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Abstract—Automatic generation of level maps is a popular
form of automatic content generation. In this study, a recently
developed technique employing the do what’s possible represen-
tation is used to create open-ended level maps. Generation of
the map can continue indefinitely, yielding a highly scalable
representation. A parameter study is performed to find good
parameters for the evolutionary algorithm used to locate high
quality map generators. Variations on the technique are pre-
sented, demonstrating its versatility, and an algorithmic variant is
given that both improves performance and changes the character
of maps located. The ability of the map to adapt to different
regions where the map is permitted to occupy space are also
tested.

I. INTRODUCTION

This study uses a recently developed, open-ended, gen-
erative representation called the do what’s possible (DWP)
representation [5] to encode level maps. The open ended nature
of the representation encodes a sequence of maps, with the
next map in the sequence possessing one additional room.
The map generator can be run until there are enough rooms
or enough space has been filled. An example of one of these
maps appears in Figure 2. A strength of this representation
is that it can generate arbitrarilly large numbers of rooms by
simply permitting it to run longer.

The DWP representation has two parts. An evolvable char-
acter generator that will always produce a next character
when queried, called the complex string generator or CSG.
In this study the characters are bits, zero or one, used to build
integers of any desired size to drive a serial choice process.
The CSG is partnered with a generative possibility filter or
GPF that interprets the characters as a sequence of generative
commands, rejecting the impossible ones. The CSG supplies
pattern and the GPF filters it to create admissible results. While
the evolutionary process used to select the complex string
generators is stochastic in the usual fashion, the complex string
generators themselves are deterministic. This means that the
maps they produce are entirely repeatable.

The map generators in this study use binary CSGs. The bits
generated are compiled into integers of various sizes to drive
a series of decisions: which existing room will we place a new
room next to, what side of it, how is the new room situated,
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and what are its dimensions. Once these decisions have been
made, there is either space for the new room, in which case
it is added, or there is not, in which case the new room is
rejected. The GPS consists of tracking occupancy of the map
and rejecting rooms that try to occupy already occupied space.
This relatively simple scheme permits the generation of huge
maps using relatively small data structures.

The remainder of this study is structured as follows. Section
II reviews work in automatic level generation and earlier
work with the DWP representation. Section III specifies the
experimental design including the details of the representation
and the map generation problem. Section IV presents and
discusses results. Section V gives conclusions and outlines
next steps.

II. BACKGROUND

Procedural content generation (PCG) consists of finding
algorithmic methods of generating content for games. It is a
form of generative design [15] often applied to game content,
and often cares about both aesthetic and functional criteria.
Search based PCG [21] uses search methods rather than com-
posing algorithms that generate acceptable content in a single
pass. Both sorts of content generation can exhibit scaling
problems which can be addressed by problem decomposition
with an off-line and an on-line phase to the software or through
the use of open ended representations, as in this study.

Automated level generation in video games can arguably
be traced back to a number of related games from the 1980s
(Rogue, Hack, and NetHack), collectively called Roguelike
games. The task is currently of interest to the research com-
munity. In [19] levels for 2D sidescroller and top-down 2D
adventure games are automatically generated using a two pop-
ulation feasible/infeasible evolutionary algorithm. Answer set
programming is another approach to dungeon generation [18].
In [20] multiobjective optimization is applied to the task
of search-based procedural content generation for real time
strategy maps.

This study gives an alternate representation for tasks similar
to those done in [6] which introduced checkpoint based
fitness functions for evolving maze-like levels. This work was
extended in [7] by having multiple types of walls that defined
multiple mazes that co-existed in a single level map.

Related work includes [8] which prototyped tile assembly
to generate large maps and [9] which gave a state conditioned
representation that could generate level maps of landscape
height maps. A very different sort of representation, based
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on cellular automata, is used in [13] and generalized in [2],
[3].

A. Past work with the DWP representation

The original publication on the DWP representation [5] used
the representation on a variety of problems. It was capable
of solving self avoiding walk problems [1] of unprecedented
size. Where 12 × 12 had been a practical limit with even
adaptive representations [11], the DWP representation solved
40 × 40 cases of the problem. Applied to the problem of
evolving a Gray code [22] the DWP representation enabled
the evolution of an 8-bit Gray code with 256 members. The
DWP problem was also used to evolve entropically rich binary
strings and a type of classification character for DNA in the
initial study. A later study refined the systems power for DNA
classification [4].

1101111110111111...

Fig. 1. An example of a self driving automaton over the binary alphabet and
the first few characters that it emits. The sourceless arrow denotes the initial
state. The strings emitted are shown on the states. The automata’s output is
used as its input.

III. EXPERIMENTAL DESIGN

In this section we describe the representation, the problem,
the evolutionary algorithm, and the experiments performed.

A. Self Driving Automata

Figure 1 shows an example of a self driving automata
(SDA). This automata uses a Moore architecture, associating
emitted symbols with states. The initial state is the topmost,
pointed to by a sourceless arrow. When the machine starts
generating bits it emits a 1. That one becomes the next input
and the machine transitions to the state labelled “10”, emitting
a 1 and a 0. The output is compiled and used, one bit at
a time to drive transitions. The automata generates as many
bits as required. The emission, on some states, of multiple
bits permits the automata to encode quite complex patterns
including aperiodic ones. The example automata in Figure 1,
for example, emits isolated zeros that are spaced ever farther
apart and so aer aperiodic.

The representation used for SDAs is a linear list of states,
each comprising a string to emit and the state to transition
to in the event of an input of 0 or 1. The emitted strings

Fig. 2. An example of a map evolved using the DWP representation. Red is
the starting room, grey blocks are rooms and blue blocks are corridors.

associated with each state have length 1 or 2 with that length
being selected uniformly at random, then filled with random
characters. The crossover used by evolution on this representa-
tion is two point crossover of the list of states, associating the
initial string emitted with the first state. Mutation consists of
changing one emitted string or one transition. The number of
states an SDA is permitted to use is an experimental parameter.
Using a linear representation for the SDA, rather than a
directed graph representation, yields crossover and mutation
operators that are much simpler to code and which permit
greater heritability of fitness. Direct digraph representations
usually require disruptive repair operators.

B. Problem Description

The problem in this study is to place the rooms and corridors
of a level map on a grid. Rooms are rectangles with side
lengths from two to four; corridors are one wide and up to
sixteen squares long. The process starts with an initial room
placed near the center of the grid. The evolving part of this is
a self driving automata which generates bits that are used to
make the following decisions:

1) An eight-bit integer modulo the current number of rooms
is used to select the room next to which a new room is to
be added. At most 256 rooms are permitted; the number
of bits used and rooms permitted are easy to change.

2) A two-bit integer is used to decide if the new room will
be above, below, left, or right of the selected room.

3) A three-bit integer is used to decide if the room is a
corridor or not. If all three bits are zero, the room is a
corridor.



4) If the room is not a corridor, two two-bit integers are
used to compute its dimensions, from 2×2 to 4×4. The
dimension 2 is twice as likely as 3 or 4. If the room is a
corridor a single four-bit integer is used to determine its
length. Corridors run away from the room they adjoin.

Once a series of decisions have been made and a room
proposed by the CSG, the GPS checks to see if (i) the
location of the proposed room avoids other rooms, and (ii)
is completely on the grid that is being populated with rooms.
If the proposed room passes both these checks then it is placed,
otherwise it is rejected.

The fitness function used to judge the quality of a map
in this study is based on the total area A of rooms and
corridors placed on the grid and the area B bounding box of
the aggregate map. The bounding box is the smallest rectangle
on the grid that contains all the rooms. The fitness function is

fitness = A2/B (1)

which encourages the placement of many rooms in a compact
format.

C. The Evolutionary Algorithm

The evolutionary algorithm operates on a population of self
driving automata; varying the population size is one of the
experimental parameters. As noted in Section III-A, during
population updating two point crossover is used and from 1
to MNM mutations are performed on each new population
member where MNM , the maximum number of mutations,
is another parameter under study. The number of mutations
is selected uniformly at random in the range one to the
maximum.

The algorithm is steady state, using mating events consisting
of size seven single tournament selection. Seven population
members are chosen and the two best reproduce to replace
the two worst. Unless otherwise stated, 10,000 such updatings
are used. This is a relatively modest number of updatings
which permitted the completion of a parameter study. Longer
runs were performed after a good set of parameters were
determined. Each experiment consists of thirty independent
runs of the evolutionary algorithm. With two exceptions, each
fitness evaluation was initialized with a single 4× 4 room.

With the exception of the experiment run for additional
time, all the experiments took place on an 80× 80 grid with
a maximum of 256 rooms. One experiment was run for ten
times as long, using a 120 × 120 grid with a maximum of
800 rooms and an algorithmic modification called the recent
room hack. An experiment with standard parameters was also
performed using the recent room hack. The recent room hack
modified the room selection process to use only four bits to
select the focal room for expansion of the map and restricted
the choice of room to the ten most recently produced rooms.
This substantially enhanced fitness for reasons discussed in
Section IV.

TABLE I
EXPERIMENTAL PARAMETERS USED. THE ABBREVIATION RRH REFERS

TO THE RECENT ROOM HACK. EXPERIMENTS 1-15 AND 17-21 FORM THE
TWO PARAMETER STUDIES.

Pop.
Exp. Size MNM States RRH

1 10 1 12
2 32 1 12
3 100 1 12
4 320 1 12
5 1000 1 12
6 10 3 12
7 32 3 12
8 100 3 12
9 320 3 12

10 1000 3 12
11 10 5 12
12 32 5 12
13 100 5 12
14 320 5 12
15 1000 5 12
16 32 1 12

√

17 32 1 4
√

18 32 1 8
√

19 32 1 12
√

20 32 1 16
√

21 32 1 20
√

22 32 1 16
√

*
23 32 1 16

√
**

*Extended run
**uses a nonstandard starting room

D. Experiments performed

The experiments include two parameter studies, one ex-
ploring population size and mutation rate, while the other,
performed with the best parameters from the first, investigated
the number of states used in the SDAs. The experiment
testing the random room hack was performed after the first
parameter study and it was incorporated into the study on the
number of states used. Table I gives the parameters used. The
last two experiments, subsequent to both parameter setting
experiments, were a run with longer evolution time, more
rooms, and the recent room hack, and a standard run, using
the recent room hack, in which a 40× 2 initial room replaced
the usual one.

IV. RESULTS AND DISCUSSION

The results of the first parameter study are shown in Figure
3. This study shows that the algorithm is moderately robust to
change of population size and mutation rate, with the lowest
mutation rate and the population sizes 32 and 100 being the
best performers; at the best mutation rate the population size
32 is marginally better and so subsequent experiments used
population size 32 and MNM = 1. A population size of 10
was clearly the worst among the sizes tested.

Experiment 16, where the recent room hack was added to
the algorithm, showed about a 50% increase in the best fitness
and the number of rooms deployed improved substantially.
Figure 4 shows an example of the types of maps that appear
with and without the recent room hack. Contrasting Figure 3 –



Fig. 3. Results of the parameter study on population size and mutation rate. Shown are box plots of the best fitness values from 30 runs of the evolutionary
algorithm for each set of parameters.

the parameter study performed without the recent room hack
and Figure 5 which depicts a parameter study with the recent
room hack, notice that all the fitness values in the first study
are lower than all the fitness values in the second study.

The recent room hack addresses a simple problem in the
developmental algorithm for the maps used in this study. As
the maps fill in, many of the older room have no space next to
them for the GPF will reject almost any suggestion by the CSG
for a room in their area. Permitting only recent rooms both
reduces the number of bits required from the CSG to specify a
room and substantially increases the change the room selected
will have empty space next to it. In retrospect, the recent
room hack is an obvious improvement to the developmental
algorithm for creating maps.

Figure 5 shows the results of the parameter study examining
the best number of states to use. It is clear that four states are
not enough, but the algorithm is otherwise fairly robust, at
least at 10,000 mating events, to the number of states used
with 16 states turning in the best performance. It may be
that if the parameter study were reperformed with additional
evolutionary time, additional states would have higher utility
because it takes longer to discover strategies that use them.

A. Corridors, present and absent

Looking at the examples of maps in this study, some use
corridors extensively, others do not use them at all. Both
sorts of maps represent high-fitness local optima. The fact
that the SDAs are deterministic and generate strings with
repeated patters means that the maps also have a relatively
small number of structural elements in each map. If these
structural elements contain corridors then the map will as well.

B. Maps made with alternate algorithm settings

To test the notion that additional evolutionary time might
help, Experiment 22 used the recent room hack, permitted

up to 800 rooms, ran for 100,000 mating events, and used a
120×120 grid instead of an 80 × 80 grid. The fitness values
were astronomically higher, but also not comparable with those
in the earlier experiments. An example of a larger DWP map
produced in this run is is given in Figure 6.

The final experiment examined the impact of changing the
starting room. Changing the starting room to a single, long
corridor gave the algorithm far more space to expand the map
and resulted in much more even placement of rooms within
the grid. A contrast demonstrating the impact of the alternate
starting room appears in Figure 7. The location, size, and shape
of the starting room are clearly a factor that influences the
character of the map that appears. There is no need to start
with just one room – using a system of two or three corridors
could help shape the overall map and might remove the need
for the recent room hack by increasing the available useful
perimeter of the growing map.

V. CONCLUSIONS AND NEXT STEPS

This study demonstrated the ability of the do what’s possible
representation to lay out very large maps. The parameter study
showed that the system is relatively robust to the choice of
parameters. If we think about why this system is robust to
parameter choice, an interesting hypothesis arises.

The system presented here proposes a huge stream of rooms
via its SDA and the bit-slicing decision process. These rooms
proposals are then filtered by the GPF to yield a map. If we
tracked the number of proposed rooms required to achieve the
final result then we might see substantially more difference
arising from different parameter choices. The filtration of
a patterned, endless stream of proposals seems to yield an
intrinsically robust system. To make an analogy, if students
are permitted to take an on-line quiz over and over until they
like their grade, then the final results will not be proportional



Fig. 4. Examples of maps created before the recent room hack (upper) and
after it (lower).

Fig. 5. Results of the parameter study on number of states in the SDA.
Shown are box plots of the best fitness values from 30 runs of the evolutionary
algorithm for each set of parameters.

to the student’s effort – less well prepared students will achieve
similar grades. Additional study of this hypothesis is a priority
for additional research.

The runs employing additional time and space showed that
the system scales to larger problem instances, but it does not

begin to test the systems scalability. The rooms added to a
growing map are added one at a time, and after each room is
added, a connected map is available. This means that a given
evolved map builder produces a sequence of maps. While we
stop the process at a fixed point an evaluate fitness, we do
not have to do so. If we allow a larger arena, then we can
keep adding rooms; for some of the evolved map builders we
can do so indefinitely. Running a map builder is quite fast, so
arbitrarily large maps are within the capabilities of the system
presented here.

One concern that arose before performing this research
is that, because of the way rooms are added to existing
rooms, that the map, viewed as a combinatorial graph, would
have room adjacencies that formed a tree. The representation
completely avoided this by packing in lots of rooms, with
many adjacencies arising from fortuitous placement rather than
from deliberate action of the map builder.

Given the relatively small number of states in the SDAs, it
is a little curious that more pattern is not visible in the final
maps. Motifs in the form of collections of similar groups of
rooms appear, but the overall map seems haphazard. This may
be an effect caused by obstruction generated via serial addition
of rooms. As the map grows, rooms already in place prevent
some proposed rooms from being placed. The pattern of this
obstruction is idiosyncratic to a particular SDA and breaks the
crystalline order that might otherwise arise.

A. Things that could be done

The system presented in this study was tested on a square
grid of cells and rooms were added to a map under the
influence of a very simple fitness function. A small number of
room shapes were used and the system constructively creates
a connected map. There are a large number of additional
directions the system can be developed in.

One of the most obvious future directions follows from the
fact that the system can adapt to grow in different directions
via its evolved selection of which rooms to use as a focus for
adding the next room. If we are fitting a map into a constrained
shape, with areas where rooms cannot be built, it is almost
trivial to initialize the drawing arena to forbid rooms in some
area. A quick test of this notion was performed and appears in
Figure 8. If we start with a high level plan for where patches
of rooms need to go, then the DWP room-layout tool can be
used to fill in details.

The fitness function used – area of rooms placed squared
divided by the area of the bounding box – encourages the
representation to lay out as many rooms as it can in a relatively
dense form. Many other fitness functions are possible. A
fitness function that rewarded a particular density of rooms
would be simple to implement and would grant the user
additional control of the type of map generated, for example.
Slightly more expensive fitness functions could use dynamic
programming to work on tactical properties of the map [6],
[10], or one could even use different AI personas to adapt
maps for a given play style or play preference [12].



Fig. 6. The map shown is rendered on a larger grid was permitted up to 800 rooms during evolution of the map generator.

Fig. 7. Three examples of evolved maps with standard and elongated starting rooms. Starting rooms are shown in red.



Fig. 8. Shown are examples of maps shaped by placing obstructions in the
bounding square of the map. The obstructions are shaded light blue.

Something left out of the current system is the placement of
doors. It seems likely that an additional developmental phase
that placed doors would be a good follow-on project. The
current system insists that a new room share at least one grid’s
worth of wall with the room it is placed next two. Insisting
that one or the other wall be flush, or even that the wall
align, would create a very different sort of map. Tinkering
with the rules for how rooms are adjoined is a rich area for
modifying the system, and different room adjoinment rules
can be mixed by simply adding another decision to the SDA’s
decision process.

B. Avoiding the need for the recent room hack

The recent room hack avoids the problem of selecting “used
up” rooms, those with no adjacent space, as the foci for
addition of a new room. The fairly arbitrary choice of the
most recent ten rooms is an additional algorithmic parameter

that could be explored. There are two other ways to address
the issue that the hack addresses. The first is a blacklist for
rooms.

The blacklist would require a critical number of R rejec-
tions. If a room is proposed by the SDA as a place to site
an additional room and rejected R times, it is removed from
the list of available rooms. This would require maintaining a
list of available rooms, not a difficult task, and would allow
the system to refine and improve its GPF with information
gained during run time. This modification of the algorithm
would probably substantially improve performance.

A second and much simpler way to avoid the need for the
random room hack is implicit in the final set of experiments
with the elongated starting room. The system can accept
multiple starting rooms as initial conditions. Build a sparse
network of corridors as the initial state of the system. Then
the active area where rooms can be placed starts very large and
avoids, at least for quite a while, the congestion that plagued
the system with an initial 4× 4 room.

C. Different room shapes and required content

In [16], rooms with particular shapes were specified ahead
of time and incorporated into procedurally generated maps. In
this study, rectangular rooms were used for ease of placement.
A small upgrade to the code that determines if a room can be
placed in a given location would permit the DWP map builder
to use a far wider variety of rooms.

If very specific rooms were required they could be placed in
a list and one of the possibilities in the CSG’s decision process
would be an attempt to place a special room. The special room
remains in the list until placed or, possibly, until some number
of instances of it have been placed.

D. SDA are not the only choice for CSGs

In the original DWP research [5], SDAs were not the only
evolvable structures used as CSGs. Another technology, called
an alternator list was also used. SDAs were chosen for this
study because they can generate aperiodic stings of characters
while alternator lists must eventually fall into a cyclic pattern;
the very long period of evolved alternator lists makes this a
largely irrelevant choice.

In fact, though, the maps located with SDAs in this study
were a good deal less structured that the authors had orig-
inally anticipated. Using a relatively simple periodic stream
of characters might yield interesting maps, even a relatively
short string repeated indefinitely. In any case, exploration of
different choices of complex string generators is a rich area
for future research.

E. Adaptivity

One particular strength of this approach is that it is adaptive
on two different levels. There is a powerful analogy for this
in biology - a plant, for example, adapts through evolution
and might acquire certain growth pattern, but then it also
adapts to its actual environment during its lifetime, by growing
into a certain shape, or around obstacles. The representation



discussed here has a similar split. The CSG can evolve to
encode a specific approach to the problem, i.e. what patterns
to use, or what solution to try first, while the GPF can adapt
the suggested solution to the concrete problem in hand. Fig.8
shows how the rooms are placed around obstacles. In this
example it would be possible to evolve the CSG for a different
set of obstacles - creating a typical pattern or built style, and
then apply this built style to different obstacle patterns.

This two stage adaptivity could be an interesting new
approach for the challenges in adaptive procedural content
generation, which in contrast to tabula rasa PCG, needs to
create content in response to already existing content. This
adaptivity to existing content should not be confused with
adaptivity to the player [14], where generated content adapts
to play styles or a player’s competence level. An example for
the former is the AI Settlement Generation Challenge [17],
where participants have to write an algorithm that can generate
a city for an unseen Minecraft map. The solution should,
among other things, adapt to the underlying terrain. The DWP
representation could be used, by providing an appropriate
complex string to road element mapping to build a road
network that would avoid inappropriate road placement. The
CSG could be evolved to produce a style of road network that
would fit certain criteria - or a curiosity driven approach could
be used to generate road networks of different styles, and those
could then be applied and conform to different terrain.

In this context it would then also make sense to soften the
evaluation of the GPF to a “whats affordable” representation,
similar to the approach in [11]. Placing a new piece of road
could not just be allowed or forbidden, but the output string
could be used to choose from a distribution of options, with
better, more affordable options having a higher likelihood to
be chosen. So the algorithm might prefer a flat road on even
terrain to a step road over rugged terrain.

VI. SUMMARY

In this paper we show how the “do what’s possible”
representation can be applied to the concrete problem of
procedural dungeon generation. Compared to the range of
other dungeon generators this approach is relatively light-
weight in its representation - which reduces the search space a
genetic algorithm has to go through. Yet the representation is
scalable, capable of creating dungeons of arbitrary size, and
grows dungeons iteratively in such a way that they process
could be stopped at any time with a solution. Of course,
this is traded off with various advantages and disadvantages
compared to other generators. We also discussed a range
of minor modifications that would allow one to enhance or
fine tune the output for practical application. A particularly
noteworthy feature is the two-tier adaptivity, that would allow
for content generation that could be sensitive to existing
content, bearing a suitable chosen generative possibility filter.
The last property might make this approach particularly useful
to generate game content that would typically grow organically
over time in response to external stimuli, such as plants, cities,
dungeons, etc.
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