static Feature and Rate Feature

For a given time spending distribution for player u in k-th
period (k  m), we define a function fdistribution(u, k) which
returns the corresponding entropy or cross-entropy. We call
the calculated value of fdistribution(u, k) a static feature. Based
on the static feature, we define a rate feature:

gdistribution(u, k) =

fdistribution(u, k)� fdistribution(u, k + 1)

fdistribution(u, k)

to capture the change in entropy as the time moves on where
k < m. Recall from the last section that churners exhibit
smaller entropies but with a greater entropy decrease as the
time goes. The rate feature amplifies the differences between
churners and non-churners.

B. Feature Selection

As seen in Section IV-A and Section IV-B, churners and
non-churners exhibit differences in entropy of the daily time
spending distribution and of the hourly time spending distri-
bution, as well as in cross-entropy of the hourly time spending
distribution. We therefore select four types of features as
follows:

• The combination of the static feature and rate feature of
entropy of the daily time spending distributions. We call
this type of features as the 1st type of developed features.

• The combination of the static feature and rate feature of
entropy of the hourly time spending distributions. We call
this type of features as the 2nd type of developed features.

• The combination of the static feature and rate feature of
cross-entropy of the hourly time spending distributions.

We call this type of features as as the 3rd type of
developed features.

• The combination of 1st, 2nd, and 3rd types of features.
We call this type of features as the combined type of
developed features.

VI. CHURNER PREDICTION

In this section, we evaluate the efficacy of churn prediction
using the entropy features with several typical classifiers.

A. Evaluation Strategy

1) Baseline Features: To evaluate the effectiveness of our
proposed features, we use the following baseline features for
comparison:

• The raw data of the in-game time distribution of players.
• The daily total time spent, which we call the 1st type of

baseline features.
• The combined feature of the total time spent, the last

day of login, and the number of time slots played. This
baseline feature is designed based on RFM model [16].
We call this type of feature as the 2nd type of baseline
features.

2) AUC Evaluation: Given the binary nature of the pre-
diction/classification, we use the area under the Receiver-
Operating-Characteristics (ROC) [17] curve (AUC) [18] to
evaluate the overall performance of a classifier. Note that, AUC
has been used as a metric to evaluate the performance of a
certain churn prediction model in many previous work, such
as [1], [4], [6], [19].

B. Evaluation Results

We use multiple classifiers (Logistic Regression, SVM,
Random Forests) and the aforementioned features for churn
prediction. For each game, the data set is divided into a
training data set and a test data set via a 50% : 50% split. We
train the classifiers using the training data set and evaluate
their performance using the test data set. Since we are also
interested in evaluating how early we could detect the possible
churners via our model, we evaluate the performance of the
classifiers that are trained with the data of the first q latest
playing periods on the test data set (1  q  5). The results
are shown in Fig. 8 and Table. I.

We see that, as expected, larger AUC can be achieved
with training data of longer period. However, the “marginal
gain” in AUC is moderate with the data of the first q periods
when q  4, while there is a significant jump in AUC with
the data of 5th period. This implies that the most recent
data is critical for performance of churn prediction and the
performance of early churn detection is not good. In particular,
the proposed entropy features have the best performance with
the highest AUC (0.731350) for Thirty-six Stratagems and
AUC (0.789158) for Thirty-six Stratagems Mobile, as opposed
to the baseline features with the highest AUC (0.642020)
for Thirty-six Stratagems and AUC (0.717088) for Thirty-six

Stratagems Mobile.



(a) Thirty-six Stratagems

(b) Thirty-six Stratagems Mobile

Fig. 8. AUC result for the different proposed features with training data of the first q periods of the latest playing periods for players in test data set
(1  q  5).

TABLE I
AUC FOR DIFFERENT PROPOSED FEATURES (CLASSIFIERS TRAINED WITH THE DATA OF ENTIRE 5 PERIODS)

Thirty-six Stratagems Thirty-six Stratagems Mobile

Logistic
Regression SVM Random

Forests
Logistic

Regression SVM Random
Forests

Developed
Features

1st Type 0.710750 0.710065 0.706014 0.789158 0.788974 0.761047
2nd Type 0.688832 0.686657 0.681387 0.737263 0.739304 0.683868
3rd Type 0.660539 0.660212 0.723693 0.754539 0.749525 0.743388

Combined Type 0.721714 0.712261 0.731350 0.759767 0.753405 0.750510

Baseline
Features

Raw Data 0.616890 0.615981 0.638047 0.671846 0.677245 0.669476
1st Type 0.634996 0.634947 0.642020 0.714608 0.717088 0.685689
2nd Type 0.585044 0.584443 0.569255 0.585449 0.584704 0.588557

The evaluation shows that the proposed entropy features
outperform the baseline features in churn prediction, and
indeed capture the differences in the in-game time between
churners and non-churners. In other words, although players’
in-game time spending serves as an important feature in
previous work, our proposed entropy features could exploit
the information extracted from players’ in-game time spending
more effectively.

VII. CONCLUSIONS

In this paper, we address the problem of predicting churners
in free online games using universal features that are agnostic
to the specific characteristics of the games. The goal is to
develop models that can predict churners in a variety of games,
each with different characteristics. We consider long-term
players and understand their in-game time spending regularity
among churners and non-churners. We observe that there is

a significant difference between churners and non-churners in
terms of entropies exhibited in in-game time spending regular-
ity. Based on this observation, we propose prediction models
using new features extracted from mining players’ in-game
time spending regularity. After experiments are conducted,
the corresponding result shows that our developed features
are better at predicting churners, compared to the baseline
features. Even without other game-specific features (e.g., login
records, in-game events frequency, and payment information),
we can still leverage the information from our examination of
player in-game time spending regularity in the form of features
and achieve satisfactory prediction performance. Thus, game
companies can benefit from our algorithms without worrying
about the specific characteristics of their games. Our findings
can also help game developers design better in-game mecha-
nisms to reduce churn rate.
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