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Abstract—This study compares an adaptive and a non-
adaptive implementations of Prisoner’s Dilemma playing
agents. The adaptive agents implement three interlinked strate-
gies and choose which strategy to use based on environmental
cues, in this case the mean score of the agents in the previous
generation. The hypothesis under test is that phenotypic plas-
ticity can grant a competitive advantage to agents possessing
it. The interlinked strategies are implemented as finite state
machines with a thread for each environmental condition; the
thread corresponding to the current environmental condition
generates the agent’s response, but all threads are updated
throughout play. It is found that agents with phenotypic plastic-
ity can be superior to agents without it but need not be. Three
variations of phenotypic plasticity are studied. One outcompetes
the control agents while the control agents outcompete the other
two types of plastic agents. Two of the agents with phenotypic
plasticity are found to exhibit enhanced levels of cooperation.
Other possible implementations of phenotypic plasticity are
discussed.

I. INTRODUCTION

Prisoner’s dilemma is a good test environment for many
ideas about mathematical games and, in some cases, games
in general. In this study we examine agents that are granted a
more complex form of environmentally triggered adaptability
called phenotypic plasticity. This term is defined in Section
II. The triggers for use of the different adaptions available
to the agents are fixed for a given agent type, but the agents
are permitted to evolve their response to those triggers and
even, potentially, to discard them.

Agents evolved with three versions of the additional
adaptability are compared, for competitive ability, with one
another and with control agents that lack the adaptability.
The agent types are placed into competition and tested for
cooperation with and dominance over other agent types. The
results find that the added ability can be a boon or a handicap,
depending on the trigger thresholds, demonstrating that the
added adaptive ability is worth investigation, but is somewhat
complex.

The remainder of this study is structured as follows. Sec-
tion II surveys past work and defines phenotypic plasticity.
Section III gives the experimental design. Section IV gives
and discusses results, while Section V draws conclusions and
outlines possible next steps.
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II. BACKGROUND

This section defines and gives background on the added
adaptive ability and reviews past work on the evolution of
prisoner’s dilemma agents.

A. Phenotypic Plasticity

Phenotypic plasticity consists of any environmentally trig-
gered change in the phenotype of an organism. A good
survey of the biology appears in [33] and good overviews
of recent developments and theories regarding phenotypic
plasticity and its role in evolution can be found in [23],
[29]. The phenomenon of plasticity was originally viewed
as an annoying distraction in evolutionary theory [34] but
has recently been recognized as a target quality for evolv-
ing adaptability, although the degree to which it accounts
for evolution and speciation is still under discussion [23].
Instances thought to be rapid evolution in some species are,
instead, environmental triggering of latent potentials that are
a form of phenotypic plasticity.

Phenotypic plasticity can be controlled at the developmen-
tal level, by epigenetics [28], or via genetically determined
systems responding to an environmental signal like drought
or extreme temperatures. Examples of phenotypic characters
in plants that can be plastic include the size of seeds and
leaves, the shape of leaves, and the thickness of leaves. An
example of regulatory plasticity in animals is temperature
dependent sex selection in reptiles [31]. Many species of
reptile do not have genetically determined sex, rather the
temperature at which eggs are incubated determines sex. Diet
can also affect phenotype. For example, the tadpoles of the
Mexican spadefoot toad Spea multiplicata can be either large
carnivores or small omnivores depending on whether they
have ingested fairy shrimp [32].

The advantage of phenotypic plasticity is that a single
chromosome can incorporate multiple phenotypes, beyond
differences in phenotype caused by brute force effects in the
environment where the organism develops. In this study we
will make a small modification to a finite state game playing
agent to permit it to encode three game strategies that are
executed in the same evolving structure and couple this with
an environmental sensor that permits the agent to change
between the strategies. As the agent evolves, the hope is that
these changes will become strategically appropriate.

In [26] the authors state the following:
Phenotypic plasticity can be broadly defined as the
ability of one genotype to produce more than one
phenotype when exposed to different environments,
as the modification of developmental events by
the environment, or as the ability of an individual
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organism to alter its phenotype in response to
changes in environmental conditions. Not surpris-
ingly, the study of phenotypic plasticity is innately
interdisciplinary and encompasses aspects of be-
havior, development, ecology, evolution, genetics,
genomics, and multiple physiological systems at
various levels of biological organization.

In this study we devise a type, one of many possible, of
phenotypic plasticity for simple agents. Lacking the bio-
chemistry of living organisms, we cannot reasonably try to
simulate the biological mechanisms of phenotypic plasticity.
Rather, we are experimentally determining if and when
plasticity might yield better game playing agents.

Many systems used to simulate biological phenomena use
simple non-adaptive representations. In this study we take
a representation that can already adapt to its opponent’s
moves and augment it with an additional layer of adaptive
ability. The results of this study will show that incorporating
adaptive ability, as a form of phenotypic plasticity, can grant
a substantial advantage or disadvantage: the details of the
plasticity matter. Given that actual biological organisms use
and benefit from phenotypic plasticity [34], it seems natural
to include it as a means of making game playing agents more
effective.

This study uses a single representation, a finite state
transducer, for its agents. This is one of the most studied and
among the most effective types of game playing agents for
the prisoner’s dilemma, but this choice defers examination
of the issue of representation for the future [6], [5].

B. Prisoner’s Dilemma and Past Work

The prisoner’s dilemma [17], [16] is a classic model in
game theory. Two agents each decide, without communica-
tion, whether to cooperate (C) or defect (D). The agents
receive individual payoffs depending on the actions taken.
The payoffs used in this study are shown in Figure 1.
The payoff for mutual cooperation C is the cooperation
payoff. The payoff for mutual defection D is the defection
payoff. The two asymmetric action payoffs S and T , are the
sucker and temptation payoffs, respectively. In order for a
two-player simultaneous game to be considered prisoner’s
dilemma, it must obey the following pair of inequalities:

S ≤ D ≤ C ≤ T (1)

and
2C ≤ (S + T ). (2)

In the iterated prisoner’s dilemma (IPD) the agents play
many rounds of the prisoner’s dilemma. IPD is widely used
to model emergent cooperative behaviors in populations of
selfishly acting agents and has been used to model systems
in biology [37], sociology [25], psychology [36], and eco-
nomics [24].

Previous work has shown that the introduction of noise
substantially alters the course of evolution when prisoner’s
dilemma is studied in the context of an evolutionary algo-
rithm or in a tournament. In particular, the introduction of
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Fig. 1. (1) The payoff matrix for prisoner’s dilemma used in this study
– scores are earned by strategy S based on its actions and those of its
opponent P . (2) A payoff matrix of the general two player game – C, T, S,
and D are the scores awarded.

noise has been shown to affect the evolution of cooperation
and the complexity of winning strategies [21], [30], [38],
[20]. It is also shown in [21] that more diverse populations
are affected less by the introduction of noise. There are two
possible types of noise in prisoner’s dilemma: misunderstand-
ing an opponent’s action or mistakenly making an unintended
play. This study investigates the impact of the first type.

The choice of representation is critical for prisoner’s
dilemma; the study in [9], continued in [6], investigates the
impact of this choice. The representations covered by the
two studies are two versions of feed forward neural nets (one
biased at the neuron level toward cooperation), Boolean parse
trees [18], with and without a one-step time-delay operation,
a linear genetic programming representation called an ISAc
list [13], lookup tables, a type of Markov chain [35], and
both a direct and cellular [6] representation of finite state
machines. The change of representation, with other factors
held as near to constant as possible, yielded a change from
0% to 95% in the probability that final populations were
cooperative. This study uses one of these representations,
finite state machines, investigating the probability of coop-
erative behavior in the presence of noise. The duration of
evolution in [9], [6] was 250 generations with samples taken
at 50, 100, 150, 200, and 250 generations. Little effect on the
cooperativeness of agents was observed at different epochs.
This study demonstrates a different result for noisy strategies
evolved for a longer time.

In [14] it was found that evolving agents to play the
iterated prisoner’s dilemma for a long time gave them a
substantial competitive advantage against agents evolved for
less time from different evolutionary lines. This phenomenon,
called non-local adaptation, suggests that agents are gaining
not just skill playing the agents with whom they are co-
evolving but general skill at playing the prisoner’s dilemma;
they have a statistically significant advantage against agents
they have never been evaluated against before. In [11] it
was demonstrated that non-local adaptation takes place in a
steady fashion across much of evolution. This study extends
measurement of competitive advantage to include the effects
of noise as well. Non-local adaptation is also observed in
other co-evolutionary contexts. In [22] it was observed in
competitive exclusion in a spatial model of plant growth. In
[3] it was observed in populations of virtual robots evolving
to paint a floor in two competing colors. The effect was



observed in predator-prey models in [1] and in populations
of agents in a game called divide the dollar in [4].

Other recent results on Prisoner’s Dilemma include a
demonstration that the strategies located change with the
choice of payoff matrix [8]. The average competitive ability
of strategies changes when they are evolved using differ-
ent payoff matrices. The resources permitted an agent, the
number of states in a finite state representation, the number
of neurons in an artificial neural net, or the granularity of
a Markov chain also influence which strategies arise and
the competitive ability of those strategies [27]. Even the
details of the evolutionary algorithm, such as elite fraction
and population size, influence the type of agents that arise
[7].

Fig. 2. An example of a modified FSR for playing IPD with three
pointers to active states. One pointer is used to generate responses for each
environmental condition.

III. EXPERIMENTAL DESIGN

The representation used in this study is a simple mod-
ification of the finite state representation (FSR) used in
[27], this is a Mealy architecture finite state transducers that
encode an initial action and condition their transition to a
new state and action on the opponent’s last action. This
representation is described in detail, below. Normally, this
sort of FSR maintains a pointer to the currently active state.
The modification is to have three such pointers, permitting
the agent to run three threads simultaneously. All three
threads are run for each input, and each generates a next
action. We implement phenotypic plasticity by using a simple
method of selecting which of the three actions, generated by
the three threads, is actually used.

An example of a threaded agent appears in Figure 2. The
isolated Ds are the initial actions of the threads; each is on a
sourceless arrow that points to the starting state of the thread.
Transitions are shown with arrows that have labels with two
prisoner’s dilemma moves separated by a slash. The first of
these is the opponent’s last action, the second is the agent’s
response.

We use a pair of plasticity thresholds to partition the
agent’s environment into three zones. These thresholds are
numbers, T1 and T2 so that 1 ≤ T1 ≤ T2 ≤ 3. The numbers 1
and 3 are the minimum and maximum average score possible
in a round robin prisoner’s dilemma tournament using the
payoff matrix given in Section II. If the previous generations
average score Savg is below T1, the action generated by the
first thread is used; if Savg is between the thresholds the
action generated by the second thread is used; otherwise the
action generated by the third thread is used.

TABLE I
PLASTICITY THRESHOLDS USED FOR SETS OF RUNS IN THIS STUDY.

Experiment T1 T2

1 2.25 2.8
2 1.2 2.25
3 1.2 2.8

4 (control) 1.00 1.00

The thresholds are fixed for a collection of experiments.
Control agents are implemented by setting T1 = T2 = 1 so
that only the third thread is ever used. Table I gives the values
of the thresholds used. The value 2.25 is the average of all
four payoffs and is what two players using random moves get
against one another. The value 1.2 represents the boundary
below which an agent is believed to be mostly defecting;
likewise 2.8 is the lower bound for behavior termed mostly
cooperative.

The first experiment has the ranges “worst than random”,
“better than random”, and “cooperative” delineated by its
plasticity thresholds. The second experiment uses the ranges
“defecting”, “better than defecting but worse that random”
and, “better than random”. The third experiment uses the
ranges “defecting”, “neither”, and “cooperating”. It is not
clear what good choices of plasticity thresholds are and these
three, together with the control agents, are sufficient to permit
a first assessment.

A. Agent Representation

The agent representation used in this study is 24-state
finite state machines with actions associated with transitions
between states (Mealy machines). State transitions are driven
by the opponent’s last action. Access to state information
permits the machine to condition its play on several of
its opponent’s previous moves, for each of the adaptive
threads. The machines are stored as linear chromosomes
listing the states. The initial action for each thread is stored
with and undergo crossover with the first state in this linear
chromosome. The initial states for each thread are states 0,
8, and 16, numbering the 24 states with zero based counting.

Two variation operators are employed, a binary variation
operator and a unary variation operator. The binary variation
operator used is two-point crossover on the list of states.
Crossover treats states as atomic objects. The mutation



operator changes a single state transition 40% of the time, the
initial action 10% of the time, or an action associated with
a transition 50% of the time. The unary variation operator
replaces the current value of whatever it is changing with a
valid value selected uniformly at random.

B. The Evolutionary Training Algorithm

Agent’s fitness is evaluated through a round robin tourna-
ment lasting 150 rounds. The tournament length is borrowed
from earlier studies, retained for consistence. The average
score of the population in the last round is used to determine
which thread each agent uses to generate its next action and,
for the first generation, the “random behavior” value of 2.25
is used in place of the previous generation value.

The population is updated by an elitist method. The
algorithm uses a population of 36 agents. The highest scoring
24 agents, breaking ties uniformly at random, are retained
into the next generation. This structure of 36 agents with a
24 agent elite is chosen for consistency with several earlier
studies, to permit comparison. The twelve lowest scoring
agents are replaced by selecting pairs of parents, without
replacement, from the agents to be retained. Parents are
copied and the copies undergo two point crossover and a
mutation. The mutation changes the agent’s initial action
10% of the time, a state transition 40% of the time, and an
action 50% of the time. This choice of reproductive algorithm
and variation operators are also retained from earlier studies
[8], [27] for consistency.

The agents are evolved for 250 generations and then
the elite population is saved for evaluation for competitive
ability. The population average and maximum fitness over
the course of evolution for each population is also saved.
Each experiment consists of thirty independent runs of the
evolutionary algorithm, providing 30 final elite populations
of 24 agents in each experiment.

C. Competitive Evaluation

Comparison is made of agents from all six pairs of experi-
ments. In order to compare two experiments, the populations
are loaded, one at a time, from each experiment. The first
population competes against the first, the second against the
second, and so on. Re-using populations would potentially
cause bias if exceptional populations arose, so only thirty
pairs are compared. In order to compare two populations,
each pair of agents with one member in each population
play 150 rounds of IPD, a binary round robin tournament.
This is done 20 times, generating an average fitness for use
with the plasticity thresholds. Each pair of agents, in each of
the 20 iterations, is evaluated for win, lose, or draw.

If two agent’s scores in 150 rounds of play differ by
ten or less they draw and are judged to be coordinating
the scores. Otherwise the status win goes to the higher
scoring agent, lose to the lower scoring agent. The probability
p = win/(win + loss) is estimated using the normal
approximation to the binomial distribution and reported. If
p = 0.5 is not within a 99% confidence interval, then one

of the experiments is judged to have generated competitively
superior agents.

IV. RESULTS AND DISCUSSION

The competition results appear in Table II. In all pairs of
experiments, one or the other was competitively superior.
The control run, which did not benefit from phenotypic
plasticity, beat two of the sets of agents that possessed
phenotypic plasticity. The agents in experiment one, however,
were competitively superior to all others, beating the control
agents with a higher probability than either of the other
plastic agents. This suggests that, while the who-beat-who
dominance pattern in this study was transitive, some sub-
collections of agents might exhibit intransitive behavior. The
subject of transitivity, or lack thereof, in agent behavior is
itself one worth study [2].

TABLE II
SHOWN ARE 95% CONFIDENCE INTERVALS ON THE PROBABILITY OF

AGENTS EVOLVED IN THE EXPERIMENT LABELLING THE FIRST COLUMN
HAVE OF BEATING AGENTS LABELLING THE SECOND IN A TOURNAMENT.

THE LAST COLUMN SHOWS THE PERCENTAGE OF ACTIONS WHERE
AGENT PAIRS THAT WERE COORDINATED DURING TOURNAMENT PLAY .

Pairs of Confidence Coord-
Experiments Interval ination
1 vs 2 0.575±0.003 51.9%
1 vs 3 0.526±0.003 42.7%
1 vs 4 0.632±0.003 48.9%
2 vs 3 0.636±0.003 48.5%
2 vs 4 0.463±0.003 49.6%
3 vs 4 0.469±0.003 42.0%

Figure 4 diagrams the pattern of dominance between
agents in different experiments. This figure illustrates the
information in Table II in graphical form. The experiment
that exhibited the worst competitive ability, Experiment 4,
is the one that segregated “cooperation” and “sustained de-
fection” off from all other behaviors. Experiment 1, with the
best competitive ability, groups worse than random behaviors
as its low-score category and cooperation as its high score
category. Sustained defection, also a region in Experiment 2,
which came in third, is very easy to recognize and so may
not be worth spending one of the two threshold values to
detect.

The researcher’s expectation was that the control agents
would be beaten by all three types of plastic agents. The
actual result verifies that phenotypic plasticity can grant
a competitive advantage but need not. The experiments
presented here are a first attempt, using an extremely simple
form of plasticity, and it seems that the adaptive ability
built into the FSR’s transition diagram is still providing the
majority of the adaptive ability.

A natural choice would be to make the thresholds, and
even the number of thresholds, part of the agents genes rather
than imposing them as exogenous behaviors. Between them



Experiment 1, Run 7 Experiment 4, Run 7

Experiment 2, Run 25 Experiment 4, Run 25

Experiment 3, Run 3 Experiment 4, Run 25

Fig. 3. Shown are the evolution of fitness over time in populations from Experiments 1, 2, and 3 that exhibit thrashing and the corresponding runs from
the control experiments. Correspondence is of run index number, to provide unbiased comparison. The tracks display the population average and maximum
fitness.



the authors have published dozens of papers on evolving
game playing agents and on the prisoner’s dilemma specifi-
cally. The decision to do a very simple experiment is a lesson
learned from burned hands: sorting out the effects of an
evolvable plasticity mechanism is likely to be quite difficult
without the background context provided by this study.

Fig. 4. Shown is the dominance order of the evolved agents. The agents
from the experiment at the base of the arrow dominate the agents at the head;
the numbers in the lower part of each box are the plasticity thresholds for
the experiment

A. Behaviors Observed During Evolution

We begin with an overall comparison of the fitness in the
three experiments. Figure 5 shows an average of popula-
tion averages of the fitness tracks. This shows an inverse
relationship between fitness, which usually corresponds to
cooperation, and competitive ability. This inverse correlation
has been observed in other studies [14], [8]. Examination of
the individual runs in Experiment 1 showed that 23 of the
runs ended in a cooperative state while only one located the
all-defect Nash equilibrium for two-player single shot pris-
oner’s dilemma. The competitive ability of the agents evolved
in Experiment 1 does not rely on the simple mechanism of
using the always defect strategy.

Experiments two and three achieve higher levels of coop-
eration that the control experiment. The issue of cooperation,
while a central one in the study of prisoner’s dilemma, was
not a core focus in the design of this study. When considering
competitive ability, we concluded that the threshold values
1.2 and 2.8, which detect sustained defection and cooperation
for the score matrix used in this study, were not a good use
of the adaptive resources represented by plasticity. It may be,
however, that the plasticity mechanism permitted the agent to
bin its reactions to sustained defection and cooperation that
made both the emergence and maintenance of cooperation
easier. This is a phenomenon that deserves additional study.

Figure 3 shows the evolution of fitness over evolutionary
time for examples drawn from the three experiments with
plasticity and the runs with the same index number (1-30) in
the control runs. Since the plasticity mechanism has a sharp
threshold, it is possible to jump back and forth across that

threshold in successive generations as the strategies triggered
by the last generation’s average score caused the population
to shift across a threshold value, in opposite directions in
successive generations. This behavior is common in the
plastic runs and absent in the control runs.

A similar sort of rapid strategic shifting was found as an
evolved behavior in agents being trained to play the game
divide the dollar [12]. In this game, two agents bid and, if
their bids total at most a dollar, they are paid what they bid. In
that study, the rapid behavioral change was adaptive because
it made invading populations using the oscillating strategy
difficult to invade. The fact that the thrashing behavior
terminates in almost all examples suggests that it is possible
to invade, but the adaptive value of this behavior, if any,
should be investigated if only because it was so common in
the plastic runs.

V. CONCLUSIONS AND NEXT STEPS

This study demonstrated that implementation of a simple
mechanism for endowing game playing agents with phe-
notypic plasticity yielded substantial changes in the agents
behavior and adaptive ability. The goal of increasing com-
petitive ability is a qualified success: one of the plastic agent
types gained a strong competitive ability, the other two were
out-competed by control agents. An unexpected but pleasant
result is that the implementation of phenotypic plasticity
proved able to change the level of cooperation, and in two
of the three experiments with plastic agents improved it.

The results of implementing phenotypic plasticity show
a need for additional study, even for the relatively simple
mechanism implemented in this study. A large number of
pairs of plasticity thresholds need to be tested and the
ability of the plasticity mechanism to enhance cooperation
is also in need of additional study. One of John Nash’s
original specifications for an effective prisoner’s dilemma
agent was that if be cooperative but able to defend itself. The
plasticity mechanism seems to be able to control evolution’s
implementation of their criterion, but not in an obvious
manner.

There is a point that bears repeating about the well-known
Nash equilibrium for the prisoner’s dilemma: always defect.
The theory of Nash equilibria does not apply to evolutionary
systems which update their population more than one agent
at a time. The definition of a Nash equilibria is that no one
player may improve their score by changing strategies. The
updating used in the evolutionary algorithm in this study
updates twelve agents simultaneously. The emergence of co-
operation in a majority of the interactions of both the control
and phenotypically plastic agents in this study demonstrates
that the Nash equilibria of prisoner’s dilemma in classical
game theory lacks predictive power in the investigation of
game playing agents trained by evolution.

When applied to evolutionary computation in optimiza-
tion, phenotypic plasticity may provide a road to robust
optimization [19]. Adaptive representations for optimization
have been devised [10] and the representation cited exhibits



Fig. 5. Shown are the average, over all 30 evolutionary runs, of the population average fitness values for the four experiments over the course of evolutionary
time.

a different form of phenotypic plasticity than the one studied
here. This is a rich area for future investigation.

A. Improving the Experimental Design

An obvious improvement in the experimental design would
be to implement hysteresis so as to prevent thrashing. This
would require distinct but similar thresholds for shifting
strategies. Instead of 1.2, an agent would shift to the first
strategy thread at 1.15 or below and to the second one and
1.25 or above. Thrashing is still possible in this scheme,
but would be less likely. This is separate from the idea of
investigating what adaptive benefit thrashing might produce.

The next logical step in this research is to make the adap-
tive thresholds, and even the number of adaptive thresholds,
part of the agents genome. This may permit the discovery
of “good” adaptive thresholds or may help demonstrate that
different adaptive thresholds grant an intransitive form of
advantage.

B. Other Representations, Other Games

There are a number of issues that affect the strategy
space available to evolving prisoner’s dilemma agents and the
strategies actually selected from those spaces by evolutionary
competition. These include the agent representation, the
resources (number of states, neurons, probability levels in

a Markov chain), and the details of the algorithm including
population size, geographic structure, and duration of evo-
lution. The strategy Fortress 4 which cooperates only after
three mutual defections, was discovered only after 16,000
generations of evolution [15].

Phenotypic plasticity has the potential to enhance agent
robustness. This means that incorporating it into simulations
may reduce the impact of the many factors that have been
found to affect cooperation level, competitive ability, and the
mix of strategies that arise during evolutionary training.

Finally, prisoner’s dilemma is a very interesting game, but
there are so many others. In addition to mathematical games,
like the snowdrift game or divide the dollar, phenotypic plas-
ticity may be valuable for creating better bots or opponents
in video games. A simple example of this application of
phenotypic plasticity would be to have an agent that, when
substantially wounded, goes into a different fighting more. It
might flee or it might go berserk style.

The mechanism of phenotypic plasticity used in this study
was relatively proscriptive. The thresholds that triggered
plastic behavior were given at the top level of an experiment
and the number of threads, three, was determined ahead of
time. There are a vast number of other ways that phenotypic
plasticity could be implemented. Moving closer to the imple-



mentation at the level of basic physiology interacting with
the environment is a goal of future research. In particular,
permitting agents to self-organize their plasticity to a greater
degree would be an excellent goal.

The ability of the agents in this study to organize their own
plasticity comes in their genetic control over the composition
of the transition and response functions encoded by the agent.
An interesting analysis not performed would be to see if
evolution left the transition diagram accessible to the three
pointers connected, or if in fact evolution chose to give
different pointers their own individual transition diagrams.

Another possible mechanism for phenotypic plasticity
would be to have agents with a mechanism for modifying
response labels in its finite state machine, flipping them
between the values C and D. This mechanism could be
conditioned on average score with a higher rate of response
modification when the score is lower. The original values
would be retained in the genotype with a digital “enzyme”
whose activity levels were conditioned on payoff level mak-
ing the modifications again in each session of play.
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