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Abstract—In this study, procedural content generation 
(PCG) using reinforcement learning (RL) is focused. PCG is 
defined as the generation of game content tailored to the defined 
evaluation function using RL models, which is one of the 
examples of PCG via machine learning. Compared to other 
generation content areas such as computer vision and natural 
language process, generative models such as variational 
autoencoders, PixelCNN, and generative adversarial networks 
exhibit some difficulties for applications to the game area 
because during the development of a new game, the content data 
used for training is typically not sufficient. Hence, RL is 
considered to be used as a method for PCG. In particular, the 
stage of turn-based RPG is selected as our research target 
because it comprises discrete sections, and its parameters were 
closely related; hence, it is a challenge to generate desirable 
stages, and the main goal is to generate various stages guided by 
the designed evaluation function. Two RL models, Deep Q-
Network and Deep Deterministic Policy Gradient, respectively, 
are selected, and the generated stages are evaluated as 0.78 and 
0.85 by our designed function, respectively. By the application 
of the stochastic noise policy, diverse stages are successfully 
obtained, and those diversities are evaluated by the parameter 
mse and the different number of valid strategies. 

I. INTRODUCTION 

With the dramatic growth of artificial intelligence (AI), 
currently, AI has been used effectively in various applications. 
One example involves the automatic generation of content 
using some algorithms in games, which is referred to as 
procedural content generation (PCG), and it is one of the 
major research fields in the game area. PCG can be applied to 
any game. PCG was mainly investigated by the generation of 
stages in popular games such as scroll action games (e.g., 
Super Mario) [1][2], racing games [3][4], real time strategy 
games [5], and problems in puzzle games [6]. On the other 
hand, relatively few studies reported turn-based RPG (RPG), 
which is a well-known classic genre. 

In a majority of the RPGs, players play character roles to 
complete the story (e.g., defeat the boss), which often requires 
the growth of characters. Players can make their characters 
stronger by receiving rewards from successive battles. If 
players attempt to defeat all enemies using all their resources 
during successive battles, then it might be difficult to defeat 
the boss, or if players ignore all enemies, then characters may 
not have sufficient strength to defeat the boss. Hence, players 
must decide their own strategy, such as “Win this battle safely 
using some resources,” “Save mana or items to prepare for 

difficult battles,” or “Retreat against difficult enemies,” 
leading to the entertainment of the RPG. 

To make available the various strategies, it is crucial to 
assign appropriate locations of enemies, frequency of 
recovery, and several parameters such as the strength of the 
enemies, the effectiveness of the items, and to the extent of 
degree to which the characters are cured, and others, which is 
the balance of the “Stage.” In addition, in terms of fun, it is 
crucial to provide diverse stages, which makes players decide 
different strategies. With these stages, RPG can avoid the 
monotony, and players can feel refreshed. Hence, the research 
goal involves the generation of these diverse stages, leading to 
entertainment. 

PCG has several approaches. One example is procedural 
content generation via machine learning (PCGML) [7]. 
PCGML was actively investigated in recent years. In several 
PCGML studies, network models use the existing game 
content data to learn generation. When considerable content 
created by human designers can be easily obtained, it might 
be possible to generate game content based on data 
distribution using generative models such as variational 
autoencoders (VAE) [8], PixelCNN [9], or generative 
adversarial network (GAN) [10]. However, with respect to 
PCG, it is difficult to collect sufficient content used for 
training data. Furthermore, it may be not guaranteed that the 
generated content is desired by designers, and it may not be 
varied as it follows the distribution of training data. Hence, 
generate-and-test algorithms such as search-based PCG [11] 
are typically used. The training data are not required in search-
based PCG, but the human-defined evaluation function is 
needed instead, which exhibits an advantage in that each 
evaluation function can be tailored to the direction required by 
the designers or by specific players according to their skills or 
taste. Typically, generate-and-test algorithms generate content 
by the optimized evaluation or fitness value using a genetic 
algorithm (GA) [12]. However, GA is slightly slow in 
instantly providing content to various players; in addition, GA 
possibly generates “Similar Content Group” in principle. 

Thus, reinforcement learning (RL) is considered to solve 
this disadvantage. Assume that the complete stage comprises 
n discrete sections, “State” is any stage with n or less sections, 
and “Action” is the generation of the next section, which is not 
generated thus far. When the stage is completed, then its good 
or bad is evaluated by the designed evaluation function, and 
its value is given as a “Reward.” With the progress of learning, 
a desired stage defined by the evaluation function is generated. 



In addition, by using the stochastic noise policy, which 
generates noise parameters of the section according to Q 
values and by using a random incomplete stage as the initial 
state, various stages can be obtained.  

II. RELATED WORK 

The structures of previous methods for PCG are 
approximately “generating content using some methods” and 
“in some cases, evaluating content and using only a good one.” 
The generation methods are classified as follows. 

 Heuristic 
 Scientific models such as automaton or fractal [13] 
 Reuse part of the existing data 
 Machine learning generative model using training data 

such as GAN [2], PixelCNN, and VAE 

However, unlike the generation of terrains or maps, which 
exert a low impact on the winning or losing of games, the 
generation of only RPG stages cannot guarantee that it 
provides satisfaction to the player as the parameters of stages 
affect each other in a complex manner. 

A. Search-based PCG 

Thus, in several cases, search-based PCG, which is one of 
the special cases of generate-and-test algorithms, is used. PCG 
involves the combination of the “selection by an evaluation 
function” and “generating content using any PCG methods.” 
Among a number of the generated content, search-based PCG 
provides only highly evaluated content. Fig. 1 shows an 
example of the optimizing evaluation value and generation of 
a three-section stage using GA. This method exhibits three 
disadvantages. 

 Is it possible to appropriately define a desired function 
that evaluates the fun of stages for humans? 

 Is it possible to obtain a solution with a high evaluation 
value through optimization? 

 Is it possible to generate solutions rapidly and 
diversely? 

In particular, the third one is a unique concern in search-
based PCG, and it makes it difficult to generate online content. 
That is, there is no problem in case developers generate 
considerable content and provide it to several unspecified 
players later. However, it is difficult to provide various stages, 
which immediately fits to specific types of players in terms of 
their skills or preferences. GA typically requires several 
evaluations to keep several solutions; moreover, such 
solutions tend to similarly converge depending on GA models.  

B. PCGML 

In several PCGML studies, network models are trained on 
the existing game content. Compared to search-based PCG, in 
PCGML, the generated content is not selected by searching 
the target content space by evaluation, and the content is 
directly generated from learned network models. PCGML also 
exhibits some challenges. 

 Is it possible to collect sufficient data? 
 Do the collected data exhibit the desired distribution? 

 
Fig. 1. Stage generation using a genetic algorithm 

In case of image generation, the collected data can be 
simply categorized into a horse, a car, or a bird. Its goal is to 
make models learn the distribution of the target category. 
However, in the case of games, it may be crucial to sort the 
data by types, and it is difficult work as it involves the 
identification of those characteristics. Beyond this issue, the 
collection of sufficient data can be difficult considering that 
the content of different games exhibits marginal compatibility. 

C. Reinforcement Learning 

RL is one of the categories of machine learning that 
permits agents to learn the way to act in a specific situation to 
maximize the expected cumulative reward received from the 
environment. Compared to supervised learning, which is also 
one of the categories of machine learning, RL does not require 
data; instead, it does self-learning through interactions with 
the environment. In PCG, the generation with a co-creative 
agent is proposed by using RL [14][15]. In these papers, they 
set rewards based on the user input. The learning progress of 
RL is guided by the reward. Hence, it will decide the type of 
content that is generated. In our case, the evaluation function 
was directly designed, and its value as a reward was given; 
hence, we attempt to make our models learn as desired. 

III. TURN-BASED RPG AND STAGE  

Various examples of RPG include Dragon Quest, Final 
Fantasy, Pokémon series, or others. Even though each game 
comprises its own unique system, a majority of the games 
comprise stages consisting of battle and non-battle sections. In 
the battle section, player and enemy teams fight each other 
acting in order until one team is defeated or in case of retreat. 
Although each game comprises a different system, the 
condition of characters is inherited after the battle in a majority 
of the games. Thus, just winning an immediate battle is not 
sufficient considering future battles. This is an especially 
different element compared to other game genres. In non-
battle sections, damaged characters can be cured or the player 



can buy items and equipment to reinforce characters. For each 
stage, medium-and long-term goals exist, such as “take gold 
from weak enemies, buy equipment, save magics, and beat the 
boss.” Hence, players need to make decisions to advance more 
or withdraw to town, use or save magic, and select which 
member can be a party member. In other words, it is desirable 
to generate stages that require such decisions.  

A. Battle and Non-battle Sections 

The battle of RPG occurs on the basis of “Turn.” At every 
turn, each character performs a single action in order. The 
manner in which the order of characters is decided is different 
in each game; however, in a majority of games, it is basically 
determined by the speed parameter. All characters exhibit 
their own unique actions such as attack, magic, skill, and 
others, and these actions make each character play a unique 
role. As all characters exhibit a unique personality and role, 
these games are called role-playing games. For example, Fig. 
2 shows the flow of one turn in battle.  

Once all of the characters have completed their actions, 
then a single turn is over. The turn will be continued until one 
of the player teams or enemy teams is eliminated, implying 
that the hit point parameters of all characters are zero or 
retreats. Generally, player characters obtain rewards after 
winning a battle, e.g., strengthen characters or gold or items. 

The non-battle section varies depending on the game; 
however, some common factors exist, such as, recovering 
wounds in the inn, reinforcing characters by buying weapons 
or armors from an equipment shop, buying recovery items 
from a potion shop, and acquiring items from treasure chests 
or others. These factors are common to a majority of RPGs. 

B. Desirable Stages  

Thus far, the hand-crafted stages are mainly played. 
However, there is an increasing number of games using 
automatically generated stages to provide new experiences to 
players. However, all parameters of sections are closely 
related, and the parameters affect each other; hence, the 
determination of parameters at random is not sufficient to 
make satisfying content. Thus, the following points need to be 
considered. 

1) If the difficulty of the stage is extremely easy or 
difficult, e.g., a player can beat the stage with any 
strategy or strategies are not valid, then, the only 
thing remaining for a player to do is just pray, and 
this type of a stage is not interesting. 

2) If a stage could be beaten by almost the same strategy 
even after the parameters of the stage are changed, 
then we cannot say that the game is interesting. It is 
better to have various strategies depending on the 
situations. 

3) When an obvious action or a strategy is clearly 
effective or ineffective against the stage, we cannot 
say that it is fun. Stages that make a player hesitate 
selecting an action can entertain players. 

C. Research Platform 

Several commercial RPGs have rich stories, several game 
modes, and adventure maps. In this study, these elements are 
not needed as there is no interest in them; only battle-related  

 
Fig. 2. Flow of one turn in the RPG battle section.  

 
Fig. 3. Examples of various stage structures.  

parts, battle section, and non-battle recovery section is focused. 
It is a common practice to use a restricted platform for 
research. However, an appropriate platform is not found; 
hence, the following simplified platform is used on the basis 
of the original platform implemented by our group. 

 Stage composition: Stage exhibits a unidirectional 
single-row n-section structure (Fig. 3). Each section is 
one of a battle, recovery, and boss battle. 

 Character type: Both player and enemy teams consist 
of a single character, and three characters of a player, 
an enemy, and a boss, respectively, are present. Enemy 
and boss exhibit different ranges of available 
parameters, wherein boss exhibits a slightly higher, 
comprising Hit Point (HP), Attack (ATK), and speed. 

 Speed: The speed of the players is greater than that of 
the enemy characters. 

 Action: Two available actions, an attack and a retreat, 
respectively, are available. When a character executes 
attack on an enemy, the HP parameter of a target is 
then reduced by the ATK parameter of the executer. 
Retreat is only available for the player, and it ends the 
battle. 

 Battle Result: When a player retreats from the battle, 
the player character loses 15% of HP and proceeds to 
the next section, and if the player wins the battle, the 
character gains 10% of ATK. 

D. Strategy 

Strategies can be interpreted in various methods 
depending on where the phrase is used. In addition, in 
computer games, more than two strategies might exist, e.g., 
the preservation of an item in an RPG game or the order of 
construction buildings in StarCraft. In this study, the decision 
when facing a battle or a non-battle section in RPG was 



focused. In these games, players can decide to challenge or 
avoid the battle event; in addition, they can buy a weapon or 
sell items in the shop. The combination of these decisions is 
considered as the strategy.  

Basically, the stage can be evaluated by the test play of 
human-like AI that plays strategies acquired from a human 
play. However, the implementation of human-like AI itself is 
a quite large, important research issue. As our simplified 
platform allows only two actions, the strategies also can be 
simplified. If the stage consists of m battles, then 2m1 possible 
strategies exist because retreating from the boss is 
meaningless. By defining the simple action space, the entire 
strategy space can be searched. Hence, there is no need of 
human-like AI in this study. 

IV. APPROACH 

First, the elements of Markov decision process (MDP) was 
defined at the stage generation. We define all stages including 
the incomplete stage as the “State,” manipulating parameters 
of an incomplete stage to the complete stage as the “Action,” 
the completed stage as the “Goal State,” and the evaluation 
function as the “Reward.” Against the complete n-section 
stage, the online generation of various and desirable complete 
stages is expected by using an incomplete random initial stage, 
the section size of which is under n and the stochastic noise 
policy. 

As RL methods for PCG, a Deep Q-Network (DQN) was 
first selected [16], and some limitations in PCG were 
observed; hence, the deep deterministic policy gradient 
(DDPG) is selected next [17]. DQN is a well-known method 
that obtains good results on several games, which comprise a 
discrete action space and large state space. However, as the 
DQN action space is suitable for a discrete and lower 
dimensional action space, it is difficult to generate several 
parameters at once. In addition, if sections of the stage have a 
wide range of parameters, it is difficult for the discrete action 
to cover all parameter ranges. Hence, DDPG is attempted, 
which can deal with a high-dimensional continuous action 
space.  

Several issues need to be considered, e.g., formalization of 
the MDP of RL, representation of stages, and the 
generalization of state space and action. 

A. MDP Formulation  

In this section, the methods utilized from the MDP 
formulation are explained. First, an evaluation value f(s*) 
against the complete stage s*  ∈ S* is present, which is 
acquired from the designed evaluation function. Designing 
how to evaluate the stages has difficult issues such as “What 
is the difficulty?,” “What is fun?,” “Does a computer know the 
weakness of human?,” or others. 

Next, let the whole stage set S, including incomplete stages 
be a “state space” and generating some parameters (make the 
incomplete stage closer to the complete stage) to the 
incomplete stage be an “Action” a ∈ A. The episode of MDP 
terminates when an incomplete stage reaches the complete 
stage s* ∈ S*, and the evaluation function value f(s*) ∈ R is 
given as a reward (Fig. 4). With such an MDP formulation, 
the stage generation problem can be changed to the RL of the 
reward maximization problem. If the Q value against arbitrary  

 
Fig. 4. MDP process of generating stages 

 
Fig. 5. Example of converting the battle-recovery-boss stage to the stage 
matrix 

s and a are appropriately learnt, then it is possible to make 
various stages, as well as a sufficient stage, by selecting the 
action with the best Q or second-best Q. 

B. Expression of a Stage Matrix  

The composition of the section type in the stage can be 
dynamic; however, in this study, the series of the section types 
was fixed. Let the n size stage consists of m battle sections, 
including one boss section and n-m recovery sections. Let the 
battle sections have Pb parameters, and the recovery section 
have Pr parameters. Then, the row size of the stage matrix size 
is Pb + Pb, and the column is m. The whole size of the stage 
matrix is (Pb + Pb)  m, and one column includes the 
information of one battle section and one next recovery 
section. The details are as follows. 

 Battle (Boss) section 
Enemy characters have HP and ATK parameters. 

Typically, zthe ranges of the parameter values are already set 
at the minimum and maximum in the developer’s mind like 
HP is (Hpmin – Hpmax), and ATK is (ATKmin – ATKmax). 
Hence, it is possible to calculate the rate for each parameter. 
HP rate = (HP value  Hpmin)/(Hpmax – Hpmin) 
ATK rate = (ATK value – ATKmin)/(ATKmax – ATKmin), 
and let these values be the first and second values of the 
section vector, respectively. 

 Recovery section 
There are occasional recovery sections that make the 

characters recover some portion of the HP. The recovery rate 
is the third element of the section vector. If the recovery 



section does not exist after a battle section, then this value is 
ignored. 

Fig. 5 shows an example of the three-section stage matrix, 
comprising one battle, one recovery, and one boss when the 
HP ranges from 20 to 120, and the attack ranges from 5 to 30. 

C. Selection of an Action 

Next, the implementation of the action, which is the output 
of DQN or DDPG, is explained. As the action spaces of DQN 
and DDPG are different, they are explained separately. 

First, the DQN of stage generation was implemented. The 
DQN action is one of the discrete values ranging from 0 to 100, 
implying a parameter range of 0% to 100% in 1% increments. 
As DQN handles a low-dimensional action space, it cannot 
help, but it only generates a single parameter per single action; 
otherwise, the discrete size of the action space will bigger. For 
example, if a state is generated up to three battles and the 
recovery section, then the next action is the hp parameter rate 
of the 4th enemy character, followed by the attack parameter 
and next recovery rate. This method exhibits the following 
limitations. 

 The action occurs on different parameters. It is slightly 
unnatural that different types of action occur in order. 

 It is difficult to generate section parameters at once. 
For example, if we want to generate the whole stage 
vector at once, an action size of 1003 is required. 

 Some parameter values are possibly not covered, such 
as 0.5% of HP, 55.24% of ATK, and 42.103% of ATK 
values in the parameter ranges. 

 Almost the same values of parameters such as 54%, 
55% are treated as completely different. Hence, 
learning might be ineffective. 

In contrast to DQN, DDPG is expected to have the 
following advantages. 

 The output of DDPG could be the real number of p 
dimensions. Hence, all p number of parameters (one 
column) can be generated at once. In addition, all 
values of the parameters can be generated, and the 
close value of two actions is treated to be similar. 

D. Evaluation Function 

 As mentioned in Section III-C, it is a difficult job to 
evaluate the stage as various factors need to be considered. In 
this study, as the first step, a difficulty-based evaluation 
function was defined. As only 2m1 strategies existed, the 
difficulty of the stage was confirmed by searching all 
strategies. Concretely, the rate of the number of several 
strategies that can defeat the boss among all strategies can be 
found, referred to as the “winning rate.” If the winning rate is 
90%, the stage can be beaten with almost any strategy. If the 
winning rate is 5%, the player needs to carefully select an 
action or it cannot be beaten. In this study, the target winning 
rate was assigned to be 30%: The closer to the target rate, the 
higher the evaluation. In addition to the winning rate, some 
evaluation criteria that can affect the entertainment of RPG, 
e.g., a bonus when a dying character is healed from the 
recovery section, a penalty when enemies in the early stage 
are extremely strong, when later enemies are extremely weak, 
or a penalty when the stage can be beaten by a monotonous 

strategy like only attacks, were also added. Designing an 
evaluation function that shows how fun the stage is in 
numerical value itself is an important research subject. 
However, in this study, the generation method was mainly 
focused; hence, a relatively simple designed evaluation 
function is used. 

E. Random Initial Stage and Stochastic Noise Policy 

In RL, policy basically decides an agent’s action at a given 
state according to the Q value, indicating that when the same 
state is given and there is no randomness, the result is always 
the same. Hence, if the same incomplete stage is given, then 
the same stage is generated; hence, diverse stages cannot be 
obtained. Hence, in this study, the first two column parameters 
are selected to be completely random, and let the remaining 
parameters be learnt and generated by RL and the stochastic 
noise policy is used, which does not select the action by the 
best Q action (DQN) or by the actor (DDPG). The second-best 
action is selected on the basis of the Q distribution. In DQN, 
the second-best action is easily obtained by selecting the 
second- or third-highest action. However, in the case of DDPG, 
it is impossible to check all actions and their Q values. Hence, 
all parameters are roughly checked, and the distribution of Q 
values is investigated to understand the relationship between 
Q values and the actual reward distribution. From this 
relationship, the stochastic noise policy is designed (Section 
VII. A) 

V. PRELIMINARY EXPERIMENT: SUPERVISED LEARNING OF 

EVALUATION FUNCTION 

It is a precondition that our proposed stage generation 
model can estimate the Q value against any S, including the 
complete stage. It is possible to evaluate the complete stage s* 
by reward, but in the case of the incomplete stage, there is no 
method to evaluate its goodness; hence, it can only be 
estimated using Q value from some approximate model. As 
each section is closely related to each other, whether it can be 
appropriately estimated by the model is doubtful. Therefore, 
as a preliminary experiment, supervised learning is performed, 
which takes the complete stage and evaluation value as the 
input and output, respectively. If good estimation accuracy 
cannot be obtained even for the complete stage, then it is 
impossible to accurately learn the Q value in RL models. 

A. Experimental Setup 

The stage comprises 9 sections: 3battles-recovery-
3battles-recovery-boss. As there are seven battle sections, 64 
strategies exist, and the input size is 3 × 7 = 21. The network 
has 32 nodes of two convolution layers, with one average 
pooling, and 256 nodes of seven completely connected layers. 
The activation function is ReLu, and 12000 train stages and 
4000 validation stages are generated to obtain a uniform 
distribution of the evaluation value. In this preliminary 
experiment, the evaluation function only uses the winning rate. 

B. Result 

Fig. 6 shows the result. The validation loss is almost 
0.0055, indicative of an estimation error of 7–8%; in terms of 
strategy, there are five error strategies. It cannot be deemed as 
perfect precision, but the evaluation values of the stage can be 
thought to be estimated to some degree. 



 
Fig. 6. Relationship between the expected evaluation value (vertical axis) 
and actual evaluation value (horizontal axis) 

VI. EXPERIMENT: STAGE GENERATION 

At least in our research platform, the possibility of 
estimating the Q value from the result of V was judged; hence, 
experiments are performed to generate stages using DQN and 
DDPG. 

The most contrasting difference between DDPG and DQN 
is the action space. The output of DDPG is a three-
dimensional real value between 0 and 1. Hence, against the 
3 × 7 stage matrix which first two-columns are already 
generated, DDPG only needs five actions to complete the 
stage, while DQN needs 14 actions. 

A. Experimental Setup 

The stage configuration is the same as the experiment in 
V. The DQN network has 36–64 nodes of two convolution 
layers and one average polling and 128–256–256–256 nodes 
of four completely connected layers. The activation function 
is ReLu. The whole episode number is 20000, the experience 
memory size is 100000, the learning rate is 0.00025, the batch 
size 128, gamma is 0.9, and the frequency of the target 
network is 2000. 

There are two networks in DDPG: actor and critic. The 
actor network has 128–256–512 nodes of convolution layers 
and 128–256–256–512 nodes of completely connected layers. 
The critic network has 128–128–256 nodes of convolution 
layers and 128–256–256–512 nodes of completely connected 
layers. The learning rate is 5 × 10ିହ for actor and 5 × 10ିସ 
for critic, the batch size is 64, the TAU for the soft update is 
0.001, the episode number is 100000, and the experience 
memory size is 300000. 

B. Result 
Stages could be evaluated at an average of 50 episodes at 

~0.78 (Fig. 7) and 0.85 (Fig. 8) for each DQN and DDPG. The 
total episode is apparently different, as well as the setup; 
however, several settings were attempted, and the limitation 
of DQN was ~0.75. It is possible to generate good stages 
evaluated by our designed function. Of course, we cannot say 
that the generated stages are fun to play. Fig. 9 shows an 
example of the two stages generated at random (upper) and  

 
Fig. 7. Average reward for 50 episodes (total 20000 episodes) of stage 
generation using DQN 

 

Fig. 8. Average reward for 50 episodes (total 100000 episodes) of stage 
generation using DDPG 

 
Fig. 9. An example of two stages, where each column represents section 
parameters, and hit point, attack, and recovery rate from the top represent the 
parameters (upper: randomly generated, bottom: generated by DQN)  

DQN (bottom). The upper one is so easy that any strategy is 
valid; hence, its evaluation value is 0. The bottom one is 
generated from the first two sections (two battles), which is a 
part of the upper stage, indicating that the parameters of the 
enemies are raised; hence, the stage becomes more difficult 
than random one. 

VII. EXPERIMENT: DIVERSE STAGE GENERATION 

From Section VI, it is possible to generate the stage with a 
high evaluation value. However, our main goal is to make 
diverse and desired stages. As DDPG gave a better result, an 



experiment VII was performed only with DDPG. To make 
diverse stages in DDPG, a relationship between the Q value 
and evaluation value against all approximate parameters is 
first investigated. A specific one action column (noise 
column) of the stage matrix is generated by the increase of all 
of the approximate parameters (noise parameter) from 0% to 
100% by 1% for each HP and ATK. Let the recovery rate be 
the same as that of the actor. For example, if the action of actor 
policy is [0.3, 0.04, 0.5], which means HP 30%, ATK 4%, 
50%, then, we investigate from [0, 0, 0.5], [0, 0.01, 0.5], [0, 
0.02, 0.5] … to [1, 1, 0.5]). After generating one specific stage 
column by this noise parameter, the other incomplete part is 
generated by the actor policy. For example, if the second-stage 
column is generated by the noise parameter, then the 
remaining parts are generated by the actor policy (Fig. 10, 
upper left). Fig. 10 shows the result obtained from when noise 
column is the second column to the last column. We would 
like to investigate the fact that if we select a parameter 
according to the high Q value and other parts are generated by 
the actor policy, would it be possible to obtain a sufficiently 
good stage? If so, then we can obtain the justification for 
selecting the action according to the Q value. The reward and 
Q value are somewhat directly proportional (Fig. 10). Hence, 
if a high Q value action is selected, then the generated stage is 
likely to be a highly evaluated one.  

With the progress of learning, less exploration will occur, 
and then the reward of the RL model will be increased; instead, 
it will become vulnerable to an unexpected action. In a 
majority of the RL cases, it is not an issue as many of RL’s 
goal is to obtain the highest cumulative rewards. However, in 
the case of this study, the goal is to generate various stages, 
which are the second-best stage by using an unexpected noise 
action. Vulnerable to the unexpected action occurs because of 
the recovery sections that can make a player full condition. 
Even though parameters of incomplete stages are quite 
different they are considered as the same so, actions after the 
recovery section will be almost same (Fig. 11). To solve this 
problem, our model needs to be made flexible against any 
unexpected action. Hence, the incomplete random initial stage 
of a fixed two-section size is changed to a random dynamic (1 
to 6) size stage so that the model can be trained in various 
unexpected situations. By doing so, the network can learn 
against unexpected states as it can encounter dynamic states. 

A. Detail of the Stochastic Noise Policy 

By comparing the Q value and reward distribution, we 
know that if we select a noise parameter with a high Q value, 
then there is a high possibility that the completed stage 
exhibits a high evaluation value. However, there is also a 
small, but minor, possibility that the selection of a high Q 
value parameter possibly makes a low evaluated one. Making 
a low Q value with high evaluated stages is not an issue; 
however, in the opposite case, it can be a serious issue. To 
avoid this issue, a stochastic noise policy was designed, 
generating stage candidates based on the Q value and then 
providing a good stage. Details are as follows.  

 Decide the target columns of the stochastic noise 
policy. The number of targets can be greater than 1. 

 Check whether the currently generating column is a 
target of the stochastic noise policy. 

  
Fig. 10.  Relationship between Q (vertical axis) and reward (Horizontal axis)  

 

Fig. 11.  Problems occurring at the stage generation using RL.  

 

Fig. 12. Flow of selecting the noised action in the stochastic noise policy 

 If not, the column is generated by the actor policy.  
 If so, make n random parameters. Among them, 

parameters are discarded if the distance between a 
parameter and an actor parameter is less than the length 
d as it indicates that they are close to each other.  

 Generate a column with the highest Q value action that 
satisfies the above conditions (Fig. 12).  

 Repeat the entire process m times. 
 Among the m stages, provide a good one. 

B. Result 

 Diversity was evaluated by the extent of difference among 
the m stages and the stage generated by the actor. The degree 
of difference was evaluated by the parameter mse, which 
involves the calculation of the mean square error of the two 
stage matrixes and by the number of different valid strategies. 
Fig. 13 shows the result obtained for the average mse and 
average of the different numbers of valid strategies and 
average reward. The higher the n, the higher the evaluation 



 

Fig. 13. Average reward and the average number of different valid strategies 
as well as the average parameter mse of stages generated by the stochastic 
noise policy when n = 5, 10, 20, and 50; m is 50; and d is 0.2. The target 
noise column are 1st and 6th. 

 
Fig. 14. Stages generated by the actor policy and stochastic noise policy 
(sections 3, 4, 7, and 8 are noised sections). Actor one is evaluated as 
0.928661, the other is evaluated as 0.894968. The stage parameter mse 
between the two stages is 0.3525, and the different numbers of valid 
strategies is 5. 

value and the lower the parameter mse and different strategy 
counts. A high n indicated that there are high chances to get a 
parameter with high Q value; this result revealed that it is 
likely to have a high evaluation value. In other words, 
diversity and good quality are inversely proportional to each 
other in our designed game and evaluation function. Fig. 14 
shows the two stages: above stage is generated by an actor 
policy and the other is generated by the stochastic noise policy.  

VIII. CONCLUSION AND FUTURE WORK  

In this study, to generate various and desired RPG stages, 
procedural content generation using reinforcement learning 
and stochastic noise parameters is introduced. Two RL 
algorithms, DQN and DDPG, respectively, are implemented. 
The results revealed that a discrete action space of DQN 
exhibits some limitations for PCG. However, in terms of the 
target, parameters have small ranges and a low dimension; 
DQN exhibits advantages in that it can easily find the second-
best action. Compared to DQN, DDPG can possibly cope with 
any range of parameters. In addition, results revealed that the 
stages generated by DDPG are slightly better than those 
generated by DQN.  

In addition, various stages are generated by using an 
incomplete random initial stage. As the result is changed by 

the initial stage, the stochastic noise policy is also employed. 
Through experiments, the quality and diversity are inversely 
proportional in our target environment. 

However, whether users actually feel various to those 
generated stages are not evaluated, as well as whether the 
evaluation function actually reflects the entertainment of users. 
These factors will be confirmed by performing subject 
experiments. Moreover, our stochastic noise policy is quite a 
simple policy, and we cannot say that it is the best method to 
make the second-best stage. Hence, we intend to focus on 
improving the efficiency of the stochastic noise policy. 
Moreover, there are more challenges when this method is 
applied in actual commercial RPG; hence, this method will be 
applied in a more complicated environment than simplified 
one in this paper, and problems will be attempted to be solved. 
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