
Procedural Generation using Spatial GANs for
Region-Specific Learning of Elevation Data

Ryan J. Spick
Department of Computer Science

University of York, York, UK
rjs623@york.ac.uk

Peter Cowling
Department of Computer Science

University of York, York, UK
peter.cowling@york.ac.uk

James Alfred Walker, Senior Member, IEEE
Department of Computer Science

University of York, York, UK
james.walker@york.ac.uk

Abstract—Heightmap generation is currently a tedious topic
with the majority of generation using Perlin noise which forms a
reliable, but sometimes repetitive output. In this paper, a method
of generating height maps from real-world digital elevation data
taken from specific regions of the planet is proposed. Raw
elevation data sourced from NASA’s SRTM (30m) data set is
transformed into a height map format, this data is then passed
into a two type unsupervised model. The method uses a type
of generative adversarial network to learn the spatially-invariant
features within the input regions. Producing a network model
that can output an extensive amount of varying, but visually and
structurally similar height maps to that of the input regions. The
visual validity of outputs from the network was tested using data
from 262 human participants, with over 90.15% of generated
samples being correctly assigned to the original input data with
a significance of P <0.001.

Index Terms—Deep Learning, Generative Adversarial Net-
work, Height Maps, PCG.

I. INTRODUCTION

Heightmaps provide a lightweight method of displacing 3D
mesh terrains into a desired structure within graphical environ-
ments such as; games, simulations, scientific renders etc. Many
modern open world games (Skyrim, Fallout) compress their
map data into a heightmap image, applying some interpolation
of values to smooth the differences between two height points
and increase detail when the scene is rendered. Usually, height
maps take the format of a raster image where the image
forms a 2D array of points; for simplicity these images usually
only use 1 colour channel forming a grayscale image. Each
point represents a corresponding point in virtual space that can
displace the terrain equal to the intensity of the pixel’s colour.

Currently, height maps are largely generated via procedural
noise based systems such as Perlin noise [1], real-world
height data [2] or a more algorithmic approach like the
diamond square algorithm [3]. Perlin noise is arguably the
most versatile at generating procedural height values, with the
ability to continuously produce smooth transitions of height
values at any point on a surface, though using Perlin noise
entirely on its own can create non-realistic height maps,

This work was supported by the EPSRC Centre for Doctoral Training
in Intelligent Games & Games Intelligence (IGGI) [EP/L015846/1] and
the Digital Creativity Labs (digitalcreativity.ac.uk), jointly funded by EP-
SRC/AHRC/Innovate UK under grant no. EP/M023265/1.

due to the repeating non-structured noise features. Fractal
Brownian Motion (FBM) [4] is a method of controlling the
intensity of differing noise layers, sampling and averaging
points from Perlin noise over multiple levels of varying height
and frequency creates a height map of increasingly detailed
but less noticeable features. The diamond-square algorithm
[3] avoids the need for a noise based reliance. By averaging
points continuously between certain seeded points on a grid,
this method can produce highly detailed fractal terrains that
can mimic mountain ranges within the real world. This type
of algorithm can generate non-uniform distributed structures,
though with an element of randomness within the seeded
points, can be equally as difficult to control the resulting terrain
outputs. None of these methods provides direct control over
the ability to create variant procedural terrain based on a target
objective without the need for human supervision.

Certain developers of games have expressed the need for
additional tools for generating terrain. The team behind Hell-
blade, at a Keynote talk at the IGGI conference on games 2018
[5], expressed the need for more interesting and interactive
world map environments that can be generated with little input
through follow up questions to their talk. Another example
is an author of a highly detailed 2D map generation tool
called Here Dragons Abound [6] expressing concerns with
the level of “interesting” generations Perlin noise is capable
of producing, with users soon becoming bored of the repetitive
outputs that the noise based algorithms can generate.

The ability to generate terrains of a specific type could
provide artists with a base to add the structures and areas
necessary for a game environment. While at a broader level
the generation tool could entirely replace creations of height
maps through automated learning of regions that the creators
want the game to exist within. The method proposed is a novel
approach to generating heightmaps learnt through a genera-
tive deep learning model which can output similar regions
to that which they were trained on, essentially creating an
environment where users can specify what their procedurally
generated terrains should resemble.

The structure of the paper is as follows; Background work
is discussed in Section II. Followed by an overview of data
collection and cleaning in Section III. Section IV outlines the
process of obtaining and training network paramaters. With
results shown in Section V and across Figs. 4, 6, 7 and 8.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

(a) Proposed Spatial GAN (b) Deep Convolutional GAN (c) Diamond-Square Algorithm (d) Fractal Perlin Noise

Fig. 1: The proposed method using Spatial GANs (a) vs. other common approaches (b,c,d). The comparison shows a large
improvement on the learning structure of the SGAN over the previously attempted DCGAN results - which was trained on
similar elevation data. While providing a contender to the predominantly used fractal Perlin noise, with structures learned
directly from real terrain. Table I shows a more concise comparison.

Lastly a discussion of issues and a summary conclusion appear
in Sections VI and VII.

II. BACKGROUND

A. Procedural Content Generation (PCG)
PCG is a method of utilising techniques and algorithms to

generate content through automated processes with a focus
on randomness, with the definition explicitly excluding any
content that has a manual creation process (using graphics
engines, inbuilt editor tools) [7]. Though this is an arguable
statement, as content generated with procedural techniques
that are polished through manual involvement may still be
classified as procedural, creating a slightly unclear divide on
what PCG encompasses. Though there are a vast amount of
contexts that PCG surrounds such as; Height maps, AI agents,
rules of games, automated balancing etc.

PCG was originally created as a way of compressing data,
with Akalabeth: World of Doom (1979) being one of the first
instances, though since setting precedence for a vast amount
of games to adopt this technique, using terrain generation
methods to condense endless maps into a few lines of code
[8]. These early games (e.g. Rogue (1980)) would use PCG as
a method of holding a larger static game world that would usu-
ally require more data storage than was available at the time,
using a seeded random number generator the exact worlds
the developers devised could be replicated. Another classic
example is the adventure game Elite (1984), a game where
thousands of planets were generated procedurally, while using
seeds to recreate prior interesting generations, reducing what
would have been an intractable problem given the memory
bottlenecks at that time into a remarkable, near-endless game.

B. Deep Learning Generative Methods
Deep Learning or Deep Neural Networks allow the pro-

cessing of data through multiple defined layers (a neural
network) of varying computational functions that learn to
create a representation of the input data using backpropagation
to update weights at nodes to reduce the loss between true and
predicted values.

Generative adversarial network (GANs) (2014) [9] provide
a unique framework that utilizes two deep neural networks:
a generator (G) network which attempts to capture the dis-
tribution of the training data, mapping this on to an input
of latent noise, and a discriminator (D) network that will
estimate the probability of its input being from the original
training data or from the generators ”recreated/forged” output,
essentially a discrete multilayer perceptron classifier. The
power of adversarial networks lies in being able to mimic
any distribution of training data from a nearly endless amount
of domain areas. Mapping these learned weights within the
generator network back on to a latent vector of noise, upscaling
the size with each layer of the network, to finally produce an
output based on the trained network’s unsupervised inputs.

The recent explosion of deep learning has affected a large
portion of technology industries, with applications in the
games field looking at a varying degree of generation methods.
Variational autoencoders, a type of unsupervised learning
method, has been used to generate levels [10], visually chang-
ing graphics outside of game engines using convolutional
filters to change the colours to something more understandable
to the user [11]. Also improved texturing of 3D environments
with the use of GANs [12]. Lastly a study on level generation
was conducted using GANs [13]. Based on these examples
there is an obvious push for more content being generated
using these unsupervised methods, requiring little input once a
model has been fully trained, though there is little exploration
of using machine learning methods to generate the terrain for
3D environments.

C. Related Previous Work

A similar task and the original idea of generating terrains
using GANs from regions of the planet was first mentioned in
[14], where the authors attempt to generate similar outputs
from a data set from the Alps. Utilizing multiple state of
the art deep learning optimization’s combined with a deep
convolutional GAN (DCGAN) [15], a type of GAN built
around the augmentation of convolutional layers in place

TABLE I: Comparison of algorithms covering features that would be deemed important within an automated generation tool.

Algorithm Tileable (Seamless) Detailed Generations Non-Repeating Features Feature Selection

SGAN - X X X
Fractal Perlin Noise X X X -
Perlin Noise X - - -
Diamond-Square X X X -
DCGAN - - X -

of the multilayered perceptron [16] structure of the original
GAN. With the filters of the convolutional layer producing a
model focused more at spatial correlations, they show human
interaction results with their output rendered height maps
which show promising potential. Though the inherent lack of
upscaling from a DCGAN shows a limitation from a usability
perspective. Furthermore, the terrain outputs produced appear
fairly noisy and lack an amount of similarity to their derived
regions, perhaps due to the oversaturation of varied data points
used.

Recently in 2017, a novel framework was proposed for the
use of Spatial GANs (SGAN) [17]. Spatial GANs modifies the
DCGAN [15] to remove fully connected layers, this allows
for the scalability of outputs to any size and has properties
that allow learned features to be mapped translation-invariant
on to outputs. The SGAN architecture also follows DCGANs
by removing all pooling layers, replacing them with strided
convolutions. The strides within the generator and discrim-
inator networks inherently learn the up and down scaling
respectively, with 1/2 stride in the generator and 2 stride in
the discriminator (Stride size affects how far the kernel will
move when calculating outputs - stride of 1/2 will double the
output size, 2 will halve the output size etc.). The input noise
distribution of an SGAN begins with a tensor of latent noise
compared to a single vector, providing a much larger range
of possible spatially-variant structures for generations of the
network. Overall SGAN boasts an accurate texture specific
solution with an extremely fast output time compared to the
previous methods discussed, due to the simplicity of network
design - removing the aforementioned fully connected layers.

III. DATA COLLECTION AND PREPROCESSING

The data was collected from an open source elevation map
data set Shuttle Radar Topography Mission 30m (SRTM)
courtesy of NASA [18]. This data provides a 30m to 1-
pixel spatial resolution of the elevation topology of the planet,
providing enough detail for the generative model used to learn
the underlying features. Each region was approximately taken
from a corresponding 100km2 region.

Using the python library Elevation.py, a module for; ac-
cessing, downloading and processing SRTM elevation data,
an automated tool was created to quickly process large areas
of the planet given a rectangle area defined by longitude and
latitude points, allowing the system to explore terrain patches
for random locations of the planet, to selectively choose inputs

Fig. 2: Example training image region (right) (100km2) within
Southern Africa (-14.12, 17.34) (left). Capturing the elevation
data of the region in to a height map format. With darker areas
of the height map corresponding to flatter terrain and whiter
with higher terrain.

to the network that are structurally interesting and different
enough from other examples to train. This created easily
manipulatable data which was banded from its raw continuous
height data into a grayscale (1 colour channel) heightmap
format, which was required as the input shape for the network.

The image was resized by a factor of 0.5, using anti-
alias resizing, compressing some large areas of terrain which
initially created a near intractable task for the network to learn.
This value was chosen through a subjective initial run through
of varying sized inputs to the network. Resizing by a half was
a value such that the input features were still recognizable, but
the relatively small filters of the network would still learn. The
height map data was largely clean, though when initial runs
were conducted there was a small amount of pixel noise within
the downloaded height maps. To reduce the chance of this
noise appearing in the outputs a small median blur of kernel
size 3x3 was applied to remove the noise without affecting
the structural integrity of the height map. An example of the
final clean height map can be seen in Fig. 2 alongside the
real region the elevation data was extracted from (Taken from
Google maps).

IV. METHODOLOGY

In this section, there will be an explanation of how and why
network parameters were chosen. The experimental setup that
the network was trained on, and the times involved. Finally
the network training process itself, with a further discussion
on training issues and how they were alleviated.

Generator Sample

SampleReal Data Point

Latent
Vector Z Discriminator Real or Fake?

Fig. 3: Generative network training sequence, sample is taken
from Generator or Real Data Point and fed through to the
discriminator, which classifies the inputs as discussed in
background II-B.

A. Network Parameters

As discussed in the introduction, the spatial GAN model
[17] provides a method of learning translation-invariant fea-
tures from an input image through a discriminator network,
mapping these features back on to a tensor of noise using an
upscaling generator network. A visualisation of the network
structure is shown in Fig. 3.

The original paper [17] referencing SGANs reviewed the
parameter tuning and recommended values for the discrimina-
tor and generator. For the learning properties exhibited within
the paper filter sizes of 5 for both networks were used. While
using a depth of 5 layers within both networks.

Using these parameters as a starting point, multiple runs
of the model were conducted to explore the best parameters
for filters and depths of both networks. This was an initial
preliminary test run over a small number of epochs, the outputs
were compared visually to their input region as a benchmark.
It was found that changing the generator filter sizes from
5 to 7 allowed a more detailed representation of conjoining
features within the height maps, essentially allowing the filter
to contain more feature information of a large area, while
keeping the discriminator filters lower, at a size of 3, inhibiting
the speed at which the discriminator could learn, crucial to the
equilibrium of the two networks. Previously the discriminator
would rapidly outperform the generator network which would
cause the discriminator to almost always correctly classify the
inputs correctly.

While testing the depth of the network, it was observed
that the deeper the network the more of the local structures
could be combined. The network was tested with depths of 4,
5 and 6 with 5 being the recommended value in the original
paper. The depth used in this network was chosen as 6 for
this specific task, as the outputs needed to contain a large
portion of connected features that resulted within the input
region. Even though the deeper network could produce more
detailed and connected region, the training time overhead was
much larger. Using 1 high end graphics card (GTX 1080TI)
as a benchmark the times per epoch for each depth were as
follows; depth of 4 - 13.5s, depth of 5 - 32.9s, depth of 6 -
128s. Any depth above this required more GPU memory than
was accessible.

A combination of the deeper network and more fine-tuned
discriminator and generator filters allowed for a smooth transi-
tion of trained regions, with values that shifted away from the

TABLE II: List of the main SGAN hyperparameters for the
results shown in this paper. Ni represents the current layer.

Parameter Value

Optimizer ADAM
Learning rate 0.0005
Momentum 0.5
L2 regularization 1e-5
Batch size 32
Depth (N) 5 & 6
Discriminator Filter’s (3,3) * 2(Ni + 6)

Generator Filter’s (7,7) * 2(Nmax - Ni + 6)

chosen parameters showing struggles to learn, and less visually
detailed outputs. The exact hyper parameters used within the
paper can be seen more clearly in table II.

B. Experimental setup

The training models were conducted on a cluster of 8
GTX 1080 TI’s. Each input region could be fully trained
within around 4 hours of training to a point of an output
that resembled the original training point’s features; While
training to a point of completion took around 4 times that
time (16 hours total), though the final 12 hours of training
showed relatively little visual improvements and would only be
required for extremely detailed results. Training was deemed
complete when no noticeable visual changes were seen over
several epochs. This could also be quantified by exploring the
loss graph, when the plot of the loss for the generator started
to plateau with no more changes this signalled the end of
training. The whole training process could easily be scaled
back to one or more lower end card, though training times
would take significantly longer.

C. Network Training

Each discriminator iteration, a mini-batch of 32 images was
constructed, taking random identically sized crops (256x256)
of the input, this allowed the network to learn the struc-
ture of the overall images through smaller representations,
generalizing far better on generated outputs. The network
architecture is shown in Fig. 3. The inputs of real data to
the discriminator were decayed over every early epoch [19],
allowing the generator to remain relevant within the early
stages of the training process due to the inherent noisy outputs
the generator initially produces. These inputs had a noise mask
of Gaussian blur applied with a sigma of 0.5 decaying down
to a minimal value before being removed. This occurred from
the first epoch through to epoch approximately 50, where the
noise was so miniscule there was no more effect.

To further assist the generator in the learning of the highly
complex structures a method used in [20] was implemented,
a technique of optimally training a network that perhaps
struggles with mode collapse within the generator (wherein
the network collapses, producing invariant samples from a

Training Gen. 1 Gen. 2 Gen. 3

Fig. 4: Height map (top) and 3D render (bottom) representation for training and 3 generations regions for (17.3,-14.1,18.1,-13.3)

0 200 400 600 800 1000
Epochs

0

1

2

3

4

5

6

7

Co
st

Generator
Discriminator

Fig. 5: The cost of the generator and discriminator network
over time - until a point of completion in training. Transparent
lines show the raw cost change, full lines show a more
smoothed visualization of the cost using a Savitzky - Golay
filter with a window size of 71.

few more heavily weighted learned samples). During each
epoch the generator was trained 2 times for every discriminator
update, creating a more balanced approach for the previously
under performing generator network. Lastly when feeding
values in to the discriminator the network utilized GAN
batch normalization [21]. By only allowing the discrimina-
tor to see one type of alternating input (real or fake) per
iteration, the discriminator avoids internal conflicts between
data distributions when updating gradients. The network was
trained in all instances for a varying amount of time based
on the input feature’s complexity, though as mentioned above
generally around 4 hours for a structurally similar output was
given - with extra time spent optimizing the for improved
visual concatenation of features. Generally speaking the more
complex the structure of the input region to the network

the longer the network would need to be trained for. There
was little indication to determine the network was converging
on a visually similar output, other than the subjective visual
appearance of the outputs.

To determine when a region was fully trained, the loss
function of the generator could be examined. One measure-
ment used was the change in loss over epochs, where the
generator loss would start to level out, eventually plateauing
an example shown in Fig. 5. At this point, the network would
show little signs of visual change within the outputs. In any
case, the model’s parameters, alongside a visual output sample,
were saved every 50 epochs ensuring that data was captured
frequently enough that if an interesting formation of terrain
within a height map occurred the model could be reloaded to
produce more outputs from that data point.

The early iterations of training were fairly stochastic, usu-
ally within supervised deep learning the loss function gives
a good representation of the learning of the network, in this
situation the loss function of the generator would rapidly spike
and trough early on, until some point of convergence later on
into training.

For each full training session for the generative network
one entire region of the desired output structure would be
used, alongside mini-batch crops. The region used was of size
1400x1400 corresponding to a 100km2 region’s elevation data.
As previously discussed the input image was downsampled
prior to this stage to ensure the filters could learn the structures
of the terrains.

Post-training a median blur of filter size 5x5 was applied
to the outputs. This was due to small noise being retained
in the output image from the generation process. Although
visually the outputs were feature-wise almost identical, the
small amount of noise would create a transition of features
within the rendered version to appear unsmooth with sharp
points.

Training Gen. 1 Gen. 2 Gen. 3

Fig. 6: Height map (top) and 3D render (bottom) representation for training and 3 generations regions for (125.4,53.1,126.2,53.9)

V. RESULTS

A. Generated Output

Following the final training of a model, the network could
then be reloaded and produce replica samples of the original
region almost instantaneously. With the output size of the
image only limited by GPU memory. Fig. 4 shows a grid
comparison of one of the generated samples, each generated
region taking roughly 50ms to generate on a GTX 1080Ti.
These generations were output at a resolution of 2.4k x 2.4k,
roughly 2x the size of the input texture which is a similar
resolution prior to downscaling the input.

Several regions of the planet were chosen based on their
ability to convey the different features and structures that the
method is capable of understanding, though the selection of
coordinates to acquire regions was relatively random. Figs.
4, 6, 7 and 8 showing four chosen trained regions alongside
their general location and more specifically their longitude-
latitude position. These figures show the direct output of a
fully trained network based on the corresponding input, and
for comparison an example of how they would appear in a very
basic 3D render, mimicking how a generated sample might
be visualised within a specific use case scenario, minus the
texturing and entities.

When analysing the figure results in individual detail it is
apparent that there are some limitations with feature connec-
tions. In Figs. 4 and 6 the input contains a large number of
valleys and ridges, the generations fail to completely connect
these features together. Whereas in Figs. 7 and 8 that have
less connected regions in the input, the generations appear to
have less issues with the transfer of features.

When comparing the outputs to a more robust method such
as Perlin noise, the proposed method provides a far more
structured and controlled output, with direct control through
given inputs of the network. Whereas Perlin noise can generate
complex fractal terrain shapes, the features may appear to

continuously repeat over large distances, alongside the element
of randomness within a Perlin noise algorithm it cannot ensure
that a specific feature will exist within an area.

B. Participant Findings

Creating an argument for visual results is extremely sub-
jective as to what appears to look more visually appeal-
ing/similar, excluding algorithmic comparison techniques such
as Keypoint Matching [22] or inspecting distribution of pixels,
which appear bias for the data produced in this paper as
the output images contain inherently similar distributions to
their training regions. Therefore to cement the justification
of useability within virtual environments, an experiment was
devised to discover participant’s ability to distinguish between
the multiple fake regions that were generated. The results of
the study show a strong correlation of the generated samples
with the original training points with 90.15% classification
accuracy when asking participants to classify a sample against
multiple regions, one of which the sample was derived from.

262 individuals were tested through various online forums,
notably Reddit forum r/proceduralgeneration. From the 4
trained regions shown in Fig. 4, 6, 7 and 8 the model generated
20 random samples for each region, leaving a pool of 80
samples. During the survey the participant would be shown
a total of 20 samples, with each sample individually shown
alongside the 4 training regions, these were drawn from a
uniform distribution of the 80 generated samples. The survey
explicitly asked the participants to record their answer based
on which of the 4 original training regions they thought more
closely resembled the shown sample, since each sample was
derived from one of the training regions the accuracy could
be recorded for each choice. The survey took on average just
over 2 minutes (standard deviation(SD) of 90 seconds) for
each participant to complete, giving around 6 seconds (SD
4.5 seconds) per answer.

Training Gen. 1 Gen. 2 Gen. 3

Fig. 7: Height map (top) and 3D render (bottom) representation for training and 3 generations regions for (44.3,36.1,45.1,36.9)

Training Gen. 1 Gen. 2 Gen. 3

Fig. 8: Height map (top) and 3D render (bottom) representation for training and 3 generations regions for (-1.1,52.3,-0.3,53.1)

A non-parametric Wilcoxon test revealed a significance of p
<0.001; showing a highly significant result for users managing
to classify generated height maps with the regions they were
derived from.

VI. DISCUSSION

There were several issues that arose when generating the
results shown in this paper from preprocessing to training
the GAN on complex inputs. this section will focus on
the discussion of encountered obstacles and how they were
overcome.

The network captures most of the local structures - but fails
to connect these small local structures into the larger and more
impactful areas; large valleys, long mountain ridges etc. This
can be seen within [17] where large connected structures of
satellite images fail to be learned. The structure of terrain
can be more accurately connected by increasing the depth of
the generator and discriminator though by doing so requires
a larger amount of memory and training time. Furthermore,

the method struggled with regions that didn’t exhibit visual
repeating features, as the filters would be constantly updated
in a different direction to the general feature trend. This can
be observed through the results of the paper always containing
a general feature trend across the training images.

During early experiments, results and parameter tuning were
very much visually centred, running a model and analyzing the
results after several hundred epochs. Though in some cases
the networks learning potential could fail, in this instance the
network had to be stopped manually and restarted, an artefact
caused by rapid learning of the discriminator within GANs
[23]. Although once decayed inputs to the discriminator were
implemented this issue disappeared. It was also noted that the
first 100 epochs did not influence or correlate to how the final
outputs appeared, with a large variance over a small range of
epochs on the data structures of outputs.

While considering both factors, it made for a very difficult
and sometimes stochastic experience when training the GAN.

Though through the various additional optimization’s: batch
norm, decayed noise etc. this made the process far less
unpredictable allowing for a more controlled training process.

VII. CONCLUSIONS & FUTURE WORK

Overall a robust method for the learning and generation of
elevation data in the form of a height map has been proposed.
With a pipeline describing how one can gather large open
source elevation data and apply a type of generative adversarial
network that has the ability to learn position-invariant features.
Outputting these on to a tensor of noise that up-scales to an
arbitrary size limited only by GPU memory, with features
exhibited in the output of the network appearing spatially
different but structurally similar to the learned input.

The novel contributions of this work show a new technique
to generate height maps for 3D environments. Where previous
work has been shown using GANs for height maps, the outputs
were unstructured and lacked the ability to upscale arbitrarily.
SGANs improves on some issues of the previous approach
that used DCGANs.

This method provides benefits that commonly used tech-
niques such as Perlin noise lack, such as the ability to generate
height maps from specific input images of desired features
with nearly zero human interaction. While the repeating
features that can occur within Perlin noise are reduced in
this method through the learning of larger scaled regions
that contain more features, with the limitations of repeating
features being controlled by the depth of the input tensor of
noise to the generator.

The work and application has the ability to change how
designers of 3D environments create terrain assets, reducing
the time involvement of generating base regions for 3D envi-
ronments. Or at a different level removing designers altogether,
where a push of a button can see countless use-able output
regions being shown to the development team

Though this paper has introduced a new robust tool to
generate height maps based on a target region, the limitations
discussed previously to create a barrier to entry within certain
situations. The lack of ability to seamlessly integrate with other
generated regions is a large problem in continuous open world
environments that generate data on the fly.

Further research will investigate the creation of a similar
type of model that has the ability to endlessly patch together
results shown in this paper. Alongside this, a method of
learning multiple region’s features simultaneously to create
a complete mixture of the input regions would provide more
variety for generated outputs. The two proposed improvements
coupled together would be the start of a tool that would allow
designers to specify where they wish certain features to appear.
Through the manipulation of the input noise to the generation
network, the learned features within the filters of the network
can be more highly activated in the desired location.

This tool would essentially be an unsupervised learning
model that would allow the user to draw or paste sections of
a collection of learned regions on to a canvas, in real time the
model would output the height map with seamless transitions
between the chosen features for any resolution size.

REFERENCES

[1] K. Perlin, “An image synthesizer,” ACM Siggraph Computer Graphics,
vol. 19, no. 3, pp. 287–296, 1985.

[2] J. Becker and D. Sandwell, “Srtm30 plus: Srtm30, coastal &
ridge multibeam, estimated topography,” Electronic journal. URL:
http://topex. ucsd. edu/WWW html/srtm30 plus. html, 2006.

[3] A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of
stochastic models,” Communications of the ACM, vol. 25, no. 6, pp. 371–
384, 1982.

[4] B. B. Mandelbrot and J. W. Van Ness, “Fractional brownian motions,
fractional noises and applications,” SIAM review, vol. 10, no. 4, pp. 422–
437, 1968.

[5] T. Antoniades, “Iggi 2018 conference key note,” Sep 2018.
[6] AboundDragons, “Perlin Noise, Procedural

Content Generation, and Interesting Space.”
https://heredragonsabound.blogspot.com/2019/02/perlin-noise-
procedural-content.html, 2019. [Online; accessed 6-February-2019].

[7] J. Togelius, E. Kastbjerg, D. Schedl, and G. N. Yannakakis, “What is
procedural content generation?: Mario on the borderline,” in Proceedings
of the 2nd international workshop on procedural content generation in
games, p. 3, ACM, 2011.

[8] A. Amato, “Procedural content generation in the game industry,” in
Game Dynamics, pp. 15–25, Springer, 2017. PCG Online and offline
definitions. A few examples of games that used pcg History of PCG.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, pp. 2672–2680,
2014.

[10] R. Jain, A. Isaksen, C. Holmgård, and J. Togelius, “Autoencoders for
level generation, repair, and recognition,” in Proceedings of the ICCC
Workshop on Computational Creativity and Games, 2016.

[11] M. Guzdial, D. Long, C. Cassion, and A. Das, “Visual procedural content
generation with an artificial abstract artist,” in Proceedings of ICCC
Computational Creativity and Games Workshop, 2017.

[12] J. Klein, S. Hartmann, M. Weinmann, and D. L. Michels, “Multi-
scale terrain texturing using generative adversarial networks,” in 2017
International Conference on Image and Vision Computing New Zealand
(IVCNZ), pp. 1–6, IEEE, 2017.

[13] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, “Evolving
mario levels in the latent space of a deep convolutional generative
adversarial network,” in Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 221–228, ACM, 2018.

[14] A. Wulff-Jensen, N. N. Rant, T. N. Møller, and J. A. Billeskov, “Deep
convolutional generative adversarial network for procedural 3d landscape
generation based on dem,” in Interactivity, Game Creation, Design,
Learning, and Innovation, pp. 85–94, Springer, 2017.

[15] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[16] R. J. Schalkoff, Artificial neural networks, vol. 1. McGraw-Hill New
York, 1997.

[17] N. Jetchev, U. Bergmann, and R. Vollgraf, “Texture synthesis with spa-
tial generative adversarial networks,” arXiv preprint arXiv:1611.08207,
2016.

[18] R. Bamler et al., “The srtm mission: A world-wide 30 m resolution dem
from sar interferometry in 11 days,” in Photogrammetric week, vol. 99,
pp. 145–154, Berlin, Germany: Wichmann Verlag, 1999.

[19] M. Arjovsky and L. Bottou, “Towards principled methods for train-
ing generative adversarial networks,” arXiv preprint arXiv:1701.04862,
2017.

[20] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[21] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[22] L. Daoud, M. K. Latif, and N. Rafla, “Sift keypoint descriptor matching
algorithm: A fully pipelined accelerator on fpga(abstract only),” in
Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’18, (New York, NY, USA),
pp. 294–294, ACM, 2018.

[23] S. A. Barnett, “Convergence problems with generative adversarial net-
works (gans),” arXiv preprint arXiv:1806.11382, 2018.

