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Abstract—First-Person Shooter games are a popular genre
that often includes a team deathmatch mode of play: teams of
agents score by killing members of the other team. When played
without other humans, this mode features both opponent bots
and companion bots. This paper uses a human subject study
with 30 participants to analyze player preference for cooperative
teammates vs. skilled, but less cooperative, teammates in the
game Unreal Tournament 2004. Specifically, participants play
with both a skilled bot based on neuroevolution and a less skilled
bot hand-coded to be more cooperative. Survey results indicate
that users perceived significant differences between the bots in
several categories, e.g. following behavior and skill at scoring, but
did not have a significant preference for one bot over another.
However, participants did significantly prefer whichever bot they
personally felt was more “helpful” and also preferred whichever
bot they happened to see more of. These data indicate how user
perception can strongly depend on coincidental interactions, such
as being seen more. They also identify some qualities that humans
desire in teammates, and indicate that simply scoring more will
not necessarily result in a higher user preference.

I. INTRODUCTION

First-Person Shooter (FPS) games are a popular genre often
played online by humans in a multiplayer setting, but also
played against and even alongside bots that fill in roles other-
wise taken by human players. Much effort has been dedicated
to creating bots that can convincingly replace humans in many
games [1], particularly in the FPS Unreal Tournament 2004
(UT2004; Figure 1; Section III) [2], [3], [4], [5], [6], [7]. This
paper focuses on the problem of assessing what humans want
out of a teammate bot (in contrast to an opponent), in hopes
of working toward better designs for such cooperative agents.

UT2004 is used to assess human preference for two different
companion bots in team deathmatch, where the team with the
most kills at the end of the game wins. One might assume
that humans prefer whichever teammate scores better, but that
assumption is challenged in this paper. One bot was hand
coded to directly follow and generally focus on the human
teammate when possible, while the other bot’s behavior was
evolved using a variant of NeuroEvolution of Augmenting
Topologies (NEAT [8]) called Modular Multiobjective NEAT
(MM-NEAT [9]), and was more proficient at scoring points,
but had no obligation to follow or interact with the player.
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Fig. 1. Human Subject Playing Unreal Tournament 2004. User
killing native bot with the help of bot Ethan (Section III-B).

Thirty participants played rounds of team deathmatch with
each bot, chose which bot they preferred, and provided addi-
tional feedback via surveys. Bots were rated in terms of how
well they followed, how helpful they were, how often they
were seen, how much they scored, and how well they avoided
death. The hand-coded bot was better at following which may
have led to it being seen more often. The evolved bot scored
better and avoided death better. However, the evolved bot was
also rated as more helpful, which begs the question of how
users interpreted this label (Section V).

In general participants preferred the bot they believed they
saw more often, and the bot they perceived as being more
helpful, regardless of which bot this was. Additionally, play-
ers’ open ended feedback showed a clear trend in the reasons
behind their preferences. Players who preferred the hand-
coded bot tended to prioritize the feeling of teamwork and
the game experience more than points. In contrast, players
who preferred the evolved bot more often cited its ability to
score points and avoid death as the reasons for their choice.

These findings show that player preference cannot be pre-
dicted based only on the outcome of a game. Players favored
bots based on what they expected to get out of the video game
experience more so than simply on the outcome. Players did
not universally favor the bot they scored higher with, and they
did not significantly favor either bot over the other. However,
they did significantly favor interaction (seeing the bot more)
and helpfulness, which gives insight into how companion bots
should be designed in the future.

The paper proceeds by covering related work in Section II.
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UT2004 and the bots made for team deathmatch are described
in Section III. The human subject study and its results are
described in Section IV, followed by discussion and future
work (Section V), before concluding (Section VI).

II. RELATED WORK

Companion bots are an important feature in many commer-
cial games, with some prominent examples being the Mass
Effect and Fallout series, Bioshock Infinite, and Metal Gear
Solid V. Therefore, researchers have also put effort into the
development of companion bots with desirable features.

Motivated Reinforcement Learning has been used imbue
bots with a sense of curiosity in open-ended worlds [10].
The concept of Coupled Empowerment Maximisation has been
applied to a minimal 2D dungeon crawler scenario to create
companion bots [11]. Work in a simple 2D shooting game with
some predator/prey elements has focused on online adaptation
of teammate behavior in the face of adaptive opponents [12].
Several other examples of teammate AI are discussed in a
survey by McGee and Abraham [13].

A related area of research is work focused on developing
human-like behavior for bots [1], [14]. Many humans prefer
human teammates because of limitations of bots, so research
focused on overcoming these limitations and making bots
appear more human could also lead to better companion bots.

The game Unreal Tournament 2004 (Section III) is signifi-
cant for the study of human-like bot behavior because it was
used from 2008 to 2012 in the BotPrize competition [2], [3].
BotPrize was a Turing Test [15] for bots, requiring victors to
be rated as human over 50% of the time. In 2008 and 2009,
bots played several three-way deathmatches against different
human judges and confederates [2], and judges classified each
opponent as human or bot after each match. From 2010 to
2012, bots were instead tested in matches against all other bot
entrants and an equal number of human judges [3]. In this
variant, human judges tagged combatants as Human or Bot
using a special judging gun. At the end of the match, bots
received humanness ratings equal to the percentage of times
they were judged as human out of all their judgments.

Entrants made gradual progress toward breaking the 50%
humanness barrier from year to year until two bots were
victorious in 2012: MirrorBot [4] and UTˆ2 [7]. MirrorBot
mimics the behavior of individuals it interacts with. UTˆ2
made use of both human trace data [6] and an evolved neural
network combat controller [5]. The evolution approach used
by UTˆ2 is similar to the approach applied by one of the bots
in this paper (Section III-B). Both bots used in this paper will
be discussed after some additional background on UT2004.

III. COMPANION BOTS IN UT2004

Unreal Tournament 2004 (UT2004) is an FPS released by
Epic Games. One game type it supports is deathmatch: a
free-for-all in which players respawn after dying, and points
are earned by killing other players. Team deathmatch is an
extension of regular deathmatch, where players kill members

of the opposing team with the help of teammates, and victory
is determined by the collective team score.

Bots can be designed for UT2004 using the Java middleware
Pogamut [16], which enables control of virtual agents by al-
lowing them to execute complicated tasks such as pathfinding,
information gathering, and memory access using simple com-
mands. Though native bots in many games are able to see the
entire map and player positions even when they are not visible,
Pogamut only allows bots to to collect and store information
within their field of vision, replicating human awareness.
Pogamut communicates with UT2004 using GameBots, a mod
that allows for control of agents in UT2004. Pogamut made
the aforementioned BotPrize competition possible, and is also
used to design the bots studied in this paper.

Bots named Jude and Ethan were developed for this study.
Jude is a hand-coded bot of modest skill designed to follow
members of its team. Ethan is controlled by an evolved neural
network, and is better at killing enemies, but is less coopera-
tive. An ideal companion bot would be both cooperative and
highly skilled, but to find which focus players preferred, we
created two extremes. Jude emphasizes cooperative behavior,
and Ethan emphasizes skill. All source code for these bots and
the subsequent human subject study (Section IV) is available
as part of the MM-NEAT code repository1.

A. Designing Jude

Jude’s architecture is in Fig. 2. Jude’s behavior mimics
human players’ tendency to stay close together to more easily
defeat enemies. However, Jude also prioritizes its own health,
both for the sake of survival, and to assure that human
teammates are not overburdened with protecting Jude.

Jude uses a priority list of behaviors. If Jude is being
attacked and cannot identify the source, Jude turns to find
the enemy. Otherwise, if it has under 20 hit points (HP) out
of a possible 100, it heads to the nearest health pickup. If Jude
sees an enemy, it only engages if it is sufficiently healthy (over
30 HP) and possesses a loaded weapon, otherwise it seeks a
health item. If Jude does not see any agents (friend or foe),
but recently saw an enemy (within 1000 game ticks), it will
pursue the foe by moving to its last known location.

If there are no visible enemies, Jude is not being damaged,
and it sees a teammate, Jude follows the teammate. If Jude
loses sight of the teammate, it will go to the teammate’s
last known location to try to see them again. This simple
collaborative behavior causes Jude to often fight alongside
human teammates against enemies. When Jude is alone in
an area of the map with no visible enemies or teammates,
it will run around picking up useful items, prioritizing nearby
weapons and armor, which allows it to explore the map and
often leads to it encountering another agent.

Thresholds for health checks were based on experience
playing UT2004. Players are close to dying if their health
is under 20, and they can easily die from a single hit if they
enter combat with only 30 HP.

1https://github.com/schrum2/MM-NEAT
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Fig. 2. Agent Architecture for Jude. White conditional checks
(mostly on the left) are evaluated from top to bottom. When a test
results in “Yes” the bold arrow is followed. Otherwise the dotted
arrow is followed. Yellow boxes contain actions that are executed.
Items are “close” if within 300 UT units.

When both an enemy and a teammate are visible, the bot
prioritizes enemy interaction over team unity, since the bot
can be easily killed if it prioritizes the player’s safety over its
own. Therefore Jude will keep itself alive in a fight rather than
sacrificing itself for a teammate because this damages the team
score. However, Jude’s actual combat behavior is purposefully
simplistic: Jude heads directly at the enemy shooting its
weapon, and does not dodge or jump. To some extent, this
means Jude serves as a decoy for the human teammate.

This architecture creates a competent companion that prior-
itizes teamwork. The strategy of attacking opponents head-
on can work with the right weapon, if the opponent is
sufficiently weak, but also makes Jude vulnerable to counter-
attack. A higher score can be achieved by optimizing the
combat behavior, as is demonstrated by Ethan.

B. Evolving Ethan

Ethan’s agent architecture is simpler (Figure 3), but has
more sophisticated combat behavior because these actions are
dictated by an evolved neural network that always engages en-
emies. Ethan is a streamlined version of UTˆ2 [5] with tweaks

Go get weaponSees weapon anywhere?

Combat using evolved Neural 
Network controller

Sees enemy and has a loaded 
weapon?

Run around looking for items

Fig. 3. Agent Architecture for Ethan. Same format as Figure 2.

for human-like play (e.g. human trace data [6]) removed. Ethan
was evolved from scratch for this paper using a variant of
NEAT [8] called MM-NEAT (Modular Multiobjective Neu-
roevolution of Augmenting Topologies [9]).

NEAT is a neuroevolution algorithm that generates neural
networks with arbitrary topologies, and has been applied to
many game domains [17], [5], [9], [18]. NEAT networks start
simple (no hidden neurons) and complexify over generations
via structural mutations that splice in extra neurons along
existing links and add new links. Link weights are also
perturbed via mutation, and historical markers for each gene
make aligning different topologies for crossover efficient and
meaningful. MM-NEAT adds support for multiple objectives
and modular networks, though modular networks are not used
in this paper. Support for multiple objectives is accomplished
by using Non-dominated Sorting Algorithm II (NSGA-II [19]),
a popular multiobjective evolutionary algorithm.

Ethan was evolved to maximize team score and damage
dealt by team members, while minimizing damage received
by team members. Although score is all that matters, the
other objectives provide smoother gradients than team score.
Multiple objectives are therefore useful, even though these
objectives are not necessarily contradictory. Objectives focus
on the whole team because each evaluation consists of two
copies of the same neural network on one team competing
against two native bots on the opposing team.

Evaluations in UT2004 are costly. Two minute matches
were used to provide sufficient time for interaction, and
networks were evaluated three times each to account for
different outcomes on each evaluation (noise). Actual scores
in each objective were averages across the three trials. The
level DM-Flux2 was used because it is relatively small, so
agents frequently interact, but has enough partitioned areas that
teammates must search to find each other. A small population
size of 10 (NSGA-II generates 10 children from 10 parents on
every generation) was evolved for 100 generations. Additional
parameters include: crossover rate of 50%, new link rate of
40%, node splice rate of 20%, and a per-link perturbation rate
of 5%. Despite the small population size, networks quickly
evolved to a point where they could consistently beat the native
bots and were playing at a skill level comparable to that of a
moderately skilled human. The champion with the best final
team score was used in the human subject study.

This success depends on a model of how to derive neural
network inputs and process neural network outputs that bor-



rows heavily from UTˆ2 [5], [7], which was in turn based
on earlier work [20]. However, for each sensor that provides
information about enemy agents, there is now a correspond-
ing sensor for that same information about teammates. The
network processed the following inputs on each game tick:

• 12 ray trace sensors to detect distances to level obstacles,
like walls. The ray traces run parallel to the ground and
are evenly spaced radially around the bot.

• Ray trace aimed straight ahead that responds to enemies.
• Two sets of 10 pie slice sensors that are used to sense

nearby agents, with the value of each slice’s input being
higher if an agent is closer (Figure 4). One set of 10
sensors is for the teammate, and the other is for enemies.
If both enemies are present in one slice, the distance to
the closest enemy determines the input value.

• Scaled distance to the nearest enemy and teammate both
in 3D and projected onto the 2D plane of the ground.
Max distance is 1000 UT units (an arbitrary in-game
measurement) and absent agents are interpreted as having
the maximal distance. However, additional sensors track
this information even for absent teammates, similar to
how UT2004 provides players with text descriptions of
where teammates are within a map.

• Scaled 3D distances to the nearest enemy and teammate
to the left and right of where the bot is looking. These
more specific sensors indicate whether the relevant agent
is to the left or right of where the bot is looking.

• Is nearest opponent still? Nearest teammate?
• Is nearest opponent shooting? Nearest teammate?
• Is nearest opponent jumping? Nearest teammate?
• Scaled armor points out of 100.
• Scaled health points out of 100.
• Is the bot touching the ground?
• Is the bot being damaged?
• Is the bot bumping into an agent or the environment?
• Is the bot damaging another player?
• Is the bot colliding with the environment?
• Did the bot just fall off a cliff?
• The maximum/minimum/average teammate health (all the

same with only one teammate).

This collection of 60 inputs is fed into the neural network
and processed to generate 4 output values that define the action
of the agent. Since the neural network controller is only used
when an enemy agent is visible, all actions are defined with
respect to the nearest enemy the bot can see. Specifically, one
output is a forward/backward impulse, where positive/negative
outputs correspond to moving toward/away from the nearest
opponent. The next output helps with dodging, since it is a
left/right impulse that interprets positive/negative outputs as
the degree to which the bot should strafe sideways in the
corresponding direction with respect to the opponent. Finally,
there is an output that makes the bot shoot on positive outputs,
and an output that makes the bot jump on positive outputs.

The evolved bot was a skilled killing machine in the human
subject study described next.

Fig. 4. Pie Slice Sensors. There are more slices of smaller size near
the front (right) so the bot can better distinguish locations in front
of it. Dots represent agents, and filled portions of pie slices show
the relative activations for agents at different distances. Activation
increases as agents get nearer, so the agent in the upper left causes
the corresponding pie slice to be filled less than the slice for the
nearer agent on the lower right. The bot has one set of sensors for
enemies and one for teammates. Adapted from [20], [5].

IV. HUMAN SUBJECT STUDY

This section discusses the procedure for the human subject
study, and describes its quantitative and qualitative results.

A. Procedure

The human subject study consisted of 30 participants (stu-
dents, faculty, and staff at Southwestern University). To ensure
that results were not biased by the order in which participants
encountered the bots, half played with Jude first, while the
other half played with Ethan first. All matches took place in
DM-Flux2, the same level that Ethan was evolved in.

Participants first played a one-on-one tutorial match against
a native bot for five minutes with an investigator present to
explain the controls and game mechanics. This tutorial match
assured some competency and familiarity with the game.

Afterward, the investigator would leave the room and the
participant would play a 10 minute round of team death-
match against two native bots with either Jude or Ethan as a
teammate. Participants would then take a brief survey before
playing another 10 minute round with the other teammate.
Participants then filled out another survey about their experi-
ence and their preferences between the two bots. In addition
to the survey data, play sessions were recorded using screen
capture software. These recordings are available online at
southwestern.edu/∼schrum2/SCOPE/ut2004-companions.php.

After each round the players were asked what qualities they
liked and disliked about the bot, and what changes they would
recommend to improve the bot’s behavior. Players rated the
bots on a scale from 1 to 5 on five different metrics, with a
higher score meaning that they considered the bot to be better
in that aspect. The bots were scored on how well they followed
the player, how helpful they were, how often the player saw
them, their ability to score points, and how well they avoided
dying. Participants also indicated which bot they preferred
playing with (referred to in the survey as “The First Bot” and
“The Second Bot”) and the reasons for that preference.



TABLE I
User Ratings for Bots

Jude Ethan
1 2 3 4 5 Avg. 1 2 3 4 5 Avg. p

Followed Well 5 8 6 9 2 2.83 10 11 6 2 1 2.1 0.01834834
16.6% 26.6% 20% 30% 6.6% 33.3% 36.6% 20% 6.6% 3.3%

Was Helpful 1 5 9 14 1 3.3 2 0 5 7 15 4.14 4.77× 10−4

3.3% 16.6% 30% 46.6% 3.3% 6.89% 0% 17.24% 24.13% 51.72%
Seen Often 0 3 12 7 8 3.6 2 7 12 7 2 3 0.02051698

0% 10% 40% 23.3% 26.6% 6.6% 23.3% 40% 23.3% 6.6%

Scored Well 0 5 10 12 3 3.43 1 1 3 6 19 4.36 6.23× 10−5

0% 16.6% 33.3% 40% 10% 3.3% 3.3% 10% 20% 63.3%

Avoided Death 4 11 12 2 1 2.5 1 2 7 6 14 4 1.76× 10−6

13.3% 36.6% 40% 6.6% 3.3% 3.3% 6.6% 23.3% 20% 46.6%

Number of participants who gave Jude and Ethan specific ratings in each category on a scale from 1–5, including associated percentages.
Average ratings are also shown, with bold scores indicating which bot earned the higher score in each category. The p-values of statistical
comparisons using two-tailed Wilcoxon-Mann-Whitney U Tests are also shown, which are significant in each case. To account for the high
number of ties in the data, the EDISON-WMW [21] algorithm was used to compute precise p-values.
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Fig. 5. Average User Assessments of Both Bots. Scores on a 1-5
scale are shown side-by-side for Jude and Ethan, along with 95%
confidence intervals.

B. Quantitative Results

On average, players contributed 43.09% of the points in
matches with Jude with an average team score of 25.71.
With Ethan, players contributed 34.53% of the points with
an average team score of 33.75. According to two-tailed
Wilcoxon-Mann-Whitney U Tests, the team scores with Ethan
are significantly higher (p ≈ 1.027×10−4), but the percentage
of points contributed by humans was significantly higher with
Jude (p ≈ 0.0115). In fact, for 18 out of 28 observed players,
the percentage of team points from the human was higher with
Jude, while the percentage for the remaining 10 was higher
with Ethan. These data are only based on 28 participants be-
cause the videos for two participants were recorded incorrectly,
making the scores in these matches uncertain.

Participant ratings of Jude and Ethan are in Table I. The
number of individual ratings for each value from 1 to 5 are
shown, along with percentages. Because one user neglected
to answer the question of how helpful Ethan was, these per-
centages are only calculated out of 29 instead of 30. Average
ratings are provided in the tables as well, along with the results
of two-tailed Wilcoxon-Mann-Whitney U Tests comparing

TABLE II
Relative User Ratings for Bots

Better at . . . Jude Ethan Tie p

Following 53.3%(16) 30%(9) 16.6%(5) 0.3616
Helping 17.24%(5) 68.97%(20) 13.79%(4) 0.00813
Being Seen 43.3%(13) 6.6%(5) 40%(12) 0.2005
Scoring 6.6%(2) 60%(18) 33.3%(10) 0.005223
Avoiding Death 6.6%(2) 63.3%(19) 30%(9) 0.005223

Percentages and counts for which bot each user rated higher in each
category, and the number of tied ratings. The p-values for the results
of a Binomial Test are also shown (ties split between both bots), with
significant differences in bold.

each bot. The differences are statistically significant in each
case (p < 0.05). These averages are also depicted visually
in Figure 5 with 95% confidence intervals. Specifically, users
rated Jude as better at following and more frequently seen.
Users rated Ethan as being more helpful, and as being better at
scoring and avoiding death. Most of Jude’s ratings were around
3 and spread out from 1–5, though no one gave Jude a score of
1 for being seen often or for scoring well. Ethan’s scores skew
more strongly in one direction or the other, with ratings for
following on the low end, and ratings for helpfulness, scoring,
and avoiding death all skewing toward the high end. Only the
score for being seen often is middling, with an average of 3.
Although Ethan’s helpfulness score skews toward the high end,
and 0 respondents gave Ethan a rating of 2 in this category,
two respondents did rate Ethan as a 1 for helpfulness.

In addition to looking at raw scores, the data is compared in
terms of which bot the participant rated higher in each metric.
A certain rating from one participant may not be comparable
to the same rating from another, but it is meaningful when
a user rates each bot differently in the same category. These
comparisons are in Table II. This data is analyzed using a
Binomial Test which assumes there is an even split between
individuals that rate Jude higher vs. Ethan. However, applying
this test is complicated by the presence of actual ties in
the ratings. Simply ignoring these ties leads to significant
differences being found in more categories. Therefore, a more



conservative approach is used: tied scores are split up evenly
between Jude and Ethan. If there is an odd number of ties, then
the extra point is assigned to whichever of the bots causes the
null hypothesis to be less likely to be rejected. The p-values
for these tests are also shown in Table II.

Wherever the Binomial Test returns a significant difference,
participants rated Ethan higher than Jude. Significantly more
individuals found Ethan more helpful, and better at scoring
and avoiding death. The number of ties in the categories of
scoring and avoiding death were high (10 and 9 respectively),
but few participants thought that Jude did better in either of
these categories (just 2 in each case). Participants felt Jude was
better at following and was seen more often, but not enough to
constitute a significant difference. In particular, the category
of being seen had 12 ties and 13 individuals that favored Jude.
These 13 respondents are more than the 5 individuals that saw
Ethan more often, but the many ties cause the null hypothesis
(Ethan and Jude seen equally often) to not be rejected.

Users were also asked which bot they preferred: 17 players
(56.6%) preferred Ethan, and 13 players (43.3%) preferred
Jude. A Binomial Test on these responses reveals no significant
preference for one bot over the other (p ≈ 0.5847). However,
analyzing these responses in conjunction with user ratings of
the bots identifies which types of behavior players prefer.

Specifically, responses were analyzed with a Binomial Test
to see whether players preferred the bot they rated higher or
lower in each category. As above, ties are split as evenly as
possible between categories. Table III shows how many users
favored the bot that they specifically rated as better or worse
in each category, with p-values from the Binomial Tests as
well. Users only had a significant preference for the bot they
saw more of, and the bot they perceived as helping more.
Although more players preferred the bot that they perceived
to be a better follower, this preference is not significant, with
a whole 7 participants preferring the bot that was worse at
following. More players also preferred the bot that was better
at scoring and avoiding death, but these preferences are not
significant either. In these two cases, 6 individuals preferred
the agent that they rated worse in these categories, and there
are many ties: 10 for scoring and 9 for avoiding death.

Player preferences were also analyzed with respect to player
gender and level of experience with games in general and
UT2004 in particular, but the preference for Ethan vs. Jude
was not significantly different in any of these subgroups.
Regardless of gender or experience, users like helpful bots that
they see frequently. However, although following leads to a bot
being seen more often, it was not significantly favored. The
exact meaning of “helpful” is also uncertain. However, open-
ended user responses shed light on these points of uncertainty.

C. Qualitative Results

Players who preferred Jude tended to emphasize the feeling
of teamwork over the objective results of its abilities. This is
epitomized by one subject who said “With [Jude] it felt like we
were a team even though we did not score as many points.”
Players said they felt like they were able to employ more

TABLE III
Player Behavior Preferences

Category Prefer Better Prefer Worse Tie p

Follower 60%(18) 23.3%(7) 16.6%(5) 0.09874
Helper 65.52%(19) 20.69%(6) 13.79%(4) 0.02412
Seen More 50%(15) 10%(3) 40%(12) 0.04277
Scored 46.6%(14) 20%(6) 33.3%(10) 0.2005
Avoided Death 50%(15) 20%(6) 30%(9) 0.2005

Percentages and counts for users who preferred the bot that they
personally rated better/worse in each category, with ties shown as
well. Scores for the two bots in the same category (Table I) were
combined with each user’s stated bot preference to determine if they
prefer high or low scores in the category. The p-values for the results
of a Binomial Test are also shown (ties split between both bots), with
significant differences in bold.

team based tactics because they knew that Jude would follow
them into battle, and felt that the bot would “cover them” in
combat. They also said that Jude felt more like it was helping
them, rather than just going off on its own. These comments
support the idea that humans might prefer a bot who is more
team oriented, even at the cost of reduced performance.

Players who preferred Ethan tended to justify their pref-
erence based on Ethan’s proficiency at scoring and avoiding
death, both of which affected the final outcome of the game.
Players remarked that Ethan died less than Jude which made
some feel like it was less of a burden. They also commented
that Ethan was better at killing enemies and more proficient
in combat, hence better at scoring. One player said that they
preferred Ethan because it “made the game easy to win”
while another remarked that if they wanted a more challeng-
ing experience, Jude might be a better choice. Players who
preferred Ethan prioritized the final output of the game over
the experience itself, or were the sort of player who preferred
to act independently of a teammate rather than collaboratively.

However, Ethan’s proficiency also had some negative im-
pacts on the player experience. Multiple players commented
that they felt ignored by Ethan, with one saying that Ethan
“was too good. I did not feel as though we were a team.”
In total, five players expressed similar sentiment, and all but
one preferred Jude. Players also complained that they felt their
participation was not needed, with two commenting that the
bot would steal kills from the player which was frustrating.

This feeling that the bot was too powerful led players to
feel that Ethan could win the match without them, which they
found discouraging. Four players commented that Ethan made
the game too easy, and removed the challenge of the game.

One participant summed up the reason behind these sorts of
feelings towards Ethan’s proficiency perfectly by saying that
“As counter-intuitive as it might seem, players often enjoy
an ally that is good, but not quite as good as the player
themselves. Players enjoy ‘being the hero’ of the game.”

The perception of Ethan as a worse follower is also evident
in the open-ended feedback, as 14 participants, including
ones who ultimately preferred Ethan over Jude, suggested that
Ethan could be improved by following the player more. This
recommendation suggests that even though players may like



having a bot that is able to act on it’s own, they still value
close proximity to teammates, because it fosters teamwork.

Multiple players remarked on Ethan’s propensity to jump
even when it was not strictly necessary, and many suggested
this was a bug in its programming, but this sort of movement
is not unusual in human players. From a tactical standpoint,
jumping makes a player harder to hit, which is a benefit in
games like UT2004 where players want to avoid being killed.
It is therefore not surprising that this behavior evolved.

Some players complained that Jude was too aggressive
and would often die because it would prioritize combat over
staying alive. This observation is not surprising given how
simplistic Jude’s combat behavior is. Jude simply rushes
straight at the opponent, which is aggressive and makes Jude
easier to kill. Users also complained that the bot would try
to fight both enemies alone rather than trying to find its
teammate, which resulted in it being killed more often.

Multiple users complained that both bots would get stuck
on parts of the environment and could not free themselves
either for an extended period of time or until they were killed.
This outcome is due to Pogamut, which despite using the same
navigation grids as native UT2004 bots, does not follow paths
and avoid obstacles as well as native bots. In fact, avoiding
getting stuck and getting unstuck were major challenges that
UTˆ2 had to be overcome to succeed in BotPrize [7].

The quantitative results indicate that Jude is the better
follower, and the open-ended responses indicate that most
players took this as a positive trait. However, some complained
that Jude followed them too closely and this generated strange
behavior. Examples included Jude mistakenly firing at the
player while standing right in front of them and Jude walking
directly up to the player and then freezing. The firing appears
to be a glitch, but the behavior of walking directly up to
a stationary player and stopping right in their face was
intentional, though simplistic. When a player is moving, this
behavior maintains a fair distance between the player and Jude.

Oddly enough, three players suggested that Jude could have
stuck closer to them. If the player was not often in Jude’s
field of vision, the “following” behavior would not activate
or Jude would lose track of the player. Also, unlike a human
player who can predict a teammate’s direction based on their
movement, Jude follows teammates by tracking their last
known location, but cannot predict a player’s movement from
that. This means that Jude could be prone to lagging behind or
losing the player entirely if it couldn’t see them again. Despite
this limitation, most users felt that Jude was a good follower.

Some participants thought that Ethan was following them,
but this would be an incidental result of Ethan running in
the same direction as the player, as Ethan has no explicit
instructions to follow teammates.

Participants said multiple times that a bot would lead them
to enemies or see enemies before the player did. Players
assumed that the bots could see enemies through the scenery.
One remarked that they saw Jude “shooting at a door before
the enemy bots would enter” and explained that they assumed
Jude already knew where the enemies were, while another

suggested we improve the bot by having it “act like it didn’t
know where the enemies are.” These subjects were incorrect in
their assumption that the bots had unfair awareness of enemy
locations. Pogamut only provides information about what the
bots can see, although the bots will detect the presence of
agents with more speed and fidelity than a typical human.
They can identify enemies even from brief glimpses through a
closing/opening door for example. The player’s misconception
likely originated from past experience with games where
computer controlled agents have a greater awareness of the
map than the ones in this experiment.

V. DISCUSSION AND FUTURE WORK

Users expressed clear preferences for helpful bots that
they see frequently, and there was also some indication that
players like teammates that follow them, as well as score well
and avoid death well. However, being too good is definitely
problematic, as indicated by user comments and the fact that
these preferences are not significant. Also, following too much
can be annoying, especially if it means a bot is constantly in
the player’s personal space. This study focused on extreme
behaviors to create a clear distinction between the two bots
(extreme focus on following vs. extreme focus on performance
by scoring well and avoiding death), but players would likely
prefer a middle ground combining the best behaviors of both
bots. A bot that follows well, but not too close, and is good
at scoring and avoiding death, but not significantly better than
the player, would be both effective and enjoyable to play with.

Though users preferred helpful bots, the term “helpful”
seems to have been too vague, and in retrospect should have
been replaced with more specific terms. Without a concrete
definition of what “helpful” meant, players were free to
interpret this question in a variety of ways. The intent of this
question was to measure how cooperative and team-oriented
each bot was, but many participants seem to have interpreted
behavior leading to a higher score as more helpful. However,
some users, in particular the two that gave Ethan a helpfulness
rating of 1, seem to have interpreted this question differently.
It is unclear what bot behaviors these players were interpreting
as helpful. Any future studies similar to this one would need
to clarify this issue in the survey questions. Questions could
also be added to gauge how much a player’s preference is
influenced by the final score compared to the bot’s behavior
during the round.

Multiple modern games create team-oriented companions
by providing companions who have to be directed through a
fight and will die without player intervention. Though some
players are annoyed by this, games in the “tactical shooter”
genre have been successful with players who enjoy a feeling
of collaboration. Even with a fully autonomous companion,
many players like to feel that they are moving and working
with their companion which can be achieved by having the
companion stay closer to the player even when it may be more
advantageous for the two to split up.

Several participants commented that the bots jumped too
often. However, unnecessary jumping is also characteristic



in human players across multiple games. In a 2015 youtube
video, the popular gaming channel outsidexbox listed jumping
everywhere as one of the “9 things you can’t resist doing
in videogames.” In the video, they explain that if jumping
is just as fast as running, they would “bunyhop all the way
[to my destination] instead of running like a sensible hero”
[22]. Given that this tendency for jumping is common to
human players, testers may have noticed it more in a computer
controlled teammate because they did not expect this kind of
human behavior to be replicated. This behavior might simply
be more visible when the player is not the one doing it.

Hopefully, this paper’s findings can inform the development
of companion characters in future games. This study found that
there are players that prioritize experience and the feeling of
teamwork over the number of points they gain, which could be
helpful in games where story is the focus rather than score. Of
course, industry is already aware of this issue, which is part of
the reason that state-of-the-art AI techniques for agent control
are seldom adopted in commercial games. Ethan demonstrates
how an agent controlled by a sophisticated AI technique
(neuroevolution) can perform a task well (scoring points), but
in a way that a human player may find frustrating. Still, despite
some negative comments, players did slightly prefer Ethan
over Jude, so perhaps neuroevolution (and other techniques)
are not so impractical as mechanisms for controlling bots.
In fact, one could replace Jude’s simplistic combat behavior
with Ethan’s evolved combat behavior, but keep Jude’s scripted
behaviors for following, and get the best of both. In fact, UTˆ2
[7] is a previous example of a bot that combines complicated
scripting with evolved behavioral modules. Perhaps agents in
commercial games can do the same.

Future studies could examine other game variants that
require more teamwork. Team deathmatch can be won simply
by earning the most kills, even if there is no teamwork.
Other game variants such as Capture the Flag, Domination,
and Assault tend to require more teamwork, and benefit
greatly from communication between teammates about what
goals to focus on. The bots in this study were incapable of
communication, and it is unclear how cooperative such bots
can be without this capability. The popularity of these more
complicated team modes of play also makes them of greater
interest to industry, and thus deserving of future focus.

VI. CONCLUSION

This study shows that though players may not show a clear
preference for one bot over the other, the reasons behind their
preferences still follow noticeable trends. Player preference
was found to depend most strongly on which bot they saw
more often and which one they found to be more helpful.
Better following can lead to being seen more, though this
is also a matter of chance. Being helpful can be interpreted
multiple ways, such as being good at winning, or as being
more collaborative and team-focused. Bots that combine these
behaviors will presumably be more enjoyable for humans to
play with. This hypothesis will be further evaluated in the
future, in more challenging variants of team play.
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