
Heuristics for Placing the Spawn Points in
Multiplayer First Person Shooters

Marco Ballabio
Dipartimento di Elettronica,

Informazione e Bioinformatica,
Politecnico di Milano,

Email: marco1.ballabio@mail.polimi.it

Daniele Loiacono
Dipartimento di Elettronica,

Informazione e Bioinformatica,
Politecnico di Milano,

Email: daniele.loiacono@polimi.it

Abstract—Level design in first person shooters is a critical and
complex process with many facets. Among them, the placement
of the spawn points, i.e., the positions of the level where players
starts the game after being killed, has a huge impact on the game
experience. In this work, we propose a novel approach to this
problem that combines a set of design rules with a graph-based
analysis of the level. As a results, we design a set of heuristics that,
based on the topological features of the graphs extracted from the
levels, can be used for the placement of spawn point. Finally, we
test our approach with a small user study on three different levels,
comparing our heuristic placement with an uniform strategy.
Although preliminary, our results are promising and suggest
that the level design principles are effectively captured by our
heuristics.

I. INTRODUCTION

First person shooters (FPS) are a very successful genre
of videogames, where players navigate the game environ-
ment from a first person perspective and fight against either
computer controlled characters or other players. These games
allow to experience a high level of immersion and, thus,
require a close attention to level design. Furthermore, the ever-
increasing popularity of competitive multiplayer FPS added a
new level of complexity to this design process in order to
support different game modes, playing styles and interactions
among players. Despite the importance of this process, this
field is still lacking a well established common ground or a set
of standards, whereas level design is still considered as an art,
based only on the human creativity and previous experiences.
However, in the past few years this subject attracted a lot of
researchers that proposed both theoretical frameworks for the
analysis of the design patterns [8] and several approaches to
the procedural generation of levels [11], [5], [14], [2], [15].
Unfortunately, only few works focused on the problem of
resources placement, although it is of extreme importance. In
particular, the position of the spawn points, i.e., the locations
where players appear after being killed, can significantly affect
the players experience.

In this work, we propose a novel approach to the placement
of spawn points that is inspired by the design principles
identified in [17] on the basis of an analysis of map design

and game dynamics of Quake 21. To use this knowledge in
practice, we introduce a set of graph-based representations
for the FPS levels and then we map the design principles to
some topological features that can be computed using these
graph-based representations. Accordingly, we design a set
of heuristics that can be applied to procedurally place the
spawn points in a FPS map, on the basis of the analysis of
graphs extracted from the FPS levels. Furthermore, to test
our heuristics, we compared our heuristics with a uniform
placement strategy, by carrying out a small user study on three
different levels that involved 27 users . Although preliminary,
the results are promising and show that our heuristics seems
indeed able to capture the design rules listed in the literature.

The remainder of the paper is organized as follows. In
Section II we discuss the related work. The underlying design
principles used to design our heuristics are described in details
in Section V. In Section IV we provide some background about
different kind of map representation and we introduce a novel
set of graph-based representations. In Section VI we report
and discuss our experimental analysis. Finally, in Section VII
we draw our conclusions.

II. RELATED WORK

A few works in the game research literature studied the level
design principles and patterns used in first person shooters
(either single player or multiplayer). Güttler et al.[7] studied
the spatial design principle of levels, usually called also maps,
in a FPS. In their work, they identified so called points of
collisions, i.e., areas of the map where the majority of players
interactions happen. Larsen[12] analyzed three really different
multiplayer games, Unreal Tournament 20042, Day of Defeat:
Source3 and Battlefield 19424, identifying shared patterns,
evaluating their impact on gameplay, and suggesting some
guidelines on how to use them. Hullett and Whitehead[8]
identified some patterns for single player games, many of
whom can be applied to a multiplayer setting. In [9], Hullett
also analyzed the cause-effect relationships between some of
these patterns and gameplay data collected with real players.

1Id Software, 1997
2Epic Games, 2004.
3Valve, 2005.
4DICE, 2002.

978-1-7281-1884-0/19/$31.00 c©2019 IEEE

Furthermore, in the past few years several works have been
published on the procedural generation of maps for first person
shooters, although most of them focused more on the layout
of the map rather than on the placement of game elements.
In a seminal work, Cardamone et al.[3] proposed an approach
to generate maps for multiplayer first person shooters that are
fun to play: they introduced the concept of fight time, that
was defined as the time span from the moment in which
two players engage in a shooting to the death of one of
them, and argued that maximizing it lead to maps that are
more fun to play. Instead, Lanzi et al.[11] focused on the
generation of maps that are balanced for two players that have
either a different playing style (e.g., are using two different
weapons) or different skill levels. The same idea, was later
extended by Loiacono et al. by introducing a multiobjective
approach to generate maps with several design objectives at
the same time [14] and by generating maps that lead to an
emerging fleeing behavior [15]. Olsted et al.[16] focused on
the generation of maps for teams of players, suggesting that
the previous approaches do not generate maps suitable for this
kind of game experience. Therefore, inspired by the design
used in Counter Strike5 and in Call of Duty6, they devised
a novel procedural generation process: maps are generated
starting from a grid of nodes, adding connections among
them iteratively (based on a set of design rules), and finally
populating them with all the resources, such as spawning
points, weapons, etc. Anand and Wong[1], proposed a search-
based procedural generation approach that is able to generate
a multiplayer maps in a few seconds. Their approach is based
on an analysis of the topological features of the maps, such
as the points of collisions [7], the connectivity between the
regions of the map, the positioning of the control and spawn
points. Cachia et al.[2] took the approach introduced in [3]
a step further with the generation of multi-level maps and
the placement of resources and spawn points. Liapis [13]
proposed an iterative approach to the design of a map by
means of interlocking rooms generated separately. Karavolos
et al. [10] showed how a surrogate model of the interrelations
between different types of content in the same game can be
used for level generation. Finally, Giacomello et al. [5] trained
a Generative Adversarial Network [6] to generate levels for
DOOM7.

III. DESIGN PRINCIPLES FOR COMPETITIVE FPS MAPS

One of the key concept underlying the map design of first
person shooters is the so-called level flow. In single player
experiences, it basically refers to how players naturally move
through the game environment to reach the end of the level.
In this case, the flow is affected by the aesthetics of the
environment (e.g., a notable example of this is the use of colors
in Mirror’s Edge8), by positioning power-ups and items along
the path, or by means or visual/audio cues that can catch the

5Valve Software, 2000
6Infinity Ward, 2003
7Id Software, 1993
8Digital Illusions CE, 2008.

player attention (e.g., the dynamic flock of birds used in Half
Life 29 as described in [4]). Instead, in multiplayer experiences
the level flow generally refers to how the players interact with
each other and with the game environment. In fact, in this
case the flow is affected by the layout of the map and the
placement of the resources: the more an area of the map is
easy to navigate and offers tactical advantage, such as covers,
resources or high ground, the more players will be comfortable
moving in it; in contrast, an area with a bad flow, such as an
area very exposed and difficult to navigate, will be generally
avoided by the players. Accordingly, the design of multiplayer
map aims at balancing the flow through different areas, e.g.,
an area with a bad flow could allow players to get access to
a very powerful resource, such as a powerful weapon.

In this work, we focus on the positioning of spawn points,
despite the proposed approach can be easily adapted also for
placing other items or resources. Our approach is based on
the analysis of the work of of Tim Schäfer [17], who has
performed an in depth analysis of multiplayer 1vs1 maps in
Quake 2. The core idea introduced in [17] is that the analysis
and the balancing of the map flow, cannot be isolated from
the analysis of the game dynamics. In fact, as soon as a
player is killed during the game, the balancing is significantly
affected. The killed player, dubbed as down-player, loose all
the weapons, the ammunition, and armor that he has previously
collected, while the player who survived, dubbed up-player,
generally has stronger weapons and equipment. Therefore, the
goal of the up-player is to gain and hold the control of the key
areas of the map, i.e., the one that gives a tactical advantage
and access to powerful resources, to kill as soon as possible
the down-player keeping the game out of balance. In contrast,
the down-player, needs to get access to powerful weapons and
resources, to re-balance the game before facing again the up-
player. Accordingly, the designer of the map should take into
account this game dynamics both for what concern the layout
of the map itself and for the placement of the spawn points,
the ammunition, the resources, etc. In particular, Tim Schäfer
describe few rules of thumb for the placement of resources
and spawn points [17]:

(i) spawn points should be positioned in areas that are of
low interest for the up-player and that are easy to leave,
i.e., central hubs and dead ends are a bad choice, whereas
rooms with 2 or 3 exits are usually the best option;

(ii) health packs are placed in zones that are safe or not too
dangerous;

(iii) armors are usually placed in spots that are aimed both at
the down-player and at the up-player, such that a small
quantity of armor should be easy to achieve, whereas
power-ups that provide full armor should be placed in
dangerous areas;

(iv) mid-power weapons are of high interest for the down-
player, since he needs to get one of them as soon as
possible if he wants to face the up-player, so should be

9Valve, 2004.

placed in areas that are easy to reach and the same goes
for their ammunition;

(v) very strong weapons should be placed in areas that are
strategically disadvantageous, like dead ends or vertically
dominated areas, or difficult to reach;

(vi) special weapons and power-ups that grant temporary
advantages to the player who collects them, like invisi-
bility or increased damage, should be placed in locations
difficult to reach and contextual to their effect.

IV. MAPS REPRESENTATION AND ANALYSIS

Although in this work we do not deal with the generation
of the layout of the maps, in order to define heuristics for
the spawn points, we need to represent and analyze the whole
map. Accordingly, in this section we describe how maps can
be represented using different levels of abstraction.

A. Tile-Based

Each first person shooter has its own internal map represen-
tation, that is usually the more convenient one for the engine
of the game. As an example, DOOM basically employs a
map representation based on vertices, sectors, and segments
(see [5] for additional details). However, a quite standard
representation that can suit the design of maps of several first
person shooters, is the map representation based on tiles: the
map space is organized as a regular grid of square tiles 10;
thus, each tile can be either empty, non-traversable (i.e. an
obstacle, like a wall), or a game element (i.e., a tile containing
a weapon, a power-up, a spawn point, etc.).

B. Indirect

An indirect representation is such that it represents the map
in a more compact way and with a higher level of abstraction,
i.e., it does not define the map itself but rather define how it
can be generated. A representation of this kind widely used
in the literature, is the All-Black representation introduced
in [3]. It is built on a tile-based representation, but encodes
only empty areas of an otherwise non-traversable map. The
encoded areas consist of square rooms and corridors of fixed
width. Rooms are defined by 〈x, y, s〉 triplets, where x and y
define the coordinates of the center of the room and s defines
its width. Corridors are rectangular areas with a fixed width
and are defined by 〈x, y, l〉 triplets, where x and y define the
point in which the corridor starts and l defines its length. In
this work, we extended this representation as follows. For
allowing the encoding of game objects (i.e., spawn points,
weapons, etc.), we added a third kind of triplet, 〈x, y, o〉, that
uses x and y to denote the coordinates of the tile that hosts
the objects and o to denote the object itself, encoded as a
character. In addition, to allow the representation of multi-level
maps, we simply introduced a flight of stairs as game object
and concatenated together the representation of each level of
the map. Figure 1 shows two examples of maps along with

10Please notice that in games where vertical heights are very relevant for
the map design, the tile-based representation can be easily generalized by
organizing the map space as a regular 3D-grid of cubic tiles

(a) Map represented by 〈5,
5, 9〉 〈10, 10, 7〉 〈15, 25,
3〉 | 〈5, 15, 15〉 〈11, 15,
−7〉 | 〈5, 5, s〉 〈7, 7, h〉.

(b) Map represented by 〈1,
2, 5〉 〈4, 6, 8〉 | 〈5, 6, −10〉
〈10, 15, −6〉 | 〈3, 7, s〉 〈1,
1, h〉.

Fig. 1: Two examples of maps represented with the All-Black
encoding: the character | is used to separate rooms, corridors,
and game object triplets; s and h represent respectively a
spawn point and an health pack.

their All-Black representation. We refer the interested users to
the work of Cardamone et al. [3] for additional detail on the
All-Black representation.

C. Graph-Based

Another interesting approach to represent a map is by
means of a graph. With respect to the previously described
approaches, this representation is probably not very convenient
to generate a map, but it represent the topological properties
of the map more effectively. Accordingly, in this work we
introduce several graph-based representations that can be used
to represent and analyze different properties of the maps.

1) Outlines graph: This graph is extracted directly from
the All-Black representation of the map and is obtained by
associating a node to every vertex of every room and corridor
and by connecting the non-adjacent ones that belong to the
same outline. This graph has a single kind of node (vertex
node) that contains the coordinates of the tile it represents,
which are used to position the node when the graph is
visualized. Figure 2b shows an example of this graph. This
graph can be used to visualize the rooms which compose the
map.

2) Tiles graph: This graph is extracted from the tile-based
representation of the map and is obtained by associating a
node to each empty tile and by connecting each node to its
8-neighbors. The horizontal and vertical edges have cost 1,
whereas the diagonal ones have cost

√
2. This graph has a

single kind of node (tile node) that contains the coordinates
of the tile it represents, which are used to position the node
when the graph is visualized. Figure 2c shows an example
of this graph. This graph can be used to find the minimum
distance that separates two cells, along with the shortest path
that connects them.

3) Rooms graph: This graph is extracted from the All-
Black representation of the map and is obtained by associating
a node to each room and corridor and by connecting nodes

to corresponding rooms or corridors overlap, using as weight
the Euclidean distance of their central tile. This graph has a
single kind of node (room node) used to represent both rooms
and corridors that contains the coordinates of the closest and
furthest vertex of the room/corridor from the origin. When
visualized, each node is positioned on the coordinates of the
center tile of the room/corridor it represents. Figure 2d shows
an example of this graph. This graph can be used to analyze
the topology of a map, in order to find loops, choke points,
central areas and other kind of structures.

4) Rooms and game elements graph: This is an extension
of the rooms graph, which also includes game elements as
nodes, that are connected to the nodes corresponding to the
rooms and corridors which contain them. In addition to the
room node inherited from the rooms graph, this graph has a
node to represent game elements (element node) that contains
the coordinates of the game element, which are used to
visualize the node, and the character associated to it. Figure
2e shows an example of this graph.

5) Visibility graph: This graph is extracted from the tile-
based representation of the map and is obtained by associating
a node to each empty tile and by connecting each node to all
the tiles that are visible from that node. For two tiles to be
respectively visible, it must be possible to connect them with
a line without crossing any non-traversable tile. This graph
has a single kind of node (visibility node) that contains the
coordinates of the tile it represents, which are used to position
the node when the graph is visualized, and its visibility, which
is computed as the degree centrality, i.e. the number of edges
incident to that node. A tile with high visibility allows to
control a wide portion of a map, but at the same time an entity
standing on it is easy to spot. This graph can be visualized
more conveniently by using an heatmap where a sequential
colormap is used to encode the visibility attribute of each node,
as shown in Figure 2f. This graph can be used to analyze which
areas of the map are more exposed and which ones are more
sheltered.

D. Metrics

Once graph-based representations have been generated for a
map, it is possible to compute several interesting metrics from
them that provide useful information about the map, such as:

• Degree centrality: defined for a node, it is the number of
edges that the node has. If the node represents a room, it
measures how many entrance or exits the room has.

• Closeness centrality: defined for a node, it measures its
centrality in the graph, computed as the sum of the
lengths of the shortest paths between the node and all
other nodes in the graph. If the node represents a room,
it measures how central the room is.

• Betweenness centrality: defined for a node, it measures
its centrality in the graph, computed as the number of
shortest paths connecting the nodes that pass through the
node. If the node represents a room, it measures how
central the room is.

(a) The map. (b) The outlines graph of the
map.

(c) The tiles graph of the map. (d) The rooms graph of the
map.

(e) The rooms and game ele-
ments graph of the map.

(f) The visibility graph of the
map.

Fig. 2: An example of map with all the different graph-based
representations extracted from it.

• Connectivity: defined for a graph, it is the minimum
number of elements (nodes or edges) that need to be
removed to disconnect the remaining nodes from each
other. If the graph represents a map, it measures the
existence of isolated areas.

• Eccentricity: defined for a node, it is the maximum
distance from the node to all other nodes in the graph.
If the node represents a room, it measured how isolated
the room is.

• Diameter: defined for a graph, it is the maximum ec-
centricity of its nodes. If the graph represents a map, it
measures the size of the map.

• Radius: defined for a graph, it is the minimum eccentric-
ity of its nodes. If the graph represents a map, it measures
how distanced the rooms are from each other.

• Periphery: defined for a graph, it is the set of nodes with
eccentricity equal to the diameter. If the graph represents
a map, it defines its peripheral areas.

• Center: defined for a graph, it is the set of nodes with
eccentricity equal to the radius. If the graph represents a
map, it defines its central areas.

• Density: defined for a graph, it ranges from 0 to 1, going

from a graph without edges to a complete graph. If the
graph represents a map, it measures how complex it is.

V. PLACEMENT OF SPAWN POINTS

Following the guidelines described previously in Section III,
we designed an heuristics for placing the spawning point in a
map that is basically based on two principles: the safety, i.e.,
the spawn point should not be placed in a dangerous position
for the down-player, and the uniformity, i.e., the spawn points
should be uniformly distributed across the map. In particular
we designed two distinct heuristics to be used in sequence to
place a spawn point, the first is used to select a room inside
the map and the second to select a tile inside a room. Overall,
the placement of the spawn points is performed iteratively, i.e.,
one spawn point at once.

A. Room Selection Heuristics

This heuristic combines two terms that are designed to take
into account the principles of safety and uniformity. Accord-
ingly, given the rooms and game elements graph of a map Grr

(see Section IV) and the subset of nodes corresponding to the
rooms R ⊆ Grr, the spawn point is placed in a room (r∗)
selected as follows:

r∗ = argmax
r∈R

(wD ·D(r) + wHe
·He(r)), (1)

where wD and wHe (in the range [0, 1]) are the weights of
terms D(r) and He(r), that are defined as follows:

D(r) =

0 if deg(r) = 1

1−
deg(r)−minr′ deg(r

′)

maxr′ deg(r′)−minr′ deg(r′)
if deg(r) 6= 1

,

(2)

He(r) = min
n∈Grr

1 if n /∈ S

dsp(r, n)

diam(Grr)
if n ∈ S

, (3)

where deg(n) is the connectivity degree of the node n in
the room graph node, diam(Grr) the diameter of the graph
Grr, and dsp(n,m) denotes the length of the shortest path
that connects the two nodes n and m, found using Dijkstra’s
algorithm. Equation 2 promotes rooms with few passages but
that are not dead ends, whereas equation 3 promotes rooms
that are distant from the already placed game elements. Both
terms are in the range [0, 1]. In all the experiments performed
in this work, the weights wD and wHe

have been empirically
respectively set to 1 and 0.5.

B. Tile Selection Heuristics

This heuristics combines three terms based on the principles
of safety and uniformity. Given Gv the visibility graph and
the subset of tiles (T ⊂ Gv) in the room r∗ selected with the

previous heuristics, the spawn point is placed in the tile t∗

selected as:

t∗ = argmax
t∈T

(wv · v(t) + whw
· hw(t) + whe

· he(t)), (4)

where wv , whw
and whe

(in the range [0, 1]) are the weights
of terms v(t), hw(t), and he(t), that are defined as follows:

v(t) = 1−
deg(t)−mint′∈Gv

deg(t′)

maxt′∈Gv
deg(t′)−mint′∈Gv

deg(t′)
, (5)

hw(t) =
dwall(t, r

∗)

maxt′∈T dwall(t′, r∗)
, (6)

he(t) =

 0 if |H| = 0

minh∈H
d(t, h)

ld
if |H| > 0

, (7)

where dwall(n, r) is the distance of the coordinates associated
to the node n from the walls of the room r, computed as the
sum of the minimum distances from the horizontal and vertical
walls, ld is the diagonal length of the room, and d(n,m) is
the distance of the coordinates associated to the nodes n and
m. Equation 5 promotes tiles with low visibility, equation 6
promotes tiles that are distant from the walls, whereas equation
7 promotes tiles that are distant from the already placed game
elements inside the room. All three terms have values in the
range [0, 1]. In all the experiments performed in this work, the
weights wv , whw and whe have been empirically respectively
set to 1, 0.5, and 0.5

VI. EXPERIMENTAL ANALYSIS

To test our heuristics we designed a simple experimental
analysis that involve a few users that are asked to explore
the maps while performing a simple task. To carry out this
experimental analysis we developed a simple experimental
framework with Unity 11, a very popular game engine. In the
remainder of this section, we briefly describe our experimental
framework, our experimental design, and our results.

A. Experimental Framework

To perform our experimental analysis, we developed our
own first person shooter environment using Unity. Despite
being more simple than a proper first person shooter, such
as Cube 2: Sauerbraten used in several previous works [3],
[11], [14], it can be deployed using the WebGL technology
and, thus, it can be played simply using a browser. This was
extremely useful to organize the user study, because allowed
to let users play online on their own machine. Although, our
framework does not implement any bot to play against, it
can load and generate maps with several representations, it
also offers several weapons as well as several game modes,
based on searching and destroying targets around the map.
The framework also allows to collect a large amount of data

11https://unity.com/

(a) Heatmap show-
ing the visibility of
the level.

(b) Spawn points (in
red) placed using the
heuristic approach.

(c) Spawn points (in
red) placed using the
uniform approach.

Fig. 3: Arena map used in the experiment.

(a) Heatmap show-
ing the visibility of
the level.

(b) Spawn points (in
red) placed using the
heuristic approach.

(c) Spawn points (in
red) placed using the
uniform approach.

Fig. 4: Corridors map used in the experiment.

(a) Heatmap show-
ing the visibility of
the level.

(b) Spawn points (in
red) placed using the
heuristic approach.

(c) Spawn points (in
red) placed using the
uniform approach.

Fig. 5: Intense map used in the experiment.

for later analysis. Collected data include the identifier of the
map used, the identifier of the study, the game mode, a list
and description of (i) all the spawn events, (ii) the shots, and
(iii) the targets destroyed. In addition, the framework allows
also to collect the answers of the users to a set of previously
designed questions.

B. Experimental Design

To test our heuristics, we designed a task, called Target
Hunt, as follows. The player needs to find and destroy as many
targets as possible in a given amount of time. The targets
spawn, one at once, in a location of the map chosen randomly
among a set of spawn points generated in advance. Therefore,
the aim of this task is to evaluate how easy the spawn points
are spotted and reached by the players.

The study was performed using three different maps: Arena,
Corridors, and Intense. For each map, two placement of the
spawn points are compared: one using the heuristics described
in Section V and one using a simple uniform distribution.
Figure 3, Figure 4, and Figure 5 show the visibility of the three

TABLE I: An overview of collected data. Each value reported
is an average of all collected samples.

Total Arena Corridors Intense
Samples 27 10 9 8

Targets Heuristic 10.06 10.75 10.44 8.75
Uniform 11.88 12.27 10.67 12.75

AvgSearchTime Heuristic 20.24 21.09 18.25 21.40
Uniform 16.06 15.50 17.46 15.18

AvgSearchDist Heuristic 73.34 64.21 70.90 84.90
Uniform 60.70 55.24 68.13 58.72

levels and the spawn points. It can be noted that the three maps
have very different layouts. Arena consists of a wide arena,
two sides of which are adjacent to parallel corridors with many
openings; the central area allows to control most of the map,
whereas the corridors offer some cover. Corridors is made of
many small rooms connected by long corridors; there is no
area that allows to control the others and the only points with
high visibility are the corridors intersections. Intense is a mix
of the previous ones, with both open areas and small rooms
connected by corridors. Each user plays a Target Hunt for
three minutes on one of the three maps two times: once with
the heuristic placement of the spawn points and once with
the uniform one. The two playing sessions are presented in
random order and the map is flipped in one of two sessions.

Finally, the performance of the players are assessed comput-
ing the AvgSearchTime, i.e., the average time needed for the
user to find a target, computed as the duration of the session
divided by the number of targets found, and the AvgSearchDist,
i.e., the average distance covered by the user to find a target.
In addition, at the end of the two playing sessions, each user
is asked to evaluate which one was more difficult (players
are also allowed to answer that the two sessions were equally
difficult).

C. Results

We collected data from 27 users, 10 users played in map
Arena, 9 in map Corridors and 8 in map Intense. Table I
compares the data collected during the experiments using the
heuristic placement and the uniform one. The table reports
the average number of targets destroyed (Targets), the average
distance covered (AvgSearchDist) and the average time passed
(AvgTimeDist) between the targets; data are reported for all the
collected samples as well as grouped for each map. Results
show that both AvgSearchTime and AvgSearchDist values are
larger, thus the number of destroyed targets is smaller, when
the heuristic placement is used with respect to the uniform
placement. These results confirm what we expected: our
heuristics is indeed able to place the spawn points in locations
of the maps that are more difficult to spot and to reach
following the normal flow of the map. Overall, the difference
is rather large, corresponding to an increase of roughly 26%
and 21% respectively of time required and distance covered
by the players to find the next target. The analysis of data
grouped for each map, shows that the differences are smaller

for the Corridors map and larger for the Intense map, due to
their different layouts. In fact, the central area of Arena allows
to control all of the surroundings, so the placement of spawn
points in areas that are less visible has a very relevant effect.
Corridors, instead, has a regular structure and the number of
intersections between its corridors is almost always the same,
so it is not so relevant where spawn points are placed, since all
the rooms have similar features. Finally, the tangled structure
of Intense offers to the heuristic approach a lot of interesting
spots where to place spawn points and the presence of an
area that allows a partial control of the map makes this choice
even more meaningful. As a result, this analysis suggest the
our heuristics has a more pronounced impact on maps with a
non uniform layout.

To test the statistical significance of this result, we per-
formed the non-parametric Wilcoxon signed-rank test by
Pratt12, comparing the AvgSearchTime and AvgSearchDist val-
ues collected when using heuristic placement and when using
uniform placement. According to the test, the differences of
both these values are statistically significant (with respectively
a p− value of 0.00203 and 0.01243).

The position of spawn points also influenced the way in
which users moved across the maps. Figure 6 shows, for each
map and for each placement strategy, the heatmaps of time
spent by the players in the different areas of the maps. It is
possible to notice that users, once understood the topology
of the map, started to follow well defined farming routes13.
These routes tend to be circular and to skirt the perimeter of
the maps, with deviations that are influenced by the position
of spawn points.

It is also interesting to notice how the difficulty in finding
the targets was perceived by the users. As it can be seen in
figure 7, in the survey the majority of the users subjectively
evaluated more difficult the session where they performed
worst (i.e., where they destroy less targets), but some of them
evaluated such the one where they performed better.

VII. CONCLUSIONS

Few works in the past focused on the placement of spawn
points in a first person shooter map. In this work, we proposed
a novel approach to this problem that is inspired to the analysis
of the up-player vs down-player dynamics described in [17].
To this purpose, we introduced a family of new map repre-
sentations based on graphs that can be easily extracted from
the usual tile-based representations used in several previous
works. Then, we used such graph-based representations to
design an heuristic strategy for placing the spawn points on
the map according to the design principles suggested in [17].
Finally, we tested our approach with a rather small user study
which involved 27 players that performed a simple search

12With respect to the standard Wilcoxon test, the one by Pratt considers
also the observations for which the difference of the elements in the pair is
zero. We opted for this approach since some samples happen to have metrics
with the same value for the two placements.

13In video games, farming routes are regular closed paths defined to
maximize the collection of certain resources in a specific map.

(a) Map Arena with
heuristic placement.

(b) Map Arena with uni-
form placement.

(c) Map Corridors with
heuristic placement.

(d) Map Corridors with
uniform placement.

(e) Map Intense with
heuristic placement.

(f) Map Intense with uni-
form placement.

Fig. 6: Heat maps of the player positions for the three maps
used in the experiment. The red circles represent spawn points.

and destroy task on three different maps. The collected data
suggested that our placement strategy proposed is actually able
to identify areas of the map that are indeed less easy to spot
and to reach, as prescribed by the design rules it was designed
after. Although very preliminary, our results are promising and
suggest that our graph-based representations allow to identify
and design better topological design patterns.

In the future, we plan to the extend our experimental frame-
work with AI controlled bots and with online multiplayer, that
would allow to design experiment with a setting more similar
to a real first person shooter. Future works also include the
design of placement strategies for additional game elements,
such as the weapons and the health packs, as well as an
experimental comparison with other placement strategies, such
as the one used in [2].

REFERENCES

[1] Anand Bhojan and Hong Wei Wong. Arena - dynamic run-time map
generation for multiplayer shooters. In Yusuf Pisan, Nikitas M. Sgouros,
and Tim Marsh, editors, Entertainment Computing – ICEC 2014, pages
149–158, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

Fig. 7: Comparison of the placement strategy that resulted
objectively more difficult for the player (reported on the rows)
with respect to the one that was perceived as more difficult
for the player (reported on the column). Each square reports
the number of samples for each possible combination. The
objective evaluation of the difficulty is based on the number
of targets destroyed by the players, where equal is for ties.

[2] William Cachia, Antonios Liapis, and Georgios N. Yannakakis. Multi-
level evolution of shooter levels. In AIIDE, 2015.

[3] Luigi Cardamone, Georgios N. Yannakakis, Julian Togelius, and
Pier Luca Lanzi. Evolving interesting maps for a First Person Shooter.
In Proceedings of the 2011 International Conference on Applications of
Evolutionary Computation - Volume Part I, EvoApplications’11, pages
63–72, Berlin, Heidelberg, 2011. Springer-Verlag.

[4] Matthew Gallant. Guiding the players eye. http://gangles.ca/2009/05/
26/guiding-the-eye/, 2009.

[5] Edoardo Giacomello, Pier Luca Lanzi, and Daniele Loiacono. DOOM
level generation using generative adversarial networks. In IEEE Games,
Entertainment, Media Conference, GEM 2018, Galway, Ireland, August
15-17, 2018, pages 316–323. IEEE, 2018.

[6] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio.
Generative adversarial networks. CoRR, abs/1406.2661, 2014.

[7] Christian Güttler and Troels Deg Johansson. Spatial principles of level-
design in multi-player First Person Shooters. In Proceedings of the 2Nd
Workshop on Network and System Support for Games, NetGames ’03,
pages 158–170, New York, NY, USA, 2003. ACM.

[8] Kenneth Hullett and Jim Whitehead. Design patterns in FPS levels. In
Proceedings of the Fifth International Conference on the Foundations
of Digital Games, FDG ’10, pages 78–85, New York, NY, USA, 2010.
ACM.

[9] Kenneth M. Hullett. The science of level design: Design patterns and
analysis of player behavior in First Person Shooters levels, 2012.

[10] D. Karavolos, A. Liapis, and G. N. Yannakakis. Using a surrogate model
of gameplay for automated level design. In 2018 IEEE Conference on
Computational Intelligence and Games (CIG), pages 1–8, Aug 2018.

[11] P. L. Lanzi, D. Loiacono, and R. Stucchi. Evolving maps for match
balancing in First Person Shooters. In 2014 IEEE Conference on
Computational Intelligence and Games, pages 1–8, Aug 2014.

[12] Simon Larsen. Level design patterns. http://simonlundlarsen.com/
wpcontent/uploads/2015/06/Level-design-patterns.pdf/, 2006.

[13] Antonios Liapis. Piecemeal evolution of a first person shooter level.
In Kevin Sim and Paul Kaufmann, editors, Applications of Evolution-
ary Computation, pages 275–291, Cham, 2018. Springer International
Publishing.

[14] D. Loiacono and L. Arnaboldi. Multiobjective evolutionary map design
for cube 2: Sauerbraten. IEEE Transactions on Games, 11(1):36–47,
March 2019.

[15] Daniele Loiacono and Luca Arnaboldi. Fight or flight: Evolving maps

for cube 2 to foster a fleeing behavior. In IEEE Conference on
Computational Intelligence and Games, CIG 2017, New York, NY, USA,
August 22-25, 2017, pages 199–206. IEEE, 2017.

[16] Peter Thorup Olsted, Benjamin Ma, and Sebastian Risi. Interactive
evolution of levels for a competitive multiplayer FPS. In IEEE Congress
on Evolutionary Computation, CEC 2015, Sendai, Japan, May 25-28,
2015, pages 1527–1534. IEEE, 2015.

[17] Tim Schäfer. Designing great 1vs1 FPS maps. https://dfspspirit.
wordpress.com/2015/03/26/designing-great-1vs1-fps-maps-part-1/,
2015.

