
978-1-7281-1884-0/19/$31.00 ©2019 IEEE

Generation of Diverse Stages in Turn-Based Role-
Playing Game using Reinforcement Learning

SangGyu Nam
School of Information Science

JAIST
Ishikawa, Japan

Email: howzen@jaist.ac.jp

Kokolo Ikeda
School of Information Science

JAIST
Ishikawa, Japan

Email: kokolo@jaist.ac.jp

Abstract—In this study, procedural content generation
(PCG) using reinforcement learning (RL) is focused. PCG is
defined as the generation of game content tailored to the defined
evaluation function using RL models, which is one of the
examples of PCG via machine learning. Compared to other
generation content areas such as computer vision and natural
language process, generative models such as variational
autoencoders, PixelCNN, and generative adversarial networks
exhibit some difficulties for applications to the game area
because during the development of a new game, the content data
used for training is typically not sufficient. Hence, RL is
considered to be used as a method for PCG. In particular, the
stage of turn-based RPG is selected as our research target
because it comprises discrete sections, and its parameters were
closely related; hence, it is a challenge to generate desirable
stages, and the main goal is to generate various stages guided by
the designed evaluation function. Two RL models, Deep Q-
Network and Deep Deterministic Policy Gradient, respectively,
are selected, and the generated stages are evaluated as 0.78 and
0.85 by our designed function, respectively. By the application
of the stochastic noise policy, diverse stages are successfully
obtained, and those diversities are evaluated by the parameter
mse and the different number of valid strategies.

I. INTRODUCTION

With the dramatic growth of artificial intelligence (AI),
currently, AI has been used effectively in various applications.
One example involves the automatic generation of content
using some algorithms in games, which is referred to as
procedural content generation (PCG), and it is one of the
major research fields in the game area. PCG can be applied to
any game. PCG was mainly investigated by the generation of
stages in popular games such as scroll action games (e.g.,
Super Mario) [1][2], racing games [3][4], real time strategy
games [5], and problems in puzzle games [6]. On the other
hand, relatively few studies reported turn-based RPG (RPG),
which is a well-known classic genre.

In a majority of the RPGs, players play character roles to
complete the story (e.g., defeat the boss), which often requires
the growth of characters. Players can make their characters
stronger by receiving rewards from successive battles. If
players attempt to defeat all enemies using all their resources
during successive battles, then it might be difficult to defeat
the boss, or if players ignore all enemies, then characters may
not have sufficient strength to defeat the boss. Hence, players
must decide their own strategy, such as “Win this battle safely
using some resources,” “Save mana or items to prepare for

difficult battles,” or “Retreat against difficult enemies,”
leading to the entertainment of the RPG.

To make available the various strategies, it is crucial to
assign appropriate locations of enemies, frequency of
recovery, and several parameters such as the strength of the
enemies, the effectiveness of the items, and to the extent of
degree to which the characters are cured, and others, which is
the balance of the “Stage.” In addition, in terms of fun, it is
crucial to provide diverse stages, which makes players decide
different strategies. With these stages, RPG can avoid the
monotony, and players can feel refreshed. Hence, the research
goal involves the generation of these diverse stages, leading to
entertainment.

PCG has several approaches. One example is procedural
content generation via machine learning (PCGML) [7].
PCGML was actively investigated in recent years. In several
PCGML studies, network models use the existing game
content data to learn generation. When considerable content
created by human designers can be easily obtained, it might
be possible to generate game content based on data
distribution using generative models such as variational
autoencoders (VAE) [8], PixelCNN [9], or generative
adversarial network (GAN) [10]. However, with respect to
PCG, it is difficult to collect sufficient content used for
training data. Furthermore, it may be not guaranteed that the
generated content is desired by designers, and it may not be
varied as it follows the distribution of training data. Hence,
generate-and-test algorithms such as search-based PCG [11]
are typically used. The training data are not required in search-
based PCG, but the human-defined evaluation function is
needed instead, which exhibits an advantage in that each
evaluation function can be tailored to the direction required by
the designers or by specific players according to their skills or
taste. Typically, generate-and-test algorithms generate content
by the optimized evaluation or fitness value using a genetic
algorithm (GA) [12]. However, GA is slightly slow in
instantly providing content to various players; in addition, GA
possibly generates “Similar Content Group” in principle.

Thus, reinforcement learning (RL) is considered to solve
this disadvantage. Assume that the complete stage comprises
n discrete sections, “State” is any stage with n or less sections,
and “Action” is the generation of the next section, which is not
generated thus far. When the stage is completed, then its good
or bad is evaluated by the designed evaluation function, and
its value is given as a “Reward.” With the progress of learning,
a desired stage defined by the evaluation function is generated.

In addition, by using the stochastic noise policy, which
generates noise parameters of the section according to Q
values and by using a random incomplete stage as the initial
state, various stages can be obtained.

II. RELATED WORK

The structures of previous methods for PCG are
approximately “generating content using some methods” and
“in some cases, evaluating content and using only a good one.”
The generation methods are classified as follows.

 Heuristic
 Scientific models such as automaton or fractal [13]
 Reuse part of the existing data
 Machine learning generative model using training data

such as GAN [2], PixelCNN, and VAE

However, unlike the generation of terrains or maps, which
exert a low impact on the winning or losing of games, the
generation of only RPG stages cannot guarantee that it
provides satisfaction to the player as the parameters of stages
affect each other in a complex manner.

A. Search-based PCG

Thus, in several cases, search-based PCG, which is one of
the special cases of generate-and-test algorithms, is used. PCG
involves the combination of the “selection by an evaluation
function” and “generating content using any PCG methods.”
Among a number of the generated content, search-based PCG
provides only highly evaluated content. Fig. 1 shows an
example of the optimizing evaluation value and generation of
a three-section stage using GA. This method exhibits three
disadvantages.

 Is it possible to appropriately define a desired function
that evaluates the fun of stages for humans?

 Is it possible to obtain a solution with a high evaluation
value through optimization?

 Is it possible to generate solutions rapidly and
diversely?

In particular, the third one is a unique concern in search-
based PCG, and it makes it difficult to generate online content.
That is, there is no problem in case developers generate
considerable content and provide it to several unspecified
players later. However, it is difficult to provide various stages,
which immediately fits to specific types of players in terms of
their skills or preferences. GA typically requires several
evaluations to keep several solutions; moreover, such
solutions tend to similarly converge depending on GA models.

B. PCGML

In several PCGML studies, network models are trained on
the existing game content. Compared to search-based PCG, in
PCGML, the generated content is not selected by searching
the target content space by evaluation, and the content is
directly generated from learned network models. PCGML also
exhibits some challenges.

 Is it possible to collect sufficient data?
 Do the collected data exhibit the desired distribution?

Fig. 1. Stage generation using a genetic algorithm

In case of image generation, the collected data can be
simply categorized into a horse, a car, or a bird. Its goal is to
make models learn the distribution of the target category.
However, in the case of games, it may be crucial to sort the
data by types, and it is difficult work as it involves the
identification of those characteristics. Beyond this issue, the
collection of sufficient data can be difficult considering that
the content of different games exhibits marginal compatibility.

C. Reinforcement Learning

RL is one of the categories of machine learning that
permits agents to learn the way to act in a specific situation to
maximize the expected cumulative reward received from the
environment. Compared to supervised learning, which is also
one of the categories of machine learning, RL does not require
data; instead, it does self-learning through interactions with
the environment. In PCG, the generation with a co-creative
agent is proposed by using RL [14][15]. In these papers, they
set rewards based on the user input. The learning progress of
RL is guided by the reward. Hence, it will decide the type of
content that is generated. In our case, the evaluation function
was directly designed, and its value as a reward was given;
hence, we attempt to make our models learn as desired.

III. TURN-BASED RPG AND STAGE

Various examples of RPG include Dragon Quest, Final
Fantasy, Pokémon series, or others. Even though each game
comprises its own unique system, a majority of the games
comprise stages consisting of battle and non-battle sections. In
the battle section, player and enemy teams fight each other
acting in order until one team is defeated or in case of retreat.
Although each game comprises a different system, the
condition of characters is inherited after the battle in a majority
of the games. Thus, just winning an immediate battle is not
sufficient considering future battles. This is an especially
different element compared to other game genres. In non-
battle sections, damaged characters can be cured or the player

can buy items and equipment to reinforce characters. For each
stage, medium-and long-term goals exist, such as “take gold
from weak enemies, buy equipment, save magics, and beat the
boss.” Hence, players need to make decisions to advance more
or withdraw to town, use or save magic, and select which
member can be a party member. In other words, it is desirable
to generate stages that require such decisions.

A. Battle and Non-battle Sections

The battle of RPG occurs on the basis of “Turn.” At every
turn, each character performs a single action in order. The
manner in which the order of characters is decided is different
in each game; however, in a majority of games, it is basically
determined by the speed parameter. All characters exhibit
their own unique actions such as attack, magic, skill, and
others, and these actions make each character play a unique
role. As all characters exhibit a unique personality and role,
these games are called role-playing games. For example, Fig.
2 shows the flow of one turn in battle.

Once all of the characters have completed their actions,
then a single turn is over. The turn will be continued until one
of the player teams or enemy teams is eliminated, implying
that the hit point parameters of all characters are zero or
retreats. Generally, player characters obtain rewards after
winning a battle, e.g., strengthen characters or gold or items.

The non-battle section varies depending on the game;
however, some common factors exist, such as, recovering
wounds in the inn, reinforcing characters by buying weapons
or armors from an equipment shop, buying recovery items
from a potion shop, and acquiring items from treasure chests
or others. These factors are common to a majority of RPGs.

B. Desirable Stages

Thus far, the hand-crafted stages are mainly played.
However, there is an increasing number of games using
automatically generated stages to provide new experiences to
players. However, all parameters of sections are closely
related, and the parameters affect each other; hence, the
determination of parameters at random is not sufficient to
make satisfying content. Thus, the following points need to be
considered.

1) If the difficulty of the stage is extremely easy or
difficult, e.g., a player can beat the stage with any
strategy or strategies are not valid, then, the only
thing remaining for a player to do is just pray, and
this type of a stage is not interesting.

2) If a stage could be beaten by almost the same strategy
even after the parameters of the stage are changed,
then we cannot say that the game is interesting. It is
better to have various strategies depending on the
situations.

3) When an obvious action or a strategy is clearly
effective or ineffective against the stage, we cannot
say that it is fun. Stages that make a player hesitate
selecting an action can entertain players.

C. Research Platform

Several commercial RPGs have rich stories, several game
modes, and adventure maps. In this study, these elements are
not needed as there is no interest in them; only battle-related

Fig. 2. Flow of one turn in the RPG battle section.

Fig. 3. Examples of various stage structures.

parts, battle section, and non-battle recovery section is focused.
It is a common practice to use a restricted platform for
research. However, an appropriate platform is not found;
hence, the following simplified platform is used on the basis
of the original platform implemented by our group.

 Stage composition: Stage exhibits a unidirectional
single-row n-section structure (Fig. 3). Each section is
one of a battle, recovery, and boss battle.

 Character type: Both player and enemy teams consist
of a single character, and three characters of a player,
an enemy, and a boss, respectively, are present. Enemy
and boss exhibit different ranges of available
parameters, wherein boss exhibits a slightly higher,
comprising Hit Point (HP), Attack (ATK), and speed.

 Speed: The speed of the players is greater than that of
the enemy characters.

 Action: Two available actions, an attack and a retreat,
respectively, are available. When a character executes
attack on an enemy, the HP parameter of a target is
then reduced by the ATK parameter of the executer.
Retreat is only available for the player, and it ends the
battle.

 Battle Result: When a player retreats from the battle,
the player character loses 15% of HP and proceeds to
the next section, and if the player wins the battle, the
character gains 10% of ATK.

D. Strategy

Strategies can be interpreted in various methods
depending on where the phrase is used. In addition, in
computer games, more than two strategies might exist, e.g.,
the preservation of an item in an RPG game or the order of
construction buildings in StarCraft. In this study, the decision
when facing a battle or a non-battle section in RPG was

focused. In these games, players can decide to challenge or
avoid the battle event; in addition, they can buy a weapon or
sell items in the shop. The combination of these decisions is
considered as the strategy.

Basically, the stage can be evaluated by the test play of
human-like AI that plays strategies acquired from a human
play. However, the implementation of human-like AI itself is
a quite large, important research issue. As our simplified
platform allows only two actions, the strategies also can be
simplified. If the stage consists of m battles, then 2m1 possible
strategies exist because retreating from the boss is
meaningless. By defining the simple action space, the entire
strategy space can be searched. Hence, there is no need of
human-like AI in this study.

IV. APPROACH

First, the elements of Markov decision process (MDP) was
defined at the stage generation. We define all stages including
the incomplete stage as the “State,” manipulating parameters
of an incomplete stage to the complete stage as the “Action,”
the completed stage as the “Goal State,” and the evaluation
function as the “Reward.” Against the complete n-section
stage, the online generation of various and desirable complete
stages is expected by using an incomplete random initial stage,
the section size of which is under n and the stochastic noise
policy.

As RL methods for PCG, a Deep Q-Network (DQN) was
first selected [16], and some limitations in PCG were
observed; hence, the deep deterministic policy gradient
(DDPG) is selected next [17]. DQN is a well-known method
that obtains good results on several games, which comprise a
discrete action space and large state space. However, as the
DQN action space is suitable for a discrete and lower
dimensional action space, it is difficult to generate several
parameters at once. In addition, if sections of the stage have a
wide range of parameters, it is difficult for the discrete action
to cover all parameter ranges. Hence, DDPG is attempted,
which can deal with a high-dimensional continuous action
space.

Several issues need to be considered, e.g., formalization of
the MDP of RL, representation of stages, and the
generalization of state space and action.

A. MDP Formulation

In this section, the methods utilized from the MDP
formulation are explained. First, an evaluation value f(s*)
against the complete stage s* ∈ S* is present, which is
acquired from the designed evaluation function. Designing
how to evaluate the stages has difficult issues such as “What
is the difficulty?,” “What is fun?,” “Does a computer know the
weakness of human?,” or others.

Next, let the whole stage set S, including incomplete stages
be a “state space” and generating some parameters (make the
incomplete stage closer to the complete stage) to the
incomplete stage be an “Action” a ∈ A. The episode of MDP
terminates when an incomplete stage reaches the complete
stage s* ∈ S*, and the evaluation function value f(s*) ∈ R is
given as a reward (Fig. 4). With such an MDP formulation,
the stage generation problem can be changed to the RL of the
reward maximization problem. If the Q value against arbitrary

Fig. 4. MDP process of generating stages

Fig. 5. Example of converting the battle-recovery-boss stage to the stage
matrix

s and a are appropriately learnt, then it is possible to make
various stages, as well as a sufficient stage, by selecting the
action with the best Q or second-best Q.

B. Expression of a Stage Matrix

The composition of the section type in the stage can be
dynamic; however, in this study, the series of the section types
was fixed. Let the n size stage consists of m battle sections,
including one boss section and n-m recovery sections. Let the
battle sections have Pb parameters, and the recovery section
have Pr parameters. Then, the row size of the stage matrix size
is Pb + Pb, and the column is m. The whole size of the stage
matrix is (Pb + Pb) m, and one column includes the
information of one battle section and one next recovery
section. The details are as follows.

 Battle (Boss) section
Enemy characters have HP and ATK parameters.

Typically, zthe ranges of the parameter values are already set
at the minimum and maximum in the developer’s mind like
HP is (Hpmin – Hpmax), and ATK is (ATKmin – ATKmax).
Hence, it is possible to calculate the rate for each parameter.
HP rate = (HP value Hpmin)/(Hpmax – Hpmin)
ATK rate = (ATK value – ATKmin)/(ATKmax – ATKmin),
and let these values be the first and second values of the
section vector, respectively.

 Recovery section
There are occasional recovery sections that make the

characters recover some portion of the HP. The recovery rate
is the third element of the section vector. If the recovery

section does not exist after a battle section, then this value is
ignored.

Fig. 5 shows an example of the three-section stage matrix,
comprising one battle, one recovery, and one boss when the
HP ranges from 20 to 120, and the attack ranges from 5 to 30.

C. Selection of an Action

Next, the implementation of the action, which is the output
of DQN or DDPG, is explained. As the action spaces of DQN
and DDPG are different, they are explained separately.

First, the DQN of stage generation was implemented. The
DQN action is one of the discrete values ranging from 0 to 100,
implying a parameter range of 0% to 100% in 1% increments.
As DQN handles a low-dimensional action space, it cannot
help, but it only generates a single parameter per single action;
otherwise, the discrete size of the action space will bigger. For
example, if a state is generated up to three battles and the
recovery section, then the next action is the hp parameter rate
of the 4th enemy character, followed by the attack parameter
and next recovery rate. This method exhibits the following
limitations.

 The action occurs on different parameters. It is slightly
unnatural that different types of action occur in order.

 It is difficult to generate section parameters at once.
For example, if we want to generate the whole stage
vector at once, an action size of 1003 is required.

 Some parameter values are possibly not covered, such
as 0.5% of HP, 55.24% of ATK, and 42.103% of ATK
values in the parameter ranges.

 Almost the same values of parameters such as 54%,
55% are treated as completely different. Hence,
learning might be ineffective.

In contrast to DQN, DDPG is expected to have the
following advantages.

 The output of DDPG could be the real number of p
dimensions. Hence, all p number of parameters (one
column) can be generated at once. In addition, all
values of the parameters can be generated, and the
close value of two actions is treated to be similar.

D. Evaluation Function

 As mentioned in Section III-C, it is a difficult job to
evaluate the stage as various factors need to be considered. In
this study, as the first step, a difficulty-based evaluation
function was defined. As only 2m1 strategies existed, the
difficulty of the stage was confirmed by searching all
strategies. Concretely, the rate of the number of several
strategies that can defeat the boss among all strategies can be
found, referred to as the “winning rate.” If the winning rate is
90%, the stage can be beaten with almost any strategy. If the
winning rate is 5%, the player needs to carefully select an
action or it cannot be beaten. In this study, the target winning
rate was assigned to be 30%: The closer to the target rate, the
higher the evaluation. In addition to the winning rate, some
evaluation criteria that can affect the entertainment of RPG,
e.g., a bonus when a dying character is healed from the
recovery section, a penalty when enemies in the early stage
are extremely strong, when later enemies are extremely weak,
or a penalty when the stage can be beaten by a monotonous

strategy like only attacks, were also added. Designing an
evaluation function that shows how fun the stage is in
numerical value itself is an important research subject.
However, in this study, the generation method was mainly
focused; hence, a relatively simple designed evaluation
function is used.

E. Random Initial Stage and Stochastic Noise Policy

In RL, policy basically decides an agent’s action at a given
state according to the Q value, indicating that when the same
state is given and there is no randomness, the result is always
the same. Hence, if the same incomplete stage is given, then
the same stage is generated; hence, diverse stages cannot be
obtained. Hence, in this study, the first two column parameters
are selected to be completely random, and let the remaining
parameters be learnt and generated by RL and the stochastic
noise policy is used, which does not select the action by the
best Q action (DQN) or by the actor (DDPG). The second-best
action is selected on the basis of the Q distribution. In DQN,
the second-best action is easily obtained by selecting the
second- or third-highest action. However, in the case of DDPG,
it is impossible to check all actions and their Q values. Hence,
all parameters are roughly checked, and the distribution of Q
values is investigated to understand the relationship between
Q values and the actual reward distribution. From this
relationship, the stochastic noise policy is designed (Section
VII. A)

V. PRELIMINARY EXPERIMENT: SUPERVISED LEARNING OF

EVALUATION FUNCTION

It is a precondition that our proposed stage generation
model can estimate the Q value against any S, including the
complete stage. It is possible to evaluate the complete stage s*
by reward, but in the case of the incomplete stage, there is no
method to evaluate its goodness; hence, it can only be
estimated using Q value from some approximate model. As
each section is closely related to each other, whether it can be
appropriately estimated by the model is doubtful. Therefore,
as a preliminary experiment, supervised learning is performed,
which takes the complete stage and evaluation value as the
input and output, respectively. If good estimation accuracy
cannot be obtained even for the complete stage, then it is
impossible to accurately learn the Q value in RL models.

A. Experimental Setup

The stage comprises 9 sections: 3battles-recovery-
3battles-recovery-boss. As there are seven battle sections, 64
strategies exist, and the input size is 3 × 7 = 21. The network
has 32 nodes of two convolution layers, with one average
pooling, and 256 nodes of seven completely connected layers.
The activation function is ReLu, and 12000 train stages and
4000 validation stages are generated to obtain a uniform
distribution of the evaluation value. In this preliminary
experiment, the evaluation function only uses the winning rate.

B. Result

Fig. 6 shows the result. The validation loss is almost
0.0055, indicative of an estimation error of 7–8%; in terms of
strategy, there are five error strategies. It cannot be deemed as
perfect precision, but the evaluation values of the stage can be
thought to be estimated to some degree.

Fig. 6. Relationship between the expected evaluation value (vertical axis)
and actual evaluation value (horizontal axis)

VI. EXPERIMENT: STAGE GENERATION

At least in our research platform, the possibility of
estimating the Q value from the result of V was judged; hence,
experiments are performed to generate stages using DQN and
DDPG.

The most contrasting difference between DDPG and DQN
is the action space. The output of DDPG is a three-
dimensional real value between 0 and 1. Hence, against the
3 × 7 stage matrix which first two-columns are already
generated, DDPG only needs five actions to complete the
stage, while DQN needs 14 actions.

A. Experimental Setup

The stage configuration is the same as the experiment in
V. The DQN network has 36–64 nodes of two convolution
layers and one average polling and 128–256–256–256 nodes
of four completely connected layers. The activation function
is ReLu. The whole episode number is 20000, the experience
memory size is 100000, the learning rate is 0.00025, the batch
size 128, gamma is 0.9, and the frequency of the target
network is 2000.

There are two networks in DDPG: actor and critic. The
actor network has 128–256–512 nodes of convolution layers
and 128–256–256–512 nodes of completely connected layers.
The critic network has 128–128–256 nodes of convolution
layers and 128–256–256–512 nodes of completely connected
layers. The learning rate is 5 × 10ିହ for actor and 5 × 10ିସ
for critic, the batch size is 64, the TAU for the soft update is
0.001, the episode number is 100000, and the experience
memory size is 300000.

B. Result
Stages could be evaluated at an average of 50 episodes at

~0.78 (Fig. 7) and 0.85 (Fig. 8) for each DQN and DDPG. The
total episode is apparently different, as well as the setup;
however, several settings were attempted, and the limitation
of DQN was ~0.75. It is possible to generate good stages
evaluated by our designed function. Of course, we cannot say
that the generated stages are fun to play. Fig. 9 shows an
example of the two stages generated at random (upper) and

Fig. 7. Average reward for 50 episodes (total 20000 episodes) of stage
generation using DQN

Fig. 8. Average reward for 50 episodes (total 100000 episodes) of stage
generation using DDPG

Fig. 9. An example of two stages, where each column represents section
parameters, and hit point, attack, and recovery rate from the top represent the
parameters (upper: randomly generated, bottom: generated by DQN)

DQN (bottom). The upper one is so easy that any strategy is
valid; hence, its evaluation value is 0. The bottom one is
generated from the first two sections (two battles), which is a
part of the upper stage, indicating that the parameters of the
enemies are raised; hence, the stage becomes more difficult
than random one.

VII. EXPERIMENT: DIVERSE STAGE GENERATION

From Section VI, it is possible to generate the stage with a
high evaluation value. However, our main goal is to make
diverse and desired stages. As DDPG gave a better result, an

experiment VII was performed only with DDPG. To make
diverse stages in DDPG, a relationship between the Q value
and evaluation value against all approximate parameters is
first investigated. A specific one action column (noise
column) of the stage matrix is generated by the increase of all
of the approximate parameters (noise parameter) from 0% to
100% by 1% for each HP and ATK. Let the recovery rate be
the same as that of the actor. For example, if the action of actor
policy is [0.3, 0.04, 0.5], which means HP 30%, ATK 4%,
50%, then, we investigate from [0, 0, 0.5], [0, 0.01, 0.5], [0,
0.02, 0.5] … to [1, 1, 0.5]). After generating one specific stage
column by this noise parameter, the other incomplete part is
generated by the actor policy. For example, if the second-stage
column is generated by the noise parameter, then the
remaining parts are generated by the actor policy (Fig. 10,
upper left). Fig. 10 shows the result obtained from when noise
column is the second column to the last column. We would
like to investigate the fact that if we select a parameter
according to the high Q value and other parts are generated by
the actor policy, would it be possible to obtain a sufficiently
good stage? If so, then we can obtain the justification for
selecting the action according to the Q value. The reward and
Q value are somewhat directly proportional (Fig. 10). Hence,
if a high Q value action is selected, then the generated stage is
likely to be a highly evaluated one.

With the progress of learning, less exploration will occur,
and then the reward of the RL model will be increased; instead,
it will become vulnerable to an unexpected action. In a
majority of the RL cases, it is not an issue as many of RL’s
goal is to obtain the highest cumulative rewards. However, in
the case of this study, the goal is to generate various stages,
which are the second-best stage by using an unexpected noise
action. Vulnerable to the unexpected action occurs because of
the recovery sections that can make a player full condition.
Even though parameters of incomplete stages are quite
different they are considered as the same so, actions after the
recovery section will be almost same (Fig. 11). To solve this
problem, our model needs to be made flexible against any
unexpected action. Hence, the incomplete random initial stage
of a fixed two-section size is changed to a random dynamic (1
to 6) size stage so that the model can be trained in various
unexpected situations. By doing so, the network can learn
against unexpected states as it can encounter dynamic states.

A. Detail of the Stochastic Noise Policy

By comparing the Q value and reward distribution, we
know that if we select a noise parameter with a high Q value,
then there is a high possibility that the completed stage
exhibits a high evaluation value. However, there is also a
small, but minor, possibility that the selection of a high Q
value parameter possibly makes a low evaluated one. Making
a low Q value with high evaluated stages is not an issue;
however, in the opposite case, it can be a serious issue. To
avoid this issue, a stochastic noise policy was designed,
generating stage candidates based on the Q value and then
providing a good stage. Details are as follows.

 Decide the target columns of the stochastic noise
policy. The number of targets can be greater than 1.

 Check whether the currently generating column is a
target of the stochastic noise policy.

Fig. 10. Relationship between Q (vertical axis) and reward (Horizontal axis)

Fig. 11. Problems occurring at the stage generation using RL.

Fig. 12. Flow of selecting the noised action in the stochastic noise policy

 If not, the column is generated by the actor policy.
 If so, make n random parameters. Among them,

parameters are discarded if the distance between a
parameter and an actor parameter is less than the length
d as it indicates that they are close to each other.

 Generate a column with the highest Q value action that
satisfies the above conditions (Fig. 12).

 Repeat the entire process m times.
 Among the m stages, provide a good one.

B. Result

 Diversity was evaluated by the extent of difference among
the m stages and the stage generated by the actor. The degree
of difference was evaluated by the parameter mse, which
involves the calculation of the mean square error of the two
stage matrixes and by the number of different valid strategies.
Fig. 13 shows the result obtained for the average mse and
average of the different numbers of valid strategies and
average reward. The higher the n, the higher the evaluation

Fig. 13. Average reward and the average number of different valid strategies
as well as the average parameter mse of stages generated by the stochastic
noise policy when n = 5, 10, 20, and 50; m is 50; and d is 0.2. The target
noise column are 1st and 6th.

Fig. 14. Stages generated by the actor policy and stochastic noise policy
(sections 3, 4, 7, and 8 are noised sections). Actor one is evaluated as
0.928661, the other is evaluated as 0.894968. The stage parameter mse
between the two stages is 0.3525, and the different numbers of valid
strategies is 5.

value and the lower the parameter mse and different strategy
counts. A high n indicated that there are high chances to get a
parameter with high Q value; this result revealed that it is
likely to have a high evaluation value. In other words,
diversity and good quality are inversely proportional to each
other in our designed game and evaluation function. Fig. 14
shows the two stages: above stage is generated by an actor
policy and the other is generated by the stochastic noise policy.

VIII. CONCLUSION AND FUTURE WORK

In this study, to generate various and desired RPG stages,
procedural content generation using reinforcement learning
and stochastic noise parameters is introduced. Two RL
algorithms, DQN and DDPG, respectively, are implemented.
The results revealed that a discrete action space of DQN
exhibits some limitations for PCG. However, in terms of the
target, parameters have small ranges and a low dimension;
DQN exhibits advantages in that it can easily find the second-
best action. Compared to DQN, DDPG can possibly cope with
any range of parameters. In addition, results revealed that the
stages generated by DDPG are slightly better than those
generated by DQN.

In addition, various stages are generated by using an
incomplete random initial stage. As the result is changed by

the initial stage, the stochastic noise policy is also employed.
Through experiments, the quality and diversity are inversely
proportional in our target environment.

However, whether users actually feel various to those
generated stages are not evaluated, as well as whether the
evaluation function actually reflects the entertainment of users.
These factors will be confirmed by performing subject
experiments. Moreover, our stochastic noise policy is quite a
simple policy, and we cannot say that it is the best method to
make the second-best stage. Hence, we intend to focus on
improving the efficiency of the stochastic noise policy.
Moreover, there are more challenges when this method is
applied in actual commercial RPG; hence, this method will be
applied in a more complicated environment than simplified
one in this paper, and problems will be attempted to be solved.

ACKNOWLEDGEMENT

This work was supported by JSPS KAKENHI Grant
Number 18H03347, 17K00506.

REFERENCES
[1] A. Summerville, M. Mateas, "Super Mario as a string: Platformer level

generation via LSTMs," Proc. 1st Int. Joint Conf. DiGRA/FDG, 2016.

[2] V. Volz, et al. “Evolving Mario Levels in the Latent Space of a Deep
Convolutional Generative Adversarial Network,” in GECCO, 2018.

[3] D. Loiacono, L. Cardamone, P.-L. Lanzi, "Automatic track generation
for high-end racing games using evolutionary computation," IEEE
Trans. Comput. Intell. AI Games, 3(3):245–259, 2011.

[4] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic
personalised content creation in racing games,” in Proc. IEEE Symp.
Comput. Intell. Games, 2007, pp. 252–259.

[5] T. Mahlmann, J. Togelius, and G. N. Yannakakis, "Spicing upmap
generation," in EvoApplications, vol. 7248. Springer, 224-233, 2012.

[6] A. Liapis, C. Holmgard, G. N. Yannakakis, J. Togelius, "Procedural
personas as critics for dungeon generation", European Conference on
the Applications of Evolutionary Computation, pp. 331-343, 2015.

[7] A. Summerville et al. "Procedural Content Generation via Machine
Learning (PCGML)," IEEE Transactions on Games, 10:257–270, 2018.

[8] Diederik P Kingma, Welling Max, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[9] A. van den Oord, et al. “Conditional image generation with pixelcnn
decoders,” In Advances in Neural Information Processing Systems, pp.
4790–4798, 2016.

[10] I. Goodfellow, et al. “Generative adversarial nets,” In Advances in
Neural Information Processing Systems, pp. 2672–2680, 2014.

[11] J. Togelius, G. N. Yannakakis, K. Stanley, C. Browne, “Search-based
Procedural Content Generation: A Taxonomy and Survey,” IEEE
Trans. Comput. Intell. AI Games, (99):1–1, 2011.

[12] M. Stephenson, J. Renz, "Procedural generation of complex stable
structures for angry birds levels," in 2016 IEEE Conference on
Computational Intelligence and Games, pp. 1–8, 2016.

[13] N. Shaker, J. Togelius, MJ. Nelson, “Fractals, noise and agents with
applications to landscapes,” In Procedural Content Generation in
Games. 57–72, 2016

[14] M. Guzdial, N. Liao, M. Riedl, “Co-creative level design via machine
learning,” arXiv preprint arXiv:1809.09420, 2018.

[15] M. Guzdial, et al. “Friend, Collaborator, Student, Manager: How
Design of an AI-Driven Game Level Editor Affects Creators,” arXiv
preprint arXiv:1901.06417, 2019.

[16] Mnih, V. et al. “Human-level control through deep reinforcement
learning,” Nature 518, 529–533, 2015.

[17] T. Lillicrap, et al. “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015

