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Abstract—Over the past few years the Angry Birds AI compe-
tition has been held in an attempt to develop intelligent agents
that can successfully and efficiently solve levels for the video
game Angry Birds. Many different agents and strategies have
been developed to solve the complex and challenging physical
reasoning problems associated with such a game. However none
of these agents attempt one of the key strategies which humans
employ to solve Angry Birds levels, which is restarting levels.
Restarting is important in Angry Birds because sometimes the
level is no longer solvable or some given shot made has little
to no benefit towards the ultimate goal of the game. This paper
proposes a framework and experimental evaluation for when to
restart levels in Angry Birds. We demonstrate that restarting is
a viable strategy to improve agent performance in many cases.

Index Terms—Angry Birds, Heuristics, Qualitative Spatial
Reasoning, Restarts, Video Games

I. INTRODUCTION

The problem of creating artificial agents which can interact
with physical environments whilst achieving certain objectives
is a key topic of research in Artificial Intelligence (AI). These
agents will have to combine aspects such as computer vision,
machine learning, reasoning, predicted motion and manipula-
tion, and making decisions using incomplete information in
order to achieve goals. One such endeavour is creating agents
to solve the game of Angry Birds.

In the Angry Birds AI (AIBIRDS) competition, participants
develop AI agents to autonomously play the physics-based sim-
ulation game of Angry Birds, with the ultimate goal of beating
the best human players [1]. This competition promotes research
into designing agents that can successfully interact with a
physical environment, where knowledge about the environment
is limited by perception and the exact consequences of the
almost unlimited number of actions are unknown. Angry Birds
provides a simple and controlled environment compared to the
real world. The idea is that future artificial intelligence systems
will need to overcome similar problems when attempting to
interact with the real world [1].

Previous agents in the AIBIRDS competition have imple-
mented a variety of techniques such as Bayesian reinforcement
learning [5], qualitative reasoning [2], heuristics [4], internal
simulations [10] or a combination of other agents [12].

However we can see that none of these current agents utilise
the ability to restart levels while they are playing them, only
doing so when they are forced to by failing the level. This
is something that human players frequently do for the two
reasons we observed in section I. Restarting a level involves
losing any progress made, returning the level to a state as if
the agent had not interacted with it.

We know that the best agents of today fail to outperform
reasonable human players [7] (benchmarks show that agents
perform about 30% worse on the ‘Poached Eggs’ series of
levels). We also know that most human players typically employ
the restart strategy many times per level. We suggest employing
heuristics as a guide to tell agents when to restart a given level.

We observe two different types of situations in which humans
restart levels. When the human has a plan in mind and the
shot made is poor or sub-optimal compared to what was
expected. Alternatively, a human may believe that the score
cannot be improved any further. Learning and problem solving
models incorporating human elements have made attempts at
integrating heuristics for restarts [6]. In [6], it is noted that
heuristics can reduce the chance of incorrect choices being
made but can seldom eliminate them completely. In this paper
we develop heuristics that help reduce the chance of incorrect
choices being made for Angry Birds.

We employ qualitative spatial reasoning to develop a physical
model of the Angry Birds world in order to infer consequences
[8] of shots. In past agents, qualitative spatial reasoning
has been used to analyze stability of levels in Angry Birds
and to determine weak points to aim at [3]. [2] expands
on this by introducing more complex qualitative rules and
representations to determine the best shots to make. These
works apply common sense methods of operating on qualitative
representations of objects [14] [2] in order to determine what
will happen if a given force occurs. Qualitative reasoning has
also been applied to more general problem solving such as
physical puzzle problems [16].

We employ qualitative spatial reasoning to determine if a
level is solvable or not using only a single shot. We only
consider a single shot because predicting outcomes of shots
that are accurate enough to deal with multiple shot sequences
is still an unsolved problem due to the lack of a forward model.
We build upon past work that determines the stability of a level
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Fig. 1. An image of an Angry Birds level

along with qualitative reasoning rules for shots in Angry Birds.
We also develop and test a set of heuristics that determines
what shots may be considered sub-optimal.

We present and test three distinct heuristics in this paper,
the most notable of which is the ’solvability’ heuristic which
determines, using qualitative spatial reasoning, whether a level
is likely solvable in one shot or not. This acts as a guide for
restarting by telling us situations in which there is no reason to
continue the level. It is obviously most useful when only one
bird is left. The other two heuristics included in this module
are based upon ‘common sense’ reasoning rules on level states.
These operate on state information such as score and number
of objects in a level and informs us how much impact each
action had.

An artificial agent must know in advance, or be capable of
dealing with, the consequences of its actions. It must also be
able to act upon and resolve unexpected or negative outcomes
from the actions it performs. Our heuristics provide another
measure for the outcomes of the actions that an agent performs
in Angry Birds, allowing for more informed restarts to be
made.

The ideas presented here may also be relevant to more
general AI situations. By considering restarts, we have to
carefully consider what set of actions would be considered
good and bad choices to make. We need to carefully evaluate
if there is any benefit to trying alternative strategies to solve
the given problem or to continue with our current strategy. For
example agents playing other video games may want to consider
restarting levels if certain objectives cannot be achieved any
more. This is also relevant to agents that may wish to interact
with the physical world. It is critical to take into account the
consequences of any actions both before and after they are
carried out in order to determine the next best steps.

In the rest of this paper, section II provides background and
further information regarding Angry Birds alongside the scope
of this paper. Section III describes the methodology we used
for reasoning about structures and levels alongside our original
contributions in the form of heuristics. Section IV tabulates the
results of our testing. Sections VI and VII discuss our results
and what it means for future works.

II. BACKGROUND

A. Angry Birds

is a physics based puzzle game where the player controls
the angle and strength that a bird is released from a fixed
position slingshot to shoot birds at levels consisting of structures
and pigs (Fig. 1). The goal of the game is to kill all of the
green pigs (targets) within each level given a limited number
of birds (shots) whilst maximising the structure damage to
achieve a high score. Blocks in Angry Birds (including pigs)
are destroyed if they receive a sufficiently large enough impact
or force acting on them, smaller forces can accumulate to
eventually destroy large or tough blocks. Scores are awarded
at the end of each level based on how many birds have not
been used and how much damage was inflicted on the level.
There are also different types of blocks and birds which interact
with each other in different ways. There are 3 main types of
blocks in a level: wood, ice and stone, each with different
properties such as toughness and vulnerabilities. The AIBIRDS
competition has so far mainly focused on the following types
of birds: red, blue, yellow, black and white. Each bird has a
special power which is activated by tapping the screen We
define the performance of a player or agent as the average
score they can obtain on given levels, along with how long on
average it takes for them to solve levels or sets of levels. Angry
Birds is difficult because it involves an optimization problem
(maximising score) which is hard to brute force because of
the large number of possible shots and the time it takes for
each attempt. This possibility space is further expanded by the
many different types of blocks, birds and interactions between
them. Furthermore, Angry Birds has been demonstrated to be
an NP-Complete problem [9]. Agents will have to solve the
problems presented in Angry Birds whilst outcomes are unclear
in the environment, parameters are unknown and many steps
in advance need to be considered, where each step corresponds
to a single bird which can be used in the level [15].

B. The AIBIRDS competition

[17] started out in 2012 and has run every year up to
the present (2019). In this competition, participating agents
are tasked with playing a number of unknown Angry Birds
levels within a given time. They compete against each other
based upon total points scored across all levels, typically 8 new
levels per round. No internal information about these levels
is provided and instead the AIBIRDS server provides screen-
shots of the levels which the agents must parse, this means
that agents get the exact same inputs that a human player
would whilst playing the game. After a set amount of time has
elapsed, the scores across levels are totalled and the agents
are ranked based on these values, after several rounds where
agents are eliminated, only one agent will remain. The goal
of the AIBIRDS competition is to promote the development
and exploration of agents and strategies which can deal with
physical environments such as Angry Birds in general much
like human actors/players [1]. These techniques and ideas



Fig. 2. Level 1-2 of the ‘Poached Eggs’ level series

learned in the development of such agents are essential in the
development of future AI systems as well [1].

C. Current AIBIRDS Agents

The currently most successful Angry Birds agents are
heuristics based [17]. These heuristic agents work on a greedy
basis regarding the current bird and make shot decisions using
their heuristics without looking at future birds or outcomes. The
issue with this is despite these strategies working with some
number of levels and generally able to solve most competition
levels, it is far from optimal. Angry Birds levels are usually
designed with different optimal strategies in mind. For example
on level 1-2 of the ‘Poached Eggs’ (Fig. 2) series of levels it
is possible to solve the level by shooting directly at the pigs.
However the optimal strategy is to bounce a bird off the back
wall which can kill all the pigs in one shot.

D. Problem Exploration

One core strategy that humans employ to find optimal
strategies or possible strategies to levels is to explore possible
solutions (shots) for the level. This can be likened to exploring
the possible search space of the level, if shots don’t have the
desired impact or effect then a human would likely restart
the level. We can liken human players to an agent with a
knowledge base containing a set of heuristics and strategies
along with some mechanism for learning new strategies by
exploring different options on the level. The current AIBIRDS
champion agent, Eagle’s Wings, has a set of strategies which it
decides between using some mechanism, however what it lacks
is trying out new strategies and exploring different shots. We
introduce a framework and a set of heuristics which encourage
exploration of strategies by informing us when might be a good
time to stop exploring a certain given strategy. This is especially
important going forwards as current research has revealed what
are known to be ’deceptive levels’ where straightforward and
traditional game playing strategies may fail to provide results
[11].

III. METHODOLOGY

We first develop a module that predicts if a level is solvable
in one shot, that is if using a single given bird whether we can
destroy all the pigs in a level. This is useful in determining
whether we should restart on the last bird of a level or not
this allows us to save some amount of time if we determine

the level in unsolvable. It is difficult to determine whether
a level is solvable in general because of the large search
space and uncertainty of future states. We reason whether
we can propagate sufficient forces to all the pigs in order to
kill them, we build this off of the stability module in [3] and
the qualitative reasoning rules described in [2]. Although it
is possible to simulate the physics of Angry Birds precisely
using the parameters of the Box2D physics model, these
exact parameters are not known to the general public and
agent developers. We employ qualitative reasoning methods to
approximate solvability much quicker than simulations.

Next we develop a model of any given Angry Birds level
by reading in all the Minimum Bounding Rectangles (MBR)
blocks (that is wood, stone and ice) of objects. Our model
develops matrices which tell us which blocks will be affected if
another given block receives a force. We develop these matrices
using the following relations:

1. Direct Propagation: We say if a block o1 is in contact
with a block o2 and o1 is to the left, above or below o2 then if
block x receives a rightwards force, o2 will receive the same
force in the same direction reduced by some factor c1. For
two objects o1, o2 with points (x1, y1), (x2, y2) and force f1
on o1, if the following Boolean predicate holds:

Direct Propagation(o1, o2) ≡ o1 6= o2 ∧ x2 < x1 + k

∧(y1 + height(o1)) overlaps (y2 + height(o2))
(1)

Then o2 will experience a force f2:

f2 = (f1/n) · c (2)

Where n is the number of blocks which we calculate f2 for,
and c is some constant < 1 which represents force lost. This
intuitively means that the force experienced by o1 will be
distributed among all the blocks that it is in contact with
(except those that receive no force).

2. Falling Propagation: if a block o2 is in the falling arc
(fall arc(o1)) of o1, then if o1 falls in a given direction, o2
will receive some factor of the force received by o1 depending
on how far o1 falls. If the following Boolean predicate holds:

Falling Propagation(o1, o2) ≡ o1 6= o2

∧ ¬Direct Propagation(o1, o2)

∧ x2 < x1 + height(x1)

∧ intersects(o2, fall arc(o1))

(3)

Then o2 will experience a force f2:

f2 = f1 · c1 · sin
(
π

d

height(o1)

)
(4)

d is the horizontal distance from o1 to o2, and c1 is some
constant < 1 which represents force lost. Intuitively what this
means is that closer blocks will receive a greater force, this
however does not take into account any potential energy gains
in force due to gravity.



Fig. 3. Diagrams representing the propagation rules

3. Structure Falling Propagation: For two objects o1, o2
and the support structure of o1: supp(o1) :, if o2 intersects with
fall arc(supp(o1). If the following boolean predicate holds:

Structure Falling Propagation(o1, o2) ≡ o1 6= o2

∧ intersects(fall arc(supp(o1)), o2)
(5)

Then o2 will experience f2 = f1. We do not do any complex
calculations here because it is difficult to account for the many
situations that this scenario occurs, since different structure
types would result in different velocities at which they will fall
down along with potential increases in energy due to gravity.

4. Thrown Blocks Propagation: if a block o2 is within a
threshold vertical and horizontal distance of o1 and o1 is on
the left of o2 and o1 is sufficiently small (of size less than s1.
Then, if o1 receives a force, o1 might be ‘thrown’ a distance
of d and a height of h. This results in o2 receiving a force in
the same direction reduced by some factor. If the following
Boolean predicate holds:

Thrown blocks propagation(o1, o2) ≡ o1 6= o2

∧area(o1) < s1 ∧ x2 < x1 + d ∧ y2 < y1 + h
(6)

Then o2 will experience f2:

f2 = f1 · c · cl · d (7)

Where cl is some constant of loss < 1 for each unit the block
travels through the air and c is energy lost during the contact
between o1 and o2.

These rules work alongside the previous rules for falling
structures in [3] to determine full propagation of forces through

structures. We model the force propagated from a bird fired
from a sling as a rightwards force originating from the point
of impact. This force propagates using the above rules until
the force is reduced to below some threshold. We say a level is
solvable in one shot if all the pigs are killed (receive sufficient
force to kill them), thus if a level is not solvable and we only
have one shot left then we should restart. Using our rules we
will tend to overestimate the solvability of levels, this is because
many of these actions may not necessarily be possible (due to
unknown factors such as friction) yet fall under our reasoning
rules. For example we see in Fig. 2 the entire structure is not
likely to fall, only parts of it. Overestimate when applying this
to restarts is beneficial because the cost of restarting when the
level is in fact solvable (time it takes to make all previous
shots) plus any further time the agent spends on the level is
much higher than not restarting when the level is unsolvable
(time it takes to make one shot). Because of this, during much
of our testing we used large placeholder values for f2 close to
1 by setting the values for c also to 1 to see the total effects
of the forces propagating through the entire level.

Our algorithm currently does not take into account the
following: TNT blocks, Black Birds, White Birds, Blue birds
splitting apart and bird rebounds past the initial impact (i.e.,
birds bouncing off a wall to hit the right side of a block).
However it is simply a matter of integrating and developing
rules to take each of these into account to address our current
limitations.

In order to further reduce our search space we determine
which blocks are reachable from the sling. It is likely a waste of
computational time to run our Force Propagation Algorithm on
blocks that we cannot hit with a bird. We find these reachable
blocks using a brute force search through all the blocks to see
if there is a viable trajectory. We estimate trajectories using
the trajectory module provided by the AIBIRDS framework.
For each block we only use trajectories that hit the top center
and left center points of every block. We only consider two
points to reduce the total number of trajectories that we have to
search through. This technique is an adapted version of the one
used for reachable pigs in [12]. We then check what blocks
these trajectories intersect with, these are in theory all the
blocks that can be reached. The problem with this is that the
trajectory module is not perfect because we do not know the
exact parameters of Angry Birds. Many agents implement their
own trajectory module such as [4] because of this limitation.
We could address this problem by using any one of these better
trajectory modules.

We implement all our models along with the algorithm to
determine propagation of forces throughout a level in a single
’solvability’ heuristic that is evaluated before a shot is made.
We then develop rule-based heuristics that are evaluated after
a shot is made. These post-shot heuristics are based on level
states before and after the shot.

Finally we implement a framework to test the application of
restarts on several agents: Seabirds, Datalab, Eagle’s Wings and
the Naive Agent. Eagle’s Wings is the currently best performing
agent having won the 2017 and 2018 AIBIRDS competitions.



We test restarts with heuristics based on score changes, level
differences and different types of actions performed.

A. Heuristics

We make decisions using our model and the qualitative rules
described above before an agent makes a shot within a level.
We also come up with rules which tell us if a we should restart
a level after we make a shot. In the end we combine our
heuristics together to form a single restart heuristic that tells
us if we should restart a level at any given time. Our heuristics
are described in more details below.

1) Solvability Heuristic: We apply a combination of our
force propagation and reachability algorithms to determine
solvability of a level. We say that a level is solvable if the
forces resulting from hitting a reachable block propagate in
such a way that all pigs receive some force that is sufficient to
kill them. If we only have a single bird left, and this heuristic
tells us that this level is not solvable then we should clearly
restart the level. Conversely, because it is difficult to tell the
future states of a level, we currently only run this heuristic if
we have only one bird left.

2) Score Heuristic: In addition to our pre-shot prediction-
based solvability heuristic, we employ post-shot heuristics
informing us when we should restart. One aspect of increasing
performance is to increase total scores achieved by each agent.
We calculate some threshold for each different color of bird
and disallow shots which result in score increases less than our
threshold. In theory, with learning agents, this heuristic will
improve total scores in general because they will be forced to
search out shots with higher scores. Higher score individual
scores tend to have a very high correlation with higher overall
scores . However, because this is a greedy approach these
methods may suffer from the same problems current agents face
and any deceptive levels mentioned in section II. We attempt
to mitigate this effect by introducing weighted decisions of
when to restart in our Restart Heuristic later.

3) Good Use Heuristic: In Angry Birds every bird can
usually be put to good use, with some exceptions [13] For
example, it may be required to waste the first red bird of a level
in order to solve the level using the second yellow bird. To
solve an Angry Birds level, we must damage some structures
and change the initial state of the level. We formulate some
percentage change in a level where it is not likely a shot made
was put to good use (e.g., the force of the bird only moved a
single block a couple of pixels). We also say that a bird may
not have been put to good use if we did not hit the block type
it is good against (e.g., a blue bird hits a stone block). For
score change ∆S and score threshold T , we give a value in
the range [0, 1] with values closer to 0 being a ’worse’ shot.
This is given by the linear equation:

ScoreH =
max((T −∆S), 0)

T

4) Restart Heuristic: We now combine our heuristics into
a single heuristic in an attempt to make better predictions. We
assign arbitrary weight to each of our heuristics to determine a

total ‘restart score’. If this total score exceeds a pre-determined
threshold we would give the signal to restart the level. We
give this with %Change being the percentage change in block
locations and existence:

Score(Screenshot) = w1 ∗ (%Change) + w2 ∗ (Block Type Hit)
+w3 ∗ ScoreH + w4 ∗ Solvable(Screenshot)

IV. TESTING AND RESULTS

The agents we use for testing are:
The Naive Agent: A basic agent that is provided as part of

the AIBIRDS framework that randomly determines which pig
to shoot at.

Seabirds Agent: A middle-of-the-pack agent submitted to
the AIBIRDS competition, it ranks at 15th out of 67 agents in
the 2017 AIBIRDS benchmarks.

Datalab Agent: The winner of the AIBIRDS 2014 and
2015 competitions, uses a set of heuristics and a determination
function to choose between them.

Eagles Wings Agent: The winner of the AIBIRDS 2017
and 2018 competitions, it is heavily based upon the Datalab
agent and features a more complicated determination function
to choose heuristics.

We use these agents as they provide a good measure of how
our module works for different levels of agent performance.
We use state of the art agents, Datalab and Eagles Wings as
an upper limit to current AI performance. We use the Naive
Agent as a benchmark as the worst performing agent since it
is provided as part of the AIBIRDS framework (although there
are worse agents). We use the Seabirds Agent to see its effects
on a broader variety of strategies.

In order to test our solvability module, we ran tests with each
agent using a test group and control group. Both groups use
the exact same agents making the exact same shots, but the test
group would restart when our module tells it to while the control
group would execute the last shot without restarting. We do this
because it is difficult to determine as an objective fact if a level
is solvable or not without having tried all possible shots. We
could manually classify if each level state is solvable however
this is time consuming and humans also cannot determine this
objective fact with certainty. Using this testing method we have
the following outcomes:

False Positive (FP): Module believes level not solvable, but
the agent solves the level.

False Negative (FN): Module believes level solvable, but
the agent fails to solve the level.

True Positive (TP): Module believes level not solvable, the
agent fails to solve the level.

True Negative (TN): Module believes level solvable, the
agent solves the level.

The false positive class is what we are most concerned about.
The cost of a false positive is the time taken to make all the
shots up to that point, along with the rest of the time the agent
may spend on the level. The cost of not restarting when the
agent should have is just the time to run our module, since the
agent would have made that shot anyway.



TABLE I
PERCENTAGE RESULTS FOR NAIVE AGENT USING SOLVABILITY MODULE

ON ‘POACHED EGGS LEVELS’ (N≈1000).

Level TP TN FP FN TR
1 0 1 0 0 N/A
2 0 1 0 0 N/A
3 0 1 0 0 N/A
4 0 0.82 0.19 0 0.95
5 0.30 0.4 0.15 0.15 1.5
6 0.05 0.7 0.2 0.05 0.88
7 0.30 0.10 0.052 0.55 2.4
8 0.62 0.23 0.044 0.11 1.3
9 0 0.79 0 0.21 1.3
10 0.4 0.21 0.26 0.13 1.5
11 0.13 0.5 0.25 0.12 1.0
12 0 1 0 0 N/A
13 0.16 0.39 0.065 0.39 1.4
14 0.63 0.26 0.024 0.08 0.59
15 0.10 0.16 0.71 0.03 1.0
16 0.077 0.46 0.46 0 1.0
17 0.035 0.36 0.52 0.086 0.67
18 0.28 0.16 0.48 0.075 0.69
19 0.069 0.10 0.069 0.76 1.2
20 0.52 0.048 0.17 0.26 0.45
21 0.56 0.077 0.13 0.24 2.3

Average 0.20 0.47 0.18 0.15 1.18

We ran the Naive and the Seabirds agent on the first 21
levels of the ‘Poached Eggs’ series of levels. We do not test
with Datalab and Eagle’s Wings for this level set, because
these two agents rarely need to use all the birds to solve the
levels. We need to use harder levels to test these agents, hence
we use the past AIBIRDS competition levels. We denote the
number of trials - that is an iteration of a level being attempted
by an agent as n.

The results for the Naive agent are shown in Table I. We have
a time ratio (TR) where we observed a difference in average
time taken to solve a level between running the agent normally
and running the agent and restarting with our solvability module.
Ratio values above 1 mean that the agent with restarts was
faster than without and values below 1 mean that the agent
without restarts was faster. We have highlighted the majority
class for each level in bold. The formula for time ratio is:

Time Ratio (TR) =
Average time without restarts

Average time with restarts

With the Seabirds agent, we see a shift in the majority classes
of outcomes in Table II, notable we tend to see fewer False
Positives and more True Negatives.

We move onto testing our Restart Heuristic, we do this
by comparing level completion time and scores on various
AIBIRDS competition level sets. We try various different
combinations of weights and heuristics, the most notable
increase in performance is noted in Table V. We denote the
agent without our module as NR and with our module as R.
Our value of T varied based on the type of bird previously
fired, the values used for red, blue, yellow and black birds are
5000, 6000, 7000, 10000 respectively. We used the weights
0.2, 0.2, 0.2 and 0.4 for w1...w4 respectively.

TABLE II
PERCENTAGE RESULTS FOR SEABIRDS AGENT USING SOLVABILITY

MODULE ON ‘POACHED EGGS LEVELS’ (N≈850).

Level TP TN FP FN
1 0 1 0 0
2 0 0.83 0.17 0
3 0.2 0.8 0 0
4 0.14 0.57 0 0.29
5 0.29 0.29 0 0.43
6 0.36 0.45 0.09 0.09
7 0.2 0.3 0.15 0.35
8 0.16 0.58 0.26 0
9 0 0.67 0 0.33

10 0.34 0.14 0.34 0.17
11 0 0.88 0 0.12
12 0.25 0.625 0 0.125
13 0 0.31 0.19 0.5
14 0 1 0 0
15 0.13 0.22 0.65 0
16 0.17 0.5 0 0.33
17 0 0.67 0.13 0.2
18 0.24 0.12 0.59 0
19 0.25 0.062 0 0.69
20 0.42 0.12 0.23 0.23
21 0.27 0.27 0.08 0.38

Average 0.16 0.50 0.14 0.20

TABLE III
PERCENTAGE RESULTS FOR SEABIRDS AGENT USING SOLVABILITY

MODULE ON 2017 AIBIRDS COMPETITION LEVELS (N≈300).

2017 Grand Finals
Level TP TN FP FN

1 0 1 0 0
2 0 0.69 0 0.31
3 0.97 0 0.03 0
4 0.45 0.05 0.45 0.05
5 0.48 0.23 0.1 0.19
6 1 0 0 0
7 0.096 0.032 0 0.87
8 0 0.83 0.17 0

Average 0.375 0.39 0.094 0.18

2017 Semi Finals
Level TP TN FP FN

1 0.083 0.29 0 0.625
2 0 0.57 0.04 0.39
3 0.25 0.03 0 0.71
4 0 0.84 0 0.16
5 0.045 0.59 0 0.36
6 0.85 0 0.059 0.088
7 0.08 0 0 0.92
8 0.17 0.53 0.059 0.23

Average 0.19 0.36 0.02 0.44

Conversely we also note that is is possible to have a negative
impact on scores and times by using our module. We tabulate
the worst case performance change by using our module below
in Table VI.

V. PERFORMANCE AND ANALYSIS

We see that in the cases of simple levels such as the ‘Poached
Eggs‘ series Table I, our module works well when restarting



TABLE IV
PERCENTAGE RESULTS THE EAGLES WINGS AGENT USING SOLVABILITY

MODULE ON 2017 AIBIRDS COMPETITION LEVELS (N≈300).

2017 Grand Finals
Level TP TN FP FN

1 0 0 1 0
2 0 1 0 0
3 0 1 0 0
4 0.36 0 0.45 0.18
5 0.17 0.5 0.3 0
6 0.5 0 0.5 0
7 0.1 0.36 0 0.55
8 0 0 1 0

Average 0.14 0.36 0.41 0.091

2017 Semi Finals
Level TP TN FP FN

1 0.85 0 0.15 0
2 0 0 0 1
3 1 0 0 0
4 0 0.75 0 0.25
5 0 0.86 0 0.14
6 0.23 0.14 0.64 0
7 0.67 0 0.33 0
8 0 1 0 0

Average 0.34 0.34 0.14 0.17

TABLE V
SCORE AND TIMES FOR DATALAB AGENT ON AIBIRDS 2015 GRAND
FINALS LEVELS USING SCORE AND GOOD USE HEURISTICS (N≈300).

SCORE IN POINTS, TIMES IN SECONDS.

2015 Grand Finals
Level Score NR STD NR Score R STD R

1 77432 6534 78640 370
2 78000 10148 78274 9739
3 81569 6742 83482 7808
4 N/A N/A N/A N/A
5 51765 3956 50364 4132
6 39223 1118 46290 5727
7 95269 7489 94056 4211
8 34090 1066 36785 4211

Total 69910 22083 73636 19447

Level Time NR STD NR Time R STD R
1 147 151 136 97
2 261 94.1 236 76.3
3 249 139 321 157
4 N/A N/A N/A N/A
5 384 171 498 149
6 143 124 139 126
7 136 63.2 115 23.8
8 152 168 82.5 21.4

Total 1472 1069 1681 650

with exceptions of levels 14,17,18 and 20. These exceptions can
be explained by current shortcomings in our solvability module,
computer vision module and reachability algorithms. We note
that as the number of false positives increase we tend to see a
reduction in agent performance however this is not always the
case. We see on level 20, despite the majority case being True
Positives, we see a reduction in agent performance. It may be
the case that the false positives are more impactful on these

TABLE VI
SCORE AND TIMES FOR DATALAB AGENT ON AIBIRDS 2014 GRAND
FINALS LEVELS USING SCORE AND GOOD USE HEURISTICS (N≈300).

SCORE IN POINTS, TIMES IN SECONDS.

2014 Grand Finals
Level Score NR STD NR Score R STD R

1 59999 7451 60542 15772
2 56370 7930 53757 8253
3 64757 4742 64111 2058
4 66620 N/A N/A N/A
5 42922 7874 N/A N/A
6 67888 4714 66750 3434
7 N/A N/A N/A N/A
8 70219 N/A 61570 N/A

Total 428775 32711 306630 29517

Level Time NR STD NR Time R STD R
1 170 222 323 348
2 91.3 173 204 307
3 267 334 151 78.0
4 961 N/A N/A N/A
5 805 368 N/A N/A
6 534 361 513 666
7 N/A N/A N/A N/A
8 818 N/A 1014 N/A

levels than others because of a more complex level structure.
Nonetheless we note that any proportion of False Positives
tend to have a negative impact on performance. We also note
the relatively low total number of false positives compared to
the others which results in possible better performance for the
agent. We see that on average the time ratio is greater than
1 (1.18) across the 17 levels that we have utilised it in. This
means that using our solvability module we tend to take less
time to solve levels than without.

Moving from the Naive Agent to the Seabirds agent in
Table II, we see a tendency for fewer False Positives and
more true negatives. Because we know that the Seabirds agent
performs better than the Naive Agent, this perhaps indicates
that for better agents, our solvability algorithm tends to be less
inaccurate. This also illustrates differences in ground truths
between different types of agents because some situations are
more solvable than others for specific strategies.

On more difficult level sets such as the competition levels,
it is harder to attribute with certainty the efficacy or if the
effects are due to random chance. Mentioned in section III
our module does not implement several features of the Angry
Birds game, the competition levels tend to utilise a great deal
of these features. Nonetheless we observe that the number of
false positives on competition levels is low with the exception
of the 2017 Grand Finals in Table IV. Using Seabirds we see
in Table III that the FP class is nearly 0 in most cases.

Tables V and VI show that our restart heuristic can have both
positive and negative effects on the performance of the agents.
We have observed that the agent with our restart module fails
to complete several levels, resulting in an N/A value for scores.
This was mostly caused by constantly restarting and making
the same shots during the playing of a level - we imposed a



time threshold where if the level was not completed, the agent
would move on. This suggests that our heuristics may not be
a good fit for the current generation of agents. A major factor
contributing to this may be that the agents we are testing on are
not ’aware’ that they are being restarted because our heuristics
have not been fully integrated into the core logic of the agents.
As a result of this, sometimes the exact same strategies/shots
would be made as observed in some occasions. Conversely we
see an increase in level scores in Table V, this increase may
also have caused an increase in mean times taken. We may
explain this by the agent spending more time searching for the
best shots to make because of the restarts.

VI. DISCUSSION AND FUTURE WORK

As we have demonstrated, restarting when the level is no
longer possible could result in an increase in the performance
of an agent. Logically speaking, if the level is not possible
then we can equate this to a lost level and restarting would
clearly be the optimal choice. However deciding when a level
is unsolvable is a difficult task, we have demonstrated a method
that approximates this problem to some degree of accuracy.
With more work on extending our solvability module, along
with tuning weights on each individual heuristics, we believe
that we can achieve a high degree of accuracy on all Angry
Birds Levels.

We believe that in order to improve further, Angry Birds
agents will have to take what we have presented in this paper
into account. As long as humans employ this strategy and
artificial agents do not, it may not be possible to surpass
them. In order to learn from restarts, agent logic and restart
logic must be fully coupled. In our testing with the agent
separated from the restart module, agents would not integrate
the knowledge gained from restarting into future attempts. This
results in less than optimal and sometimes even negative effects
on agent performance. This is a problem that can be solved
in the development of future agents by integrating our restart
heuristics into the learning models of the agent.

AIBIRDS evaluates the performance of an agent purely on
the total sum of scores achieved in the time limit allowed. It
may be the case that restarting actually has an overall negative
effect during the time limit allowed. For example restarting
failed level attempts constitutes more time invested in a single
level, resulting in less time invested in levels in which the agent
might actually perform very well in. Given sufficient time to
solve a level there is no need to restart because eventually an
optimal solution will be found however it is rarely the case
that time is infinite. On many levels we will observe humans
attempt a level many times by restarting in order to achieve
series of what the human would consider to be optimal shots
to get the overall highest score. This is a key characteristic of
humans and perhaps a defining characteristic of intelligence in
order to recognize the best use of time invested to achieve a
goal.

VII. CONCLUSION

This paper has presented an initial framework which de-
termines when may be a good time to restart the level using
the solvability of a level and other simple heuristics. This
knowledge can be used to reduce the amount of time wasted
by continuing to play levels which are unsolvable, or search
for better alternatives to shots.

We will continue developing our solvability algorithm to
work with all Angry Birds levels. The causes of many negative
results can be identified, this means that we know what we need
to work on to improve and expand our algorithm in the future.
We hope that future agents implement and use our module as
core components in the pursuit of agents that perform better
than humans.
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