
Monte Carlo Strategies for Exploiting Fairness in
N -player Ultimatum Games

Garrison W. Greenwood
Dept. of Electrical & Computer Engineering

Portland State University
Portland, OR 97207–0751 USA

Email: greenwd@pdx.edu

Daniel Ashlock
Dept. of Mathematics and Statistics

University of Guelph
Guelph, Ontario, Canada

Email: dashlock@uoguelph.ca

Abstract—The Ultimatum Game (UG) is studied to see how
people respond in bargaining situations. In the 2-player version
each round a player can be a proposer or a responder. As a
proposer an offer is made on how to split a monetary amount.
The responder either accepts or rejects the offer. If accepted,
the money is split as proposed; if rejected both players get
nothing. Studies have found over time the offers decrease but
are still accepted (getting something is better than nothing) until
a subgame perfect Nash equilibrium is reached where the lowest
possible offer is accepted. In the N -player version the object
is to see if the population can reach a state of fairness where,
on average, offers are accepted. We have previously shown that
a (µ/µ, λ) evolution strategy can evolve offers and acceptance
thresholds that promote fairness. In this paper we report an
extension to this previous work. One player is added to the
population who interacts in the same manner with the other
N players. However, this new player is rational—i.e., he ignores
fairness and instead exploits the other players by maximizing
his payoffs. We used three different versions of Monte Carlo
Tree Search (MCTS) to adaptively control this rational player’s
offer levels during the game. The results indicate payoffs for
this player can be as much as 40% higher than the population
average payoff. Our MCTS introduces a novel rollout approach
making it ideally suited for the play of mathematical games.

I. INTRODUCTION

Game theorists commonly believe humans act rationally in
any situation where there are financial gains. Many studies
involving social dilemmas—i.e., situations where individuals
choose to cooperate for the benefit a group or to selfishly
defect for personal gain—indicate mutual defection is the
eventual outcome if cooperation or defection are the only
strategy choices. The well-known Prisoner’s Dilemma game
(PDG) is frequently used to study social dilemmas. A number
of PDG models suggest other dynamics, such as altruistic
punishment, can increase cooperation levels in a popula-
tion. Human experiments indicate altruism and emotions both
strongly influence cooperation levels [1]. In particular, players
observe the payoffs others receive and react accordingly in
future encounters based on a perceived notion of fairness.

The Ultimatum Game (UG) was developed by economists
to see if maximum individual payoffs produce maximum
utility [2]. The UG models many real-world economic situ-
ations such as pay negotiations and pricing decisions. In its

simplest form a proposer makes an offer on how to divide
a monetary amount. A responder either accepts or rejects the
offer. The money is divided as proposed if the offer is accepted
but both individuals get nothing if the offer is rejected. In
anonymous, one-shot UGs a self-interested proposer offers
as little as possible because he then keeps the bulk of the
money. Getting something is better than getting nothing so a
self-interested responder accepts any nonzero offer. In iterated
games rational behavior leads to the eventual state where
the minimum possible offer is made and it is accepted. This
condition is a subgame perfect Nash equilibrium [2].

There is ia fundamental difference between social dilemmas
and N -player UGs. Irrational behavior in social dilemmas is
the growth in cooperation whereas in an UG it is the growth
of fairness. Here fairness in a population means responders
have reasonable expectations on what constitutes a fair offer
and proposers make offers likely to be accepted. Humans tend
to reject unfair offers. For example, in one human experiment
nearly half of the players rejected offers below 30% because
they considered them unfair [3].

In our previous work [4] we used a (µ/µ, λ) evolution
strategy to evolve offers and acceptance levels for a population
of N = 40 individuals. Our results indicate if responders are
somewhat flexible in deciding if offers are reasonable, then
fairness can rapidly evolve and will persist in the population.

In this paper we report an extension to that previous work.
One additional player is added to the population. This new
player has the same genome as the other players and competes
with the other players in the same manner. However, this new
player has a completely different objective: he is strictly self-
interested. His objective is to exploit the other players trying
to achieve fairness by maximizing his personal payoff. The
question is how to find good offers and acceptance levels for
this rational, self-interested player. As a responder it makes
sense to accept any nonzero offer because getting some payoff
is always better than getting nothing. However, as a proposer
it is not so obvious how to choose the amount to offer.
Ideally this offer would be as low as possible to maximize his
payoff while not so low it is likely to be rejected. Clearly the
(µ/µ, λ) evolutionary strategy cannot be used to find a good
offers because it searches for offers and acceptance levels that

978-1-7281-1884-0/19/$31.00 c©2019 IEEE

promote fairness in the entire population. The rational player
has no intention of being fair.

We used three different versions of Monte Carlo tree search
(MCTS) to find good offers for a rational, self-interested
player. Our results indicate all three versions can find offers
yielding significantly higher payoffs for this rational player
than the population average. To the best of our knowledge
this is the first time MCTS has been used to find strategies in
an economic game.

The paper is organized as follows. Section II provides
a brief overview of MCTS, discusses regret in multi-arm
bandit problems and reviews some previous UG work. Section
III describes our model but the results and discussion are
deferred until Section IV. Finally, Section V discusses other
mathematical games where MCTS may be beneficial.

II. BACKGROUND & PRIOR WORK

In this section a brief overview of MCTS and regret is given
plus a review of our previous work using a (µ/µ, λ) evolution
strategy used to evolve fairness. More detailed information can
be found in [5] and [4], respectively.

A. MCTS overview

The basic algorithm iteratively builds a search tree show-
ing potential moves or strategy choices in the game. Each
node represents a particular game state and its K immediate
children represent next moves. Effectively each node and its
immediate children can be thought of as a MAB problem.
The iterative search continues until some computational budget
such as an iteration constraint is achieved. At that point the
best child of the tree root node is deemed the best possible
next move from the current game state.

The search consists of four steps [5]. Starting at the tree
node a selection policy recursively works down the game tree
until an expandable node is reached. The expansion step then
adds a new leaf node1. A simulation from this leaf node (called
a rollout) is then run and the outcome produces a value. This
outcome value is then backpropagated up the tree updating
the statistics of each node in the path. The visitation count
of each node in the path is also incremented. This process is
repeated until the computation budget is exhausted. The action
a(·) associated with best child of the root node is the preferred
next move or strategy choice in the game.

It is common to group these four steps into two policies:
a Tree Policy that uses the selection and expansion steps to
select or create a new leaf node, and a Default Policy that
performs the rollout. The pseudocode shown in Algorithm 1
shows the MCTS steps. s0 is the current game state while
v0 is its associated root node in the game tree. TreePolicy
finds the leaf node vl and 4 is the outcome value from the
rollout. Backup then updates all ancestors nodes in the path.
The game tree is recursively expanded until the computational
budget is exhausted, which in our work means a fixed number
of rollouts were done. A(BestChild) returns the next strategy

1In this context a “leaf node” represents a nonterminal state that can be
expanded during the simulation phase.

choice associated with the root node child with the highest
mean value2.

Algorithm 1 MCTS
function MONTECARLOTREESEARCH(s0)

create root node v0 for current game state s0
while computation budget not exhausted do

vl ← TreePolicy(v0)
4← DefaultPolicy(s(vl))
Backup(vl,4)

end while
return a(BestChild(v0))
end function

In our work we evaluated three different MCTS versions.
Each version has a slightly different Tree Policy which affects
how the game tree is expanded. This will be explained in more
detail in Section III.

B. Regret

A slot machine can be considered a one-armed bandit. In
a multi-armed bandit (MAB) problem there are K > 1 slot
machines and machine i produces an expected payoff ξi ∈
[0, 1] each time its arm is pulled. Let I(n) denote the arm
some policy P decides to pull in round n ∈ {1, 2, · · · , T}. P
also makes a recommendation J(n) on the best arm to pull
after all rounds have been played.
P tries to accumulate the highest possible payoff which is

equivalent to minimizing the cumulative regret

CRn =

n∑
t=1

(ξ∗ − ξI(t)) where ξ∗
def
= max

1≤i≤K
ξi (1)

Cumulative regret expresses a disappointment in not neces-
sarily having picked the best machine over a span of n rounds;
regret accumulates over time. Conversely, the simple regret
defined as

SRn = ξ∗ − ξJ(n) (2)

only reflects regret for not recommending the best arm to pull.
Many MCTS algorithms use the upper confidence bound

for trees (UCT) policy proposed by Kocsis and Szepesvári [6].
This policy selects child j such that

j = argmax
i

Xi + c

√
ln(n)

ni

 (3)

where n represents the number of times the parent node was
visited and ni the number of times child i was visited and the
mean value at child i is Xi which is assumed to have support
[0,1]. c is a constant that balances exploration and exploitation.
UCT expands a game tree by trying to minimize cumulative
regret.

2Visitation count could also be used to identify the best child, but in our
work the child with the best mean value is chosen.

Two policies that bound simple regret are ε-greedy and
UCB√ . The ε-greedy method [7] samples the arm with the
largest sample mean with probability 1−ε and with probability
ε samples a random arm. The UCB√ method samples arm j
where

j = argmax
i

Xi + c

√√
n

ni

 (4)

C. Prior work
In our prior work [4] each individual had an offer value

p and and acceptance value q. A (µ/µ, λ) evolution strategy
with µ = 10 and λ = 80 was used to evolve these values.
The 10 parents formed a tournament set for evaluating the 80
offspring. Each offspring played one UG round against every
member of the tournament set where proposer and responder
roles were randomly chosen prior to each interaction. An offer
was accepted if p ≥ q and rejected otherwise. The fitness of
an individual equaled the accumulated payoffs.

In most UG models the acceptance probability is modeled as
a Heavyside function—i.e., any p < q is automatically rejected
regardless of difference. But this is actually too restrictive. For
example, suppose q = 0.3. Then an offer of p = 0.295 would
always be rejected. However, a player might be tempted to at
least consider an offer only slightly less than 0.3 if very little
payoff was received over the past few rounds. We therefore
modeled the acceptance function as sigmoid function to cover
such situations. Specifically,

prob(accept) =

{
1.0 p ≥ q
e−α(p−q)

2

p < q
(5)

where α is user selected. Figure 1 shows the probability of
acceptance for various values of α.

Fig. 1. Sigmoid function showing the probability of acceptance for q = 0.4.
Notice in the limit, as α → ∞, the sigmoid function becomes a Heavyside
function.

Figure 2 shows the population evolution over 150 rounds
with α = 200 in the sigmoid probability function. Notice
that, except for a few outliers, p > q indicating fairness was
achieved early and persisted. Moreover, the median values are
much larger than the subgame perfect NE.

Fig. 2. p and q values averaged over 20 runs of 150 rounds with α = 200.
The circles (line) inside the boxes represent the mean (median) values.

III. THE MODEL

The model described previously now has one additional
player added to the population. This new player is rational
meaning his goal is to maximize personal payoff at the expense
of the rest of the population which is trying to achieve fairness.
This rational player has the same genome and interacts with
the same tournament set every round and acquires payoffs just
like the rest of the population. What is different is how the p
and q values are determined. The (µ/µ, λ) evolution strategy
cannot be used because its purpose is to chose p and q values
that promote fairness. Some other method is needed for the
rational player.

In this rational player q is permanently set equal to 0.0 so
any offer, regardless of how small, will always be accepted.
Hence, only some search method for a p value is needed. We
use MCTS to conduct the search. The current game state s0
is the current p value—i.e., s0 = p. Every node in this game
tree can have up to three children when fully expanded and
the associated actions modify the p value of their parent node.
The actions associated with the three children are listed in the
table below

child node action

v1 p+ ζ
v2 p− ζ
v3 no change

where ζ is a random variable that changes the parent’s p value
by 5–10%. A parent node samples a new ζ before expanding
any children nodes. However, this sample is taken only once
per parent because actions of the immediate children will use
the same ζ.

The tree policy controls how the game tree is partially
expanded. Any such policy should balance exploration, which

checks seldom visited branches, and exploitation which favors
nodes with higher mean values. In this work we investigated
three tree policies: the popular UCT and UCT augmented with
two sampling methods designed to minimize simple regret.
These policies are discussed in greater detail in the next
section.

After the tree policy creates a new leaf node the default
policy conducts the rollout. A rollout consists of using the p
value of the newly expanded node in a tournament against µ
randomly selected offspring out of the current population. In
this tournament the leaf node always acts as the proposer. A
total of 200 rollouts were performed each UG round. Every
rollout used a newly sampled tournament set. Let

b =

µ∑
s=1

1(p > qs)

be the number of times a proposal was accepted during the
rollout. (Eq. (5) determines whether 1(p > qs) equals 0 or 1.)
Then the rollout reward is

4 =

{
0 if p < qs ∀s = 1 . . . µ

1.0−
∑

(p−qs)
b − (µ− b)γ otherwise

(6)

where γ = 0.025. The first term (1.0) is the maximum value
while the second term is the average difference between a
proposal and an acceptance threshold during the rollout. Only
accepted proposals are averaged. The last term is a penalty
that decreases the value depending on the number of times a
proposal was rejected. The payoff reward 4 ∈ [0, 1] is added
to the stored value of every node in the path to the root node
during backpropagation. The visitation counts of all nodes in
this path are also incremented.

After the 200 rollouts are finished, the action associated
with the best child (based on highest mean value) determines
the new p value for the rational player in the next UG round.

IV. DISCUSSION& RESULTS

In MCTS the root node represents the current game state and
its immediate children potential next moves. UCT determines
the values of these children by sampling in a manner that
reduces cumulative regret. But if the highest value child of
the root node is ultimately selected as the best next move,
this suggests for games minimizing simple regret at the root
node may make more sense. This is not necessarily the case for
nodes at lower tiers. Cumulative regret probably provides more
precise values for the children of the root node. Thus sampling
has different objectives depending on the game tree tier. Tolpin
and Shimony [8] recommend a two-stage approach: sample at
the root node to minimize simple regret and sample at lower
tier nodes to minimize cumulative regret. They conjectured
this approach should do better than UCT alone. That is the
approach we use. Specifically, ε-greedy and UCB√ are used
to sample at the root node and UCT at other nodes. This is
denoted by ε-greedy+UCT and UCB√ +UCT, respectively.

These two versions are compared against a version where UCT
sampling was used at all nodes.

Figure 3 shows scatter plots of the payoffs of each MCTS
version as well as the average population payoffs. These are
payoffs obtained in UG tournaments against the µ parents
of the evolution strategy in each round. It is difficult to
compare scatter plots so to facilitate comparison a 3rd-order
polynomial fit of the scatter plots is shown. Notice all three
MCTS versions produced significantly higher payoffs than the
population average for the rational player. It is also worth
noting the two versions that used simple regret to select
children of the root node tended to outperform the UCT-only
version.

To further evaluate the MCTS performance we arbitrarily
selected one run out of the 20 runs discussed in Section II-C.
This run is shown in Figure 4. p and q values for the µ
parents and λ offspring in each round were recorded. The
expected payoffs in each round for all three MCTS versions
were determined by playing an UG against the µ parents.
(Recall this is the same method used to compute offspring
fitness in the (µ/µ, λ)-ES runs.) The offspring in each round
were used during the MCTS rollouts. In the UCT version and
the UCB√ +UCT version c = 2 to balance exploration and
exploitation. ε = 1/2 was used in the ε-greedy version.

Figure 4 indicates a spike in the average population q values
at round 60 (about a 40% increase), and another increase of
about 50% at round 90. Otherwise the average q values were
roughly 0.2 or below. Figure 5 shows how the p values varied
in the MCTS versions. All three versions track reasonably
well except between rounds 70 and 125. Over these rounds
the three versions show radically different behavior: UCT
sharply decreased p, ε-greedy was roughly constant while
UCB√ sharply increased p.

To help explain the different MCTS version behaviors
between rounds 70 to 125 it is first necessary to look in more
detail into how sampling choices in game trees affect regret.
The sampling choice depends on whether the objective is to
minimize simple regret or cumulative regret. It is worth noting
no sampling method can simultaneously optimally lower both
simple and cumulative regret [9].

Every node and its immediate children in the game tree is a
separate MAB problem; pulling arm i corresponds to selecting
child i. Selection favors nodes with higher estimated gains.
This estimated gain is the sum of a value associated with the
selection and an upper confidence bound of the estimate. UCT
and UCB√ both use the sample mean of previous rollouts
for the value term but use different upper confidence bound
terms:

√
ln(np)
ni

for UCT and
√√

np

ni
for UCB√ where np is

the number of parent node visits and ni the number of visits
to the i-th child node.

Selection has to strike a balance between exploration and
exploitation. The upper confidence bound term component in
the estimated gain equation promotes exploration. Figure 6
shows how these bounds change for UCT and UCB√ . Both
exhibit a logarithmic decrease as nodes are more frequently

Fig. 3. Scatter plots showing average population payoffs and rational player payoffs using three different MCTS methods. Lines show a 3rd-order polynomial
fit of the scatter plot points to help compare results.

Fig. 4. Single evolution strategy run (out of 20) used to compare the three
MCTS strategies for the rational player.

visited but the UCB√ decreases slower. This means, for a
given number of visits, the UCB√ upper confidence bound is
larger thereby contributing more to the estimated gain—i.e., it
emphasizes more exploration than UCT.
ε-greedy sampling does not have an exploration term. In-

stead it samples the highest sample mean node with probability

Fig. 5. Payoff differences for three MCTS strategies used in the Figure 4
run.

1− ε and a random node (including the highest sample mean
node) with probability ε. Random node selection ignores the
sample means. Thus, with ` children nodes the selection
probabilities are

Fig. 6. shows sqrt vs uct

p =

{
1− ε+ ε/` highest sample mean node
ε/` other nodes

Notice sub-optimal nodes are selected with some non-zero
probability regardless of their sample mean. It therefore also
promotes more exploration than UCT.

UCT minimizes cumulative regret so it tends to sample
the current highest sample mean node more frequently, which
limits exploring less visited branches. Conversely, a sampling
method that explores more and tends to choose the current
highest sample mean node less often works better at mini-
mizing simple regret. ε-greedy and UCB√ both put higher
emphasis on exploration than UCT does. Consequently, while
UCT minimizes cumulative regret, ε-greedy and UCB√ are
better suited for minimizing simple regret. More specifically,
it has been shown, for some constant ϕ ≥ 0, after n visits the
expected simple regret Ern is bounded from above by

Ern ≤ O
(
e−ϕn

)
for 1

2 -greedy [8],

Ern ≤ O
(
e−ϕ

√
n
)

for UCB√ [8], and

Ern ≤ O
(
n−ϕ

)
for UCT [10]. Thus, with UCT simple regret only decreases at
best polynomially with n whereas it decreases exponentially
with n in the other two sampling methods.

This leads to a possible explanation for why the three MCTS
methods exhibited different behavior between rounds 70 and
125. First consider the UCT behavior. Referring to Figure

4, there is an initial decrease in average q values between
rounds 60 and 70 followed by a sharp increase at round 90.
The q values then gradually return to a more moderate level
for the remainder of the run where fairness begins to appear.
Intuitively a rational player’s p value should follow that same
profile: decrease p initially to exploit the lower q average, then
increase to compensate for the sudden increased q average
and finally decrease again as q decreases. UCT sampling
makes the initial decrease in p but recovers sluggishly. We
conjecture this is due to UCT choosing the highest sample
mean node too often which is more likely when minimizing
cumulative regret. Limiting exploration makes it difficult to
respond to transient q changes. Conversely, ε-greedy+UCT and
UCB√ +UCT sampling minimize simple regret. They explore
more than UCT and are thus better able to respond to average
q fluctuations. ε-greedy+UCT sampling responded similar to
the way a rational player would: as the q averages peaked near
round 90 and then fell, so did the p value. By increasing p to
compensate for the increased q average it is more likely offers
will be accepted thereby increasing the player’s payoffs. The
better ε-greedy+UCT response is expected given that it has the
greatest ability to explore among the three MCTS versions.
It has the smallest upper bound on Ern and visits sub-
optimal nodes in this particular problem with probability 0.33.
UCB√ +UCT sampling seems to equally balance exploration
and exploration which makes it relatively immune to transient
q changes.

It is perhaps worth noting that the implementation of MCTS
in this paper has a novel character. Most MCTS is used to
generate moves for a two player game of substantial length like
checkers, chess, or go. The ultimatum game is a single-shot
game. In a game like chess, the rollout consists of playing the
game until a win, lose, or draw result is obtained. In this study,
this is replaced by competition against a tournament set. Both
sorts of rollout provide the information needed to continue
expanding the MCTS partial game tree, but the use of a rollout
that samples against a tournament gives this information a
different character that make MCTS a natural choice for the
play of mathematical games.

V. CONCLUSIONS & FUTURE WORK

We have shown that MCTS can construct a rational player
that can exploit a population of players trying to achieve
fairness in an UG. Payoffs received were significantly larger
than the population average (nearly 40% larger). Sampling
which minimizes simple regret at the root node and UCT at
the other nodes performed better than using the UCT policy
at all nodes. ε-greedy+UCT appears to respond the best to
rapidly changing responder q values.

To the best of our knowledge this is the first instance
where MCTS is used for making strategy decisions in an
economic game. The novel rollout approach used in this work
opens up the possibility of using MCTS to adapt strategies in
mathematical games in general and social dilemma games in
particular.

In the public goods game, players contribute from their own
resources an investment in the public purse, a common pool
which is then multiplied by a factor greater than one and
divided evenly among the players. It is a substantially different
game from the ultimatum game, but also possesses a similar
conflict between its Nash equilibria and what human players
might perceive as fair. The highest aggregate payoff arises
from each player contributing all their resources. Any player
who retains some of their own resources obtains a total of their
retained wealth plus the common payout. If fairness represents
equal contribution then rational play tends directly away from
fairness. This, in turn, means that the Nash equilibria is for
each player to retain all of their own resources, at which point
fairness return, but at a very low level of public investment.
In this game, a rational MCTS agent would rapidly discover
the strategy of hoarding its wealth. If a penalty for insufficient
contribution to the public purse is added the the game, as a
rule or by permitting punishment, the MCTS agent would be
useful for discovering this statutory or social boundary for
acceptable contributions.

For mathematical games, like the IPD, an MCTS agent
would be useful for rapidly discovering an optimally exploita-
tive counter strategy, using the simple move set “cooperate”
and “defect”. The PD strategy tit-for-two-tats, for example,
defects if its opponent has defected on the last two rounds.
An optimal counter strategy is to defect every other round.
This would make a nice initial test of an MCTS agent for
prisoner’s dilemma.

A more complex situation arises in a multi-player version
of PD in which a group of agents make a move and then
receive the score against each of their opponents, based
on the pairwise moves. Finding strategies to play against
various mixtures of opponents was examined in [11], using
an evolutionary algorithm to train a finite state agent against
the group of opponents. This situation, maximizing score of
an agent against a fixed collection of opponents, creates an
optimization problem from IPD. AN MCTS agent seems likely
to substantially outperform an evolved agent for speed in
locating high-scoring strategies against such groups of agents.
This notion is framed for IPD, but could be used to train a
rational agent in any simultaneous N -player game.

If a novel mathematical game were under investigation, then
pitting pairs of MCTS agents, with different tree policies or
stochastic default policies, against one another would be a
good way to rapidly estimate the richness of the strategy space
of the game. If the sequences of moves generate by the MCTS
agents formed a relatively restricted group, the games have a
relatively simple strategy.

An interesting variant of using MCTS would be to explore
strategies for mathematical games with stochastic or non-
stationary payoffs. The ability of MCTS to continue explo-
ration would permit it to adapt rapidly to games where the
payoff matrix changed over the course of the game. This
ability requires that the MCTS agent be given advanced
knowledge of the changes of the scoring system over time,
in order to perform its rollouts. If no such forward model of

the change of the scores over time existed, then a strategy
that maintains a diverse evolving population would probably
be superior.

REFERENCES

[1] P. Van Lange, J. Joireman, C. Parks, and E. Van Dijk. The psychology
of social dilemmas: a review. Org. Behav. and Human Decis. Proc.,
120:125–141, 2013.

[2] W. Güth, R. Schmittberger, and B. Schwarze. An experimental analysis
of ultimatum bargaining. J. Econ. Behav. Organ., 3(4):367–388, 1982.

[3] C. Camerer. Behavioral Game Theory: Experiments in Strategic Inter-
action. Princeton Univ. Press, 2003.

[4] G. Greenwood and D. Ashlock. On the evolution of fairness in N-player
ultimatum games. In Proc. 2018 IEEE Cong. on Evol. Comput., pages
17–22, Rio de Janeiro, Brazil, 2018.

[5] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, S. Samothrakis, and S. colton. A survey of
Monte Carlo tree search methods. IEEE Trans. Comput. Intell. and
AI in Games, 4(1):1–42, 2012.

[6] L. Kocsis and C. Szepesvári. Bandit based Monte Carlo planning. In
Proc. Eur. Conf. Mach. Learn., pages 282–293, Berlin, Germany, 2006.

[7] R. Sutton and A. Barto. Reinforcement learning, an introduction.
Cambridge: MIT Press/Bradford Books, 1998.

[8] D. Tolpin and S. Shimony. MCTS based on simple regret. In 26th AAAI
Conf. on Artif. Intell., pages 570–576, Toronto, ON, Canada, 2012.

[9] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in finitely-armed
and continuously-armed bandits. Theo. Comp. Sci., 412:1832–1852,
2011.

[10] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed
bandit problems. In Proc. 20th Int’l. Conf. on Alg. Learning Theo.,
LNAI 5809, pages 23–37, 2009.

[11] D. Ashlock, J. Brown, and P. Hingston. Multiple opponent optimization
of prisoner’s dilemma playing agents. IEEE Trans. Comput. Intell. and
AI in Games, 7(1):53–65, 2015.

