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Abstract—Throughout scientific history, overarching theoreti-
cal frameworks have allowed researchers to grow beyond per-
sonal intuitions and culturally biased theories. They allow to
verify and replicate existing findings, and to link disconnected
results. The notion of self-play, albeit often cited in multiagent
Reinforcement Learning, has never been grounded in a formal
model. We present a formalized framework, with clearly defined
assumptions, which encapsulates the meaning of self-play as
abstracted from various existing self-play algorithms. This frame-
work is framed as an approximation to a theoretical solution
concept for multiagent training. On a simple environment, we
qualitatively measure how well a subset of the captured self-play
methods approximate this solution when paired with the famous
PPO algorithm. The results indicate that throughout training the
trained policies exhibit cyclic evolutions, showing that self-play
research is still at an early stage.

I. INTRODUCTION

In the classical single agent reinforcement learning (RL)
scenarios described by [1], where a stationary environment is
modelled by a Markov Decision Process (MDP), a solution
concept can be defined. MDPs are solved by computing a
policy which yields the highest possible episodic reward.
However, it is not clear how to define a pragmatic solution
concept when training a single policy in a multi-agent system,
for an agent’s optimal strategy is dependent on behaviours
of the other agents that inhabit the environment. An initial
solution is to compute the expected reward obtained by a given
policy defined over the entire set of all possible other policies
in the environment. Discouragingly, this policy set may not
only be computationally intractable to process, it may even be
infinite, if stochastic policies are allowed.

To approximate this solution, an existing family of multi-
agent RL (MARL) methods train and benchmark a policy
against a set of preexisting fixed agents, using as a success
metric the relative performance against these agents. These
methods rest on two assumptions. Firstly, the availability of
benchmarking policies at training and testing time. Secondly,
these existing policies dominate, in a game theoretical sense,
most of the policy space. Thus it would not be necessary to
compute the expectation over the entire policy space, using as
a proxy an expectation over the existing policies.
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Within the field of RL there are multiple methods for com-
puting these benchmarking policies which must be available
before training commences. To name a few, these preexisting
policies can be computed using supervised learning on datasets
of expert human moves to bias learning a policy towards expert
human play [2] [3]; they can be tree-search based algorithms
using hand-crafted evaluation functions or Monte Carlo based
approaches if an environment model is present [4]. Some
methods are as creative as deriving a strong policy by using
off-policy methods on video replays [5] [6].

What about the cases in which we don’t have access to these
learning resources? Such as when developing a new game for
which no prior expert information is known, and for which any
hand-crafted evaluation functions yields a fruitless policy. A
priori methods such as optimistic policy initialization are still
permitted [7]. Yet, under such constraints, there is little room
to compute a set of good benchmarking policies, let alone a
set of dominating policies.

Authors such as [8] began experimenting on self-play (SP).
SP is a training scheme which arises in the context of
multi-agent training. A SP training scheme trains a learning
agent purely by simulating plays with itself, or with policies
which have been generated during training. These generated
policies can dynamically build a set of benchmarking policies
during training. Such set can potentially be curated to remove
dominated or redundant policies.

Historically, SP lacks a formal definition, and notation is
often not shared among researchers. This has led to isolated,
and sometimes conflicting, conceptions of what constitutes
SP as a training scheme in MARL. It is our firm belief
that a formally-grounded framework with rigorous and unified
notations will strengthen the field of SP MARL and allow
for the creation of more nuanced and efficient contributions.
Incremental efforts on existing and future contributions can
now be captured on a shared language. This paper constitutes
a first step towards defining a generalizing framework under
which SP MARL methods can be inspected. Our contributions:
• A generalizing framework defined under formal notation

to describe SP algorithms in MARL.
• A unifying definition under the presented framework of

some prevalent SP algorithms from the literature.
• A novel exemplary SP algorithm.
• A novel qualitative performance metric for SP training.
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II. RELATED WORK

The notion of SP has been present in the game playing AI
community for over half a century. [8] discusses the notion
of learning a state-value function to evaluate board positions
in the game of checkers, to later inform a 1-ply tree search
algorithm to traverse more effectively the search space. This
learning process takes place as the opponent uses the same
state-value function, both playing agents updating simultane-
ously the shared state-value function. Such training fashion
was named self-play. The TD-Gammon algorithm [9] featured
SP to learn a policy using TD(λ) [1] to reach expert level
backgammon play. This approach surpassed previous work by
the same author, which derived a backgammon playing policy
by performing supervised learning on expert datasets [10].
More recently, AlphaGo [11] used a combination of supervised
learning on expert moves and SP to beat the world champion
Go player. This algorithm was later refined [12], removing the
need for expert human moves. A policy was learnt purely by
using an mix of supervised learning on moves generated by SP
and Monte Carlo Tree Search (MCTS), as presented in [13].
These works echo the sentiment that superhuman AI needs not
be limited or biased by preexisting human knowledge.

In the game of Othello, [14] experimented with training sin-
gle agent RL algorithms using two different training schemes:
SP and training versus a fixed opponent. Their results show
that, depending on the RL algorithm used, learning by SP
yields a higher quality policy than learning against a fixed
opponent. Concretely, TD(λ) learnt best from self-play, but Q-
learning performed better when learning against a fixed oppo-
nent. Similarly, [15] found that deep Q-Network (DQN) [16],
a deep variant of Q-learning, did not perform well when
trained against other policies which were themselves being
updated simultaneously, but otherwise performed well when
training against fixed opponents. The environments used for
their experiments differ too much to draw parallel conclusions
from their results, one of them being a board game and the
other a fast-paced fighting video game.

It is often assumed that a training scheme can be defined
as SP if, and only if, all agents in an environment follow the
same policy, corresponding to the latest version of the policy
being trained. Meaning that, when the learning agent’s policy
is updated, every single agent in the environment mirrors
this policy update. [17] relaxes this assumption by allowing
some agents to follow the policies of “past-selves”. Instead of
replicating the same policy over all agents, the policy of all
of the non-training agents can also come from a set of fixed
“historical” policies. This set is built as training progresses,
by taking checkpoints1 of the policy being trained. At the
beginning of a training episode, policies are uniformly sampled
from this “historical” policy set and define the behaviour of
some of the environment’s agents. The authors claim that such
version of SP aims at training a policy which is able to defeat
random older versions of itself, ensuring continual learning.

1For deep RL, this is equivalent to freezing the weights of the neural
networks used as part of the algorithm.

From this scenario, consider the following: each com-
bination of fixed policies sampled as opponents from the
“historical” dataset can be considered as a separate MDP. This
is because by leaving a single agent learning in a stationary
environment, the fixed agents’ influence on the environment
is stationary [18]. This is of genuine importance, given that
most RL algorithms’ convergence properties heavily rely on
the assumption of a stationary environment [19]. Self-play
algorithms can leverage the assumption that they are using SP,
so they can provide the learning agent with a label denoting
which combination of agent behaviours inhabits the environ-
ment, a powerful assumption in transfer learning [20] and
multi-task learning [21]. In fact, there already are multitask
meta-RL algorithms which assume knowledge of a distribution
over MDPs which the agent is being trained on, such as
RL2 [22]. Note that a SP algorithm featuring a growing
set of “historical” policies will introduce a non-stationary
distribution over the policies that will inhabit the environment
during training. It ensues that the distribution over the set of
MDPs, that the training agent will encounter, becomes non-
stationary.

Similar ideas have also been independently discovered in
other fields. Some methods in computational game theory
directly tackle the idea of computing a strong policy2 by iter-
atively constructing a set of monotonically stronger policies.
In turns, iterated best responses better challenge the current
policy to compute better responses to those, thus generating
a stronger policy. Alternating fictitious play [23] iteratively
computes a best response over set of policies that the learning
agent expects the opponent agents to use. [24] devised a
unifying game theoretical framework to capture this iterative
best-response computation over a set of potential, or previ-
ously encountered, opponent agents. Our contribution shares
the spirit of creating a generalised framework to encompass
existing algorithms, but with a focus on MARL literature
instead of game theory.

In psychology, [25] introduces the adaptive staircase
procedure, where a learning agent is presented with a set of
increasingly difficult tasks. After multiple successful trials at
a task, the agent is promoted to harder tasks, otherwise it is
demoted to easier ones. Such procedure was shown to prevent
catastrophic forgetting 3 on trials outside its current level of
difficulty, linking their results with [17] and SP. This was em-
pirically demonstrated in the deep RL architecture UNREAL
(UNsupervised REinforcement and Auxiliary Learning) [26]
for virtual visual acuity tests [27].

Unfortunately, the numerous empirical successes which
motivate SP as a promising training scheme suffer from lack
of formal proofs of convergence or even rate thereof [3]. We
hope to provide a simple, yet powerful tool to analyze SP
schemes in the next section.

2The notion of a policy in RL is roughly equivalent to that of a strategy in
game theory, the term policy is used for consistency.

3In a multi-agent reinforcement learning context, catastrophic forgetting
refers to the event of a policy dropping in performance against policies for
which it used to perform favourably better.



III. PROPOSED SELF-PLAY FRAMEWORK

Notation: Bold letters represent vectors (π).
Here we present the mathematical formulation, and required

assumptions, for a formal framework which encapsulates the
notion of self-play in the context of MARL. It allows for the
creation and comparison of existing and future SP algorithms.

Let E represent a multi-agent system with n agents and
a reward discount factor γ. This environment E features a
state space S, a joint observation space O = O1 × . . . × On
and a joint action space A = A1 × . . . × An, where Oi
and Ai represent the observation and action space for the
ith agent respectively. Let the (potentially stochastic) mapping
from observations to actions πi : Oi → Ai represent the
policy for the ith agent, and π = [π1, . . . , πn] the joint policy
vector, containing the policy for each agent in E. The joint
policy vector π can also be regarded as a distribution over the
joint action space conditioned on the joint observation space
π : O → A. Let Π = Π1× . . .×Πn be the joint policy space,
where Πi is the policy space for agent i. Finally, given an
agent i, let Π−i denote the joint policy space for all agents
except agent i.

The solution to this environment E for an agent i is
to compute a policy which maximizes its expected reward
obtained when acting in an environment across the entire set
of all possible other policies Π−i in the environment:

π∗ = arg max
π∈Πi

∫
π−i⊆Π−i

Eat∼π;st+1,rt∼P (st,at)[

∞∑
t=0

γtrt]

(1)
An iteration, or episode, of the classical MARL loop goes

as follows: The environment presents all agents with a vector
containing all individual agent observations ot = [o1

t , . . . , o
n
t ]

based on its state st. The vector containing the actions of all
agents is sampled from the joint policy vector at ∼ π(ot).
The environment then executes the action vector at, transition-
ing to a new state st+1 and yielding both a new observation
ot+1 and a reward vector rt containing an observation and
reward for each agent. This loop is repeated until a terminal
state is reached, after which a new episode begins.

Self-play training schemes can be conceived as modules
which extend this loop by introducing a functionality prior
to, and after, every episode. Let π be the only policy being
trained throughout the MARL loop. An SP scheme envelops
the MARL loop by first deciding which policies π′, taken
from a set of fixed policies π′ ⊆ πo, will define the agents’
behaviour for the next episode. This excludes the agent whose
behaviour is defined by π. Once the episode ends, a function
G decides whether or not the (possibly updated) policy π
will be introduced in the pool of available policies πo. This
intuition is formally captured in Algorithm 1, which presents
a SP scheme inside a Partially Observable Stochastic Game
(POSG) loop. Algorithm 1 defines an n-player, general-sum,
partially-observable environment. The steps belonging to the
SP scheme have been highlighted in orange.

Algorithm 1: (POSG) RL Loop with Self-Play.
Input: Environment: (S,A,O,P(·, ·|·, ·),R(·, ·), ρ0)

1 Input: Self-Play Scheme: (Ω(·|·, ·), G(·|·, ·))
Input: Policy to be trained: π ∈ Πi

2 πo = {π} ; // Menagerie initialization

3 for e = 0, 1, 2, . . . do
4 π′ ∼ Ω(πo, π) ; // Sample from menagerie

5 π = π′ ∪ {π};
6 s0,o0 ∼ ρ0;
7 for t = 0, . . . , termination do
8 at ∼ π(ot);
9 st+1,ot+1 ∼ P (st,at);

10 rt ∼ R(st,at);
11 t← t+ 1;
12 end
13 π ← update(π);
14 πo ∼ G(πo, π) ; // Curate menagerie

15 end
16 return π;

A. Framework definition

We define a SP module or training scheme by formalizing
the notions of the menagerie πo, the policy sampling distri-
bution Ω, and the gating function G. Specified by the tuple
< Ω(·|·, ·), G(·|·, ·) >:

• πo ⊆ Πi; The menagerie. A set of policies from
which agents’ behaviour will be sampled. This set always
includes the currently training policy π. A constraint is
placed over πo. All of its elements must be derived, at
least indirectly, from π, the policy being trained. Hence,
all policies in the menagerie are elements of π’s policy
space. The menagerie can change as training progresses
by the curator function described below.

• Ω(π′ ∈ Π−i|πo ⊆ Πi, π ∈ Πi) ∈ [0, 1]; where
π′ ⊆ πo; The policy sampling distribution. A probability
distribution over the menagerie πo, the set of available
policies. It is conditioned on the menagerie πo and the
current policy π being trained. It chooses which policies,
apart from π, will inhabit the environment’s agents.

• G(πo′ ⊆ Πi|πo ⊆ Πi, π ∈ Πi) ∈ [0, 1]; Is the gating
function, or curator of the menagerie. A possibly stochas-
tic function whose parameters are the current training
policy π and a menagerie πo. The curator serves two
purposes, which complex curators could break into two
functions:

– G decides if the current policy π will be introduced
in the menagerie.

– G decides which policies in the menagerie, π ∈ πo,
will be discarded from the menagerie.

The curator bears resemblance with the notion of Hall of Fame
from evolutionary algorithms [28]. As Hall of Fame algorithms
also consider the problem of curating a policy set over time.



B. Assumptions

Our SP framework explicitly assumes the following:
Assumption 1.1: The policies present in the environment can
either be exact copies of the policy being trained, or policies
derived indirectly from it, taken from the menagerie.
Assumption 1.2: Prior, during and after a training episode,
the SP module has access to the agents’ policy representa-
tions4. Allowing any-time read and write rights for all policies.

The definitions above capture the minimal structure of
an SP training scheme. However, it is possible to condition
both the policy sampling distribution Ω and curator G on
any other variables. For instance, it could be interesting to
define an SP algorithm whose components are conditioned on
episode trajectories, which has proved extremely useful in RL
research [29], and is in fact mandatory for policy gradient
algorithms [30].

Our SP framework only interacts with agent policies, mak-
ing the choice of environment model orthogonal to any flavour
of SP, and thus SP training is agnostic to the underlying
environment model.

C. Self-play as an approximation to the multiagent solution

Assumption 1: There exists a set of policies, π ⊆ Π, signifi-
cantly smaller than the entire original policy space, |π| � |Π|,
which we can use as a proxy for Π in equation 1. If so, the
integration over the policy space, becomes computationally
tractable. Making equation 1 computationally solvable.

The policy sampling distribution Ω and the gating function
G are tools by which a menagerie πo can be computed and
curated over time. Self-play can be conceived as a bottom up
approach towards computing a set of policies, πo, to be used
as a proxy for the entire policy space Π in equation 1. The
obvious fact that an agent cannot act according to a policy
outside its policy space means that a menagerie can only
contain policies of a single policy space. Consequently, for
environments with disjoint policy spaces, SP may be unable
to serve as an approximate solution to equation 1.

[31] introduces the notion of the gamescape, a polytope
which geometrically encodes interactions between agents for
zero-sum games. They derive a set of algorithms whose goal
is to grow and curate an approximation to this polytope. We
draw parallels between their work and the idea of using SP
algorithms to compute a proxy for a target policy space.

IV. SELF-PLAY ALGORITHMS

To demonstrate the generalizing capabilities of our frame-
work, we present three prevalent self-play mechanisms ex-
tracted from the RL literature, and two novel contributions.
Let π denote a policy being trained, and π′ a menagerie:

4If the policies are being represented by a neural network. Access to
the policy representation means access to the neural network topology and
weights.

1) Naive Self-Play: The is the oldest and simplest SP
algorithm, originating in [8]. The premise is that every agent
in the environment is populated with the latest version of the
policy being trained. All agents share the same behaviour.
To capture this, the policy sampling distribution Ω puts all
probability weight to the latest π.

Ω(π′|πo, π) =

{
1 ∀π′ ∈ π′ : π′ == π

0 otherwise

In this degenerate scenario the gating function G always
deterministically inserts the latest version of the training policy
into the menagerie, discarding the previous menagerie entirely.

G(πo, π) = {π}

2) δ-Uniform Self-Play: This SP algorithm, introduced
by [17] and briefly discussed in Section II, treats the menagerie
as a set of “historical” policies. The authors wanted to create
an SP algorithm that ensured continual learning by training a
policy which could consistently beat random previous versions
of itself.

Let M = |πo| be the size of the menagerie, and let δ ∈ [0, 1]
denote the percentage threshold on the oldest policy that will
be considered as a potential candidate to be sampled from the
menagerie by Ω. Thus, δ = 0 corresponds to all policies in
the menagerie being considered as candidates and δ = 1 only
allowing the latest policy introduced in the menagerie to be
sampled by Ω. After computing the set of candidate policies
following this criteria, the authors use a uniform distribution
to sample from it.

Ω(π′|πo, π) = Uniform(δM,M)

The gating function G used in δ-uniform-self-play is fully
inclusive and deterministic. After every episode, it always
inserts the training policy into the menagerie.

G(πo, π) = πo ∪ {π}

3) Population Based Training Self-Play: As introduced
in [32], Population Based Training SP is a parallel self-
play implementation highly influenced by evolutionary algo-
rithms. Each agent is independently learning on their own
SP augmented MARL loop. The menagerie, initialized with a
population of random policies, is shared amongst all learning
agents. The menagerie is treated as the population of an
evolutionary algorithm.

The policy sampling distribution chooses opponents from
the menagerie which are similar in skill to the currently
training agent. Where agent skill is meassured by Elo ratings.

The gating function is analogous to the selection, crossover
and mutation phases of an evolutionary algorithm. It modifies
and changes the menagerie by dropping low performing agents
and introducing evolved versions of the existing population.



V. PROPOSED INCREMENTAL INNOVATIONS

In this section we present a novel policy sampling distri-
bution that alleviates on the shortcomings of the δ-Uniform
sampling distribution and a novel qualitative metric for the
efficiency of the menagerie when it comes to using it as a
proxy to the whole policy space. This shows how minimal
incremental changes to existing methods, within the context
of a general framework, can lead to improvements.

1) δ-Limit Uniform policy sampling distribution: In tradi-
tional supervised learning approaches, training datasets are
fixed before training commences. This yields a stationary
distribution from which training examples are drawn. RL
suffers from sequential and correlated data collection during
training, rendering a non-stationary distribution of training
samples.

We analyze a property of the δ-Uniform SP algorithm.
As stated earlier, it aims to generate an agent which can
defeat random versions of itself. However, this is affected
by the sequential data collection curse of RL methods. By
sampling uniformly at random from a menagerie, we observe
a bias of the policies sampled from Ω towards earlier policies.
Intuitively, earlier policies are sampled more often by virtue
of being electable to sampling more times than recently added
policies. Computing a policy which generalizes against a
broad set of policies is desirable. However, we worry that by
sampling earlier policies too often the learning policy will be
biased towards interacting with, often random, initial agents.
This worry is furthered by empirical evidences stating that,
in certain board games, the quality of the fixed policies being
used during training is directly proportional to potential quality
of the policy being trained [14].

With this in mind, we present a novel policy sampling
distribution, named δ-Limit Uniform, that gives increased
probability to later policies. An attempt to amend the δ-
Uniform bias. Figure 1 shows the histograms of the number
of samples per policy for both δ = 0-Uniform and δ = 0-
Limit Uniform, clearly showing how the δ-Limit Uniform
distribution avoids biasing towards earlier policies.
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Fig. 1: Histograms of sample rates for policies inside a menagerie
for two sample training runs. The horizontal orange line represents
a Uniform(0, 500) distribution.

Let |πon| be the size of the menagerie at the be-
ginning of the n-th episode. πe is the e-th policy to
have entered the menagerie (asserting e ≤ n). The
logit probability ρne and normalized probability pne of
sampling πe for the n-th SP episode are computed as

ρne =
1

|πon|(|πon| − e)2
, (2) pne =

ρne∑|πo
n|

i=0 ρni
. (3)

2) Qualitative Metric for the Menagerie’s Efficiency: A
visual metric, aimed at understanding how well a menagerie
approximates the entire policy space. Policies can be charac-
terised by the behaviours/state trajectories they produce when
acting in the multi-agent environment. Thus, assessing the span
of the state trajectories induced by the SP training enables
an assessment of the span of the policies living inside the
menagerie, which is what we mean by assessing how well a
menagerie approximates the whole policy space. This visual
display comes from a 2D embedding of the state trajectories
experienced by an agent during each training episode. We
use t-SNE [33] to project the multi-dimensional, environment
specific representation of state trajectories unto a 2D space.
Other dimensionality reduction algorithms can be used. We
propose two visual cues:

• Density Heightmap: visualization of the density function
yielded by the embedded state trajectories, computed
via a kernel density estimation method. Intuitively, it
gives insight towards understanding where, inside the
embedded state trajectory space, the agent has spent most
time on during training. It is valuable providing we can
label some subsets of the embedding space with high-
level understanding of what is happening throughout the
state trajectories.

• Time Window-Avegared Self-Play-induced episode
trajectories: visualization of the temporal evolution of
the average embedded trajectory/episode for an agent dur-
ing training. Computed by uniformly dividing the time-
sorted embedded trajectories in buckets, with the window-
averaged trajectory being the median trajectory, computed
in the 2D embedding space, of each bucket. Intuitively,
it displays which parts of the embedded trajectory space
the agent has traversed during throughout training time.
This cue can be used to visually assess to what extent
an agent is prone to re-visit some areas of the trajectory
space, which can help identify catastrophic forgetting and
cyclic policy evolutions.

t-SNE projected representations vary depending on the data
used as input. For our purposes it means that if we were
to separately embed two sets of different state trajectories,
we might not be able to meaningfully compare both separate
embeddings. We tackle this problem with two measures:
(1) We compute a basis of possible state trajectories using
some environment-specific heuristics that enables the basis to
span over most of the whole state trajectory space. The number
of basis state trajectories computed is of the same order as
the number of state trajectories generated during training.



(2) When comparing two or more sets of state trajectories
generated by different algorithms, we compute the embeddings
of each algorithm-induced state trajectories all at once via
an aggregated set of state trajectories. Thus, it allows for
meaningful comparisons across state trajectory embeddings
from different algorithms.

VI. EXPERIMENTAL DETAILS

In this section, we aim to qualitatively evaluate the effect of
different SP training schemes when paired with two variants of
PPO [34], a popular on-policy RL algorithm, using our novel
qualitative metric assessing the efficiency of the menagerie
when it comes to acting as a proxy to the whole policy space.

A. Experiment description

The rest of this section presents the environment, evaluation
metrics, algorithms and SP schemes used in our experiment.

1) Environment: We implemented a repeated version of
Rock Paper Scissors (RPS) with imperfect recall [35], which
we have named Repeated imperfect recall Rock Paper Scissors
(RirRPS)5. This is an extended form, two-player, zero-sum,
simultaneous game. The agent which obtains the highest cu-
mulative reward by the end of the last repetition is considered
the winner. Ties are broken uniformly at random.

A repeated game of RPS features the iconic discrete action
space A = {Rock, Paper, Scissors}. To reduce the complex-
ity of the state space, and to ensure a state representation of
fixed length6, we make our repeated RPS a game of imperfect
recall. That is, the agents do not have access to the full
history of previous actions, only a fraction of them. The state
is represented by the last nrecall joint actions taken by the
players. Thus, st = (at−nrecall

, . . . ,at−1). A placeholder
empty move is used to populate the state when there have
not been enough repetitions to fill the state representation yet.
The environment’s reward function is specified as: paper beats
rock, rock beats scissors, scissors beat paper, and the winner
of each repetition is attributed a reward of +1, and the loser
a penalty of −1. In the following of this work, nrecall = 3.

2) Evaluation metrics: We focus our attention to using our
novel qualitative metric introduced in Section V, based on
projecting state trajectories encountered during agent training
unto a 2D space. To stabilize the t-SNE projection, we need
to compute a set of basis trajectories. This set is comprised
of trajectories gathered from invidivually pitting Rock, Paper
and Scissors agents against a Random agent. This set is used
to help visualizing the natural and stable shape of the dimen-
sionality reduced space of all the possible state trajectories.

3) Algorithmic choices: We used two RL algorithms, both
of them being slight variants of the Proximal Policy Optimiza-
tion (PPO) algorithm [34]. We chose to use two architecture
variants for the policy, one feedforward (MLP-PPO), and one

5We open source our implementation using the OpenAI’s Gym en-
vironment [36] and make it available at: https://github.com/Danielhp95/
gym-rock-paper-scissors

6Suitable for feedfowrad neural networks.

TABLE I: PPO hyperparameters used for the experiment.

Hyperparameter Value

Horizon (T) 2048
Adam stepsize 3× 10−4

Num. epochs 10
Minibatch size 64
Discount (γ) 0.99
GAE parameter (λ) 0.95
Entropy coeff. 0.01
Clipping parameter (ε) 0.2

recurrent(RNN-PPO), in order to demonstrate the generality
of our framework7. Hyperparameters are presented in table I.

4) Self-Play choices: For each of the algorithms mentioned
above, we trained an agent on a self-play extended MARL loop
as shown in algorithm 1. We used 3 self-play schemes:
• Naive SP
• δ = 0-Uniform SP.
• δ = 0-Limit Uniform SP.
For all SP training schemes, the initial menagerie contains

a copy of the initial policy, with randomly initialized weights.

VII. RESULTS

Figure 2 shows the 2D t-SNE state trajectory embeddings
for all combinations of SP algorihtm & RL algorithm intro-
duced in the previous section. Each training session lasted for
a 1e4 episodes on the RirRPS environment.

Each SP agent using Naive SP clearly exhibit cyclic catas-
trophic forgetting as their time window-averaged trajectories
in the embedded space exhibit a cyclic behaviour, whereas
δ = 0-Uniform and δ = 0-Limit Uniform SPs’ time window-
averaged trajectories seem both less affected. Especially in
the cases of the δ = 0-Limit Uniform and Naive SPs, the
Density Heightmaps of RNN-PPO seem to be made of plateaus
whereas the ones of MLP-PPO are made of picks, indicating
that recurrent policies seem to further the spreading of the
menagerie over the whole policy space to some greater extent
compared to feedforward policies.

Comparing δ = 0 Uniform and δ = 0-Limit Uniform
SPs, we can observe a progressive and somewhat ordered
exploration of the policy space by the former as its Time
Window-averaged SP episode trajectories in the embedding
space are visiting one by one each fixed agent clusters. Since
the former biases towards earlier policies that have entered the
menagerie when sampling opponent, we hypothesize that this
time-related bias is entering in synergy with the learning rate
of the trained policy. Indeed, after behaving like a Rock Agent
(green cluster), the trained policy starts to behave like a Paper
Agent (purple cluster) as the Rock Agent-behaving policies
that have entered in the menagerie progressively starts to be
sampled as opponent. Both the MLP-PPO- and RNN-PPO-
equipped agents exhibit that cyclic and ordered progression

7In order to address any potential experimental reproduction issue, we have
open-sourced our re-implementations of the aforementioned RL algorithms.
We welcome our peers to collaborate with us in extending the number of
algorithms that are available as well as to improve the overall architecture.

https://github.com/Danielhp95/gym-rock-paper-scissors
https://github.com/Danielhp95/gym-rock-paper-scissors


Fig. 2: Density Heightmap and Time Window-averaged SP-induced of episode trajectories in the computed 2D t-SNE state trajectory
embedding space. Top-Left: Naive SP with MLP-PPO. Bottom-Left: Naive SP with RNN-PPO. Top-Centre: δ = 0-Uniform SP with
MLP-PPO. Bottom-Centre δ = 0-Uniform SP with RNN-PPO. Top-Right: δ = 0-Limit Uniform SP with MLP-PPO. Bottom-Right:
δ = 0-Limit Uniform SP with RNN-PPO. RirRPS environment, 1e4 SP training episodes. Green, purple, and red-colored clusters are
embeddings of state trajectories resulting of pitting, respectively, RockAgent, PaperAgent, and ScissorsAgent against a RandomAgent. The
scattered blue dots represents the individual projection of each one of the 10e4 trajectories. Their density heightmaps are represented
through dashed contours. The time-sorted training trajectories experienced by the SP agents were divided into 20 time-windows, and a
centroid (median trajectory) was computed for each. Consecutive centroids have been linked by arrows, creating the Time Window-averaged
SP-induced episode trajectories. Starting at the black dot, their progression is highlighted via the rainbow colour transitions.

in the embedding space. Free of the sampling bias, the latter
SP exhibit a similarly ordered progression in the embedding
space when looking at it with a coarser time window division,
and with some quick alternation when looking at it with a
finer time window division, as expected of a truely uniform
opponent sampling distribution.

A. Discussions

1) Evaluation Metrics: It stands to reason that our pro-
posed qualitative metric would yield a (visual) measure of the
extent to which the menagerie is actually able to approximate
the policy space. Our novel qualitative metric is a first step
towards the construction of a robust, quantitative metric for
the menagerie-induced spread over the whole policy space,
for a given environment.

2) Stochastic vs Deterministic policies: Independently of
which RL exploration scheme is used to help any RL agent
explore an environment’s state space, it stands to reason that
the stochastic variations induced by the use of stochastic
policies naturally enhance any RL agent’s ability to explore
the state space, compared to the use of deterministic policies.
Thus, in the context of SP training, stochastic policies may be
preferred over deterministic ones when the goal is to discover
a menagerie which acts as a proxy for the whole policy space,
due to increased exploration.

3) PPO Hyperparameters: PPO’s horizon (T) is the hy-
perparameter that controls how many environment interactions
will be gathered prior to a policy update. This hyperparam-
eter controls the extent to which Algorithm 1’s inner loop

is operating with the stationary policies. Indeed, until (T)
experiences have been gathered, the policy being trained by
the PPO algorithm remains unchanged. Therefore, the horizon
hyperparameter might affect the amount of opportunities the
SP loop has to yield updated policies for the curator to con-
sider. Depending on the SP scheme used, it can greatly affect
the rate at which the menagerie spreads over the whole policy
space. Many RL algorithms feature similar hyperparameters.
We hypothesize that such hyperparameters will be critical for
generating a menagerie to act as a proxy to the policy space.

4) Extrapolation: RirRPS is a 2-player, zero-sum and
simultaneous game. Our experimental results may not extend
to n-players or general-sum games.

VIII. CONCLUSIONS & FUTURE WORK

In this paper we have presented a general framework
in which to define SP training schemes. This is done by
formalizing the notion of a menagerie, a policy sampling
distribution and a curator (gating) function. This framework
is framed as theoretical approximation to a solution concept
in MARL, under stated assumptions. The framework’s gener-
alizing capabilities have been showcased by capturing existing
SP algorithms into it. We have also identified shortcomings of
some of the captured methods, and have proposed methods
which could potentially overcome said issues. We carried an
experiment featuring a novel qualitative metric that denotes
how well a menagerie expresses the entire policy space by
visually displaying how much of the (embedded) state trajec-
tory space an agent visits during training. Our results show



that there are qualitative difference between how different SP
algorithms traverse this space.

It will be interesting to carry out SP centered experiments
which use more nuanced existing evaluation metrics (such as
the computational complexity of a given SP scheme), or to
create evaluation metrics which better capture the quality of a
menagerie to act as a proxy of an environment’s policy space.

Future work will study other possibilities presented within
the expressive capabilities of our SP framework. For instance,
there is no research exploring which policy sampling distri-
bution works best for different types of environments. Fur-
thermore, it may even be possible to learn a policy sampling
distribution or curator during training using meta RL.
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