
Searching the Latent Space of a Generative
Adversarial Network to Generate DOOM Levels

Edoardo Giacomello
Dipartimento di Elettronica,

Informazione e Bioinformatica
Politecnico di Milano

edoardo.giacomello@polimi.it

Pier Luca Lanzi
Dipartimento di Elettronica,

Informazione e Bioinformatica
Politecnico di Milano

pierluca.lanzi@polimi.it

Daniele Loiacono
Dipartimento di Elettronica,

Informazione e Bioinformatica
Politecnico di Milano

daniele.loiacono@polimi.it

Abstract—In this work, following the same approach success-
fully applied to evolve Super Mario levels, we applied the CMA-
ES to search the latent space of a GAN previously trained to
generate DOOM levels. Combining a search algorithm with a
model trained in a supervised setting, allows to take advantage
from both these paradigms. From one hand, the GAN is able to
generate contents exploiting the design patterns learned from all
the examples it was trained from. On the other hand, the CMA-
ES can effectively search this design space for specific contents
that meet some given design objectives. In particular, we tested
our approach evolving three very different type of levels: an
arena level (i.e., few large areas), a labyrinth level (i.e., many
corridors and small areas), and a complex level (i.e., a balanced
mix of large and small areas). Our results show that the latent
space of a GAN can be effectively searched by the CMA-ES to
find DOOM levels that fit accurately the objectives but, at the
same time, are also novel.

I. INTRODUCTION

Nowadays, the increasing complexity and size of games
require the creation of a huge amount of content, that is
one of the most expensive and time consuming task of the
whole development process. Among the game contents, such
as weapons, enemies, texture, sprites, models, etc., the levels
significantly affect the game experience. For this reason, game
researchers are focusing on the study and development of
AI systems that can either assist or partially replace human
designers on this important process.

In a previous work [1] we proposed to apply Generative Ad-
versarial Networks (GAN), a popular deep learning approach
that proved successful for the generation of several kind of
contents, to generate DOOM levels. DOOM is a milestone of
the genre of the first person shooter and, despite being more
than 25 years old, not only it is still played today but it is
also possible to find online a large amount of newly created
content for this game, including game levels.

A major limitation of using GAN to generate levels is that
it does not allow to meet specific design objectives, i.e., the
generated levels would basically represent novel data sam-
ples generated from a distribution modeled after the training
dataset. Accordingly, in this work we extend our previous work
on DOOM level generation by applying the CMA-ES search
of the latent space of the GAN, following the same approach

introduced in [2] and previously applied also to evolve Super
Mario Levels [3]. Accordingly, we encode DOOM levels as
vectors of 100 real values and map them into actual DOOM
levels using the generator network of a previously trained
GAN. We then extract a few features from the generated levels
that describe effectively their design, e.g., the size and shape
of the level layout, the number of rooms of the level and
the distribution of their size, etc. Thus, we apply the CMA-
ES to search the input space of the GAN that generates the
DOOM levels and use the extracted features to set the design
objectives, i.e., the fitness function, of this search. In particular,
we tested our approach by applying the CMA-ES to generate
novel DOOM levels with a design that is similar to three
specific levels, that basically differ for the organization and
complexity of their layout: an arena level, a complex level,
and a labyrinth level. We compared the performance of CMA-
ES with a stochastic hill climber and our results show that
CMA-ES is able to effectively find levels with design features
very similar to the one provided as a target, nevertheless the
generated levels exhibit a good degree of novelty and variety
with respect to the original content.

The rest of this paper is organized as follows. In Section II
we provide an overview of the related work. In Section III we
briefly describe how GAN is used to generate DOOM levels
and in Section IV we detail our approach. The experimental
design is described in Section V, while the results are reported
and discussed in Section VI. Finally, we draw some conclu-
sions in Section VII.

II. RELATED WORK

Procedural Content Generation (PCG), used in the past to
deal with memory and computational limitations [4], is today
mainly used by game developers to generate a huge amount
of contents (e.g., the procedurally generated worlds of No
Man’s Sky 1) or to provide an endless gameplay experience
(e.g., like in the popular endless runner Canabalt 2). In the
past few years, several works in the game research literature
focused on using machine learning to improve and extend the
procedural content generation systems. In particular, two major

1https://www.nomanssky.com/
2http://canabalt.com/

978-1-7281-1884-0/19/$31.00 c©2019 IEEE

approaches have been proposed in this field: the search-based
procedural content generation (SB-PCG) and the PCG based
on machine learning (PCGML).

SB-PCG, introduced in [5], combines the procedural content
generation methods with a search-based algorithms, such
as evolutionary algorithms, to automatically generate high-
quality game content. So far, SB-PCG has been applied to
several game genres, including platform games [6]–[8], racing
games [9]–[11], RPG games [12], strategy games [13], and
first-person shooters [14]–[18].

PCGML, introduced in [19], consists of training machine
learning models (e.g., a deep neural network) on existing
game contents and using trained models to generate novel
contents. This approach already proved successful in sev-
eral applications [19], such as the generation levels for 2d
platformers [20]–[22] and levels of Legend of Zelda 3 [23].
Among the approaches used in PCGML, Generative Adver-
sarial Networks (GANs) [24] are a promising approach to
model a complex dataset and then generate synthetic data
with a similar distribution to the real data. GANs already
proved successful in several applications that involve image
processing, such as handwritten digits [25], human faces [26],
and bedrooms [27]. They have been also used for image
colorization problems [28], frame prediction in videos [29]
and sound generation [30]. Concerning the PCGML field,
Beckham and Pal [31] proposed a method based on GANs for
generating realistic height level maps for videogames, that is
more focused on landscapes and might be difficult to apply to
generate indoor environments. The same approach can be also
applied to non-functional content generation, as done in [32],
in which GANs are used to generate 2d sprites. Finally, in
a previous work [1] we trained a GAN to generate novel
DOOM levels from the idgames archive, a large dataset of
levels created by the community of DOOM players.

Recently, a novel approach that combines both SB-PCG and
PCGML has been introduced in [3] and applied to generate
levels of Super Mario 4. This approach relies on the latent
variable evolution (LVE) introduced in [2]. The underlying
idea of LVE is that, once a GAN is trained to generate a
specific type of data (e.g., images, sounds, levels, etc.), the
real-valued noise vector, provided as input to the GAN for
generating a novel data sample, is actually a compact and
convenient representation of the generated sample itself. Thus,
the input space of the GAN, can be searched with an effective
evolutionary algorithm such as CMA-ES to generate a data
sample that maximizes a given objective function. This idea
has been successfully applied by Botranger et al. to generate
fingerprints [2] and different kind of images (e.g., faces, shoes,
etc.) [33] that match a given target. Finally, the same approach
was applied to procedural game content generation by Volz et
al. [3] for the first time.

3https://www.zelda.com/
4https://en.wikipedia.org/wiki/Super Mario Bros.

Fig. 1. A screenshot of DOOM.

III. DOOM LEVEL GENERATION WITH GAN

DOOM5 is a milestone in the videogame history, developed
by id Software in 1993, that greatly influenced the design and
the development of games for years. DOOM is a first person
shooter, i.e., a game where players explore, from a first person
perspective, levels populated by enemies to kill in order to
reach the exit and complete the game (see Figure 1).
In DOOM, levels are stored as WAD files, that contain both
the level data and the multimedia assets. In particular, level
data are stored as an ordered sequence of records, called
lumps, that contains information about sectors, doors, walls,
tiles, textures, triggers, objects, enemies, etc. Such a level
representation is unfortunately not suitable to be processed by
a neural network, accordingly in [1] we proposed to extract
an image-based representation from the WAD, consisting of an
image of the level with multiple channels that encode the floor
layout, the walls, the floor heights, the objects, etc.. Figure 2
shows the deep neural network architecture used in [1] to
generate DOOM levels, that consists of two networks that are
trained at the same time: (i) the generator (G) network receives
a noise vector as input and provides as output an image-based
representation of a novel level, that can be easily converted in
a playable WAD; (ii) the discriminator (D) receives an image-
based representation of a DOOM level as input, that can be
either generated by the G network or extracted by the WAD
of an existing level, and labels it either as computer-generated
(fake) or human-designed (real). These two networks are
trained from a rather large dataset of DOOM levels created
by the players community with an adversarial scheme: D is
trained to classify correctly levels as fake or real, G is trained
to generate levels that are not correctly classified by D. As
in [1], we used the Wasserstein GAN with Gradient Penalty
(WGAN-GP) [34] architecture, the noise vector consists of 100
independent random variables uniformly sampled in [−1,+1],

5https://en.wikipedia.org/wiki/Doom (franchise)

Fig. 2. Overview of the DOOM level generation approach using GAN
proposed in [1]; G is the generator network in charge of generating new
levels, D is the discriminator network in charge of classifying levels either as
human-designed (real) or computer generated (fake).

both G and D networks have 4 layers with respectively 1024,
512, 26 and 128 filters, and the image-based representation
of the levels is of size 128x128 pixels. The data used to
train the GAN consists of a selection of the levels available
in the idgames archive, the largest online archive of levels,
modifications, tools, and resources for the games based on
the DOOM engine. We refer the interested reader to [1] for
additional details about the GAN architecture and the training
process, not reported in this paper for brevity.

IV. SEARCHING THE LATENT SPACE OF GAN

The approach presented in this paper (see Figure 3) is based
on the one introduced in [3] to evolve levels for Super Mario
levels. In this section we will describe how we apply the CMA-
ES to evolve DOOM levels, in particular we describe (i) how
levels are encoded, (ii) how they are evaluated, and (iii) how
the overall process works.

A. Level Encoding

As described in the previous section, DOOM levels are
encoded as records stored in a WAD file. From the WAD
file is possible to extract a multi-channels image that encodes
the most relevant information about the level, i.e., the floor
map, the floor heights, the walls, and the game objects.
Unfortunately, this image-based encoding might not be an

Fig. 3. An overview of our approach for searching the latent space of GAN
to generate DOOM levels.

effective choice to apply an evolutionary algorithm to search
the level design space. In fact, using an image-based encoding,
the search space would not only be huge, i.e., a multi-channels
image of size 128x128, but it would also include a large
amount of meaningless and ill-formed levels. Accordingly, our
approach consists of using an indirect encoding of the level
that relies on a GAN previously trained to generate DOOM
levels, as described in the previous section. The underlying
idea is that the input vector of the generator network of the
GAN is actually a well suited encoding of DOOM level; thus,
the generator network can be basically used as a genotype-
phenotype mapping, i.e., the generator network can be used
to generate an image-based representation of a DOOM level
starting from an encoding consisting of an input vector of real
numbers. In particular, in this work we trained a GAN follow-
ing the same approach introduced in [1] (see Section III), and
thus we use a vector of 100 real variables to encode a DOOM
level. A level encoded as a vector can be then mapped into an
actual DOOM level using the generator network of a trained
GAN and, eventually, generating a WAD file from the level
image provided by the network.

B. Level Evaluation
To evaluate the generated levels and, thus, compute their

fitness values we extract from them some high-level features
that are somehow relevant from a design perspective. These
features are extracted from the image-based representation of
the levels that is provided as output by the generator network
when the vector encoding of the level is provided as input.
Table I shows the 7 features extracted from the levels. The
underlying idea of our approach is that these features are able
to capture the key elements of the level design layout and,
therefore, they can be used to guide the evolutionary search.
Therefore the fitness of a level is computed as the L2 norm of
the difference between the vector of features extracted from
it and a vector of target features, i.e., a vector that contains a
target value for each one of the 7 features.

C. Search Process
Figure 3 depicts an overview of our approach to search the

level design space. A population of level, encoded as real-

TABLE I
THE LIST OF FEATURES EXTRACTED FROM THE IMAGE-BASED REPRESENTATION OF THE GENERATED DOOM LEVELS.

Name Definition
diameter (D) This feature is defined as the diameter of the smallest circle that cover the whole layout of the levels in

the 128x128 image representation; accordingly, it measures the distance between the furthest points of
the level.

major (M) and minor (m) axis These two features measure the distance of the furthest points of the level along the horizontal and vertical
axes of the level image; major axis (M) is then defined as the largest of the two distances computed,
while minor axis (m) as the smallest one; these two features together give a rough idea of the form factor
(i.e., the aspect ratio) of the level (i.e., how close to a square it is) and of its size.

solidity (S) This features measures the size of the walkable area of the level as a fraction of the area of the convex
hull that encloses the whole level; thus, it measures how dense is the layout of the level.

rooms (R) This feature is measured as the number of rooms in the level; to compute this feature, it is not possible
relying on the doors placed into the levels, because they are often not used in DOOM levels; therefore,
we applied an algorithm introduced in [35] to generate a segmentation of an indoor map into separated
rooms.

skewness (γ) and kurtosis (β) These two features are respectively the skewness and the kurtosis of the distribution of the distance
between each pixel of the level image and the closest wall; these features account for the variety and
balance of large and small areas of the level.

Fig. 4. Distribution of the features extracted from of a selection of the levels
available in the idgames archive; each level has been labeled either as arena
(green dots), complex (blue dots), or labyrinth (red dots); only the values of
four features are reported in this analysis.

valued vectors, is generated by the CMA-ES according to the
current values of the centroids and of the covariance matrix.
Each vector in the population is then provided as input to
the generator network (G in Figure 3) and an image-based
representation of the level is generated. Then, from this image-
based representation the vector of features described in Table I
is extracted and used to compute the fitness of the level.
Finally, the population ranked by the fitness values is used
to update the parameters of the CMA-ES and the following
iteration can start over.

V. EXPERIMENTAL DESIGN

To test our approach, we run three experiments that differ
only for the target values of the level features used to compute

(a) (b) (c)
Fig. 5. The three maps selected to extract the features used as target in the
experiments reported in this paper: (a) the target complex level, (b) the target
arena level, and (c) the target labyrinth level.

the fitness and, hence, to guide the search in the level design
space. To choose three meaningful targets, we performed an
analysis of the features distribution of the large dataset of
human-designed DOOM levels used to train our GAN level
generator (see Section III). As a result of this analysis, we
identified three kinds of levels corresponding to three clusters
in the feature space as shown in Figure 4: the first kind of
level, arena, has a simple layout and very large open areas;
the second kind of level, complex, has a more complex layout
that include both rather large rooms and smaller ones; the third
kind of level, labyrinth, has a very complex layout with a large
number of small closed areas.

Accordingly, we designed three experiments choosing, as
target, the features extracted from a human-designed level for
each kind of level described before, i.e., arena, complex, and
labyrinth. Figure 5 shows the three maps selected to extract
the target features for our experiments; these maps are taken
from the idgames archive but they were not included in the
dataset used to train the GAN. We decided to use target values
extracted from actual DOOM levels, instead of simply using
arbitrarily chosen values, basically because this guarantees that
the target values correspond to a meaningful level design and
it also allows to do a visual comparison between the evolved
levels and the one used as a target.

VI. EXPERIMENTAL RESULTS

We performed three experiments, one for each of the levels
selected as a target, as described in the previous section.
The experiments have been carried out using the CMA-ES
implementation available in the DEAP software library [36].
On each experiment, we compared the CMA-ES with stochas-
tic hill climbing (HC) [37] and we performed 30 runs with
the following parameters setting. The parameter λ is set to
32 6, µ is set to 16 (i.e., λ/2), each element of the centroid
vector is initially set to 0, and σ is set to 1. All the other
parameters are set to the default values, based on the guideline
provided in [38]. Each run consisted of 2500 generations,
i.e., 8000 evaluations. Concerning the stochastic hill climbing,
in each run we performed 2500 iterations with 32 parallel
instances, leading to 8000 evaluations as the ones performed
with CMAE-ES.

Figure 6 compares the performances of CMA-ES with the
ones of stochastic hill climbing on the three experiments.
The results show that in all the experiments the CMA-ES
outperforms (blue lines in Figure 6) the hill climbing (red
lines in Figure 6). Although hill climbing is able to find at
least one level with a quite good fitness in each experiment
(see dashed lines in Figure 6), the best fitness achieved by the
CMA-ES is always lower. Moreover, the average fitness of
the solution found with hill climbing, despite decreasing with
the evaluation, is much higher than the one achieved by the
CMA-ES (see solid lines in Figure 6). Finally it is worthwhile
to notice that, except when the level of type labyrinth (see
Figure IV-Bc) is used as a target, the population of levels
evolved by the CMA-ES does not converge. Our analysis of
the population suggest that this is mainly due to the fact that
the search space of the CMA-ES is not bounded, while the
input vector provided to the generator network (see Figure 3) is
supposed to be bound between -1 and 1. As a result, we found
some numerical instability that might prevent the convergence
of the CMA-ES.

To assess the quality of the results achieved by the CMA-
ES, in Figure 7 we plotted the distribution of the features
extracted 7 from the levels evolved at different stages of
the evolutionary process, i.e., at the beginning, roughly in
the middle, and at the end. The distribution of these values
is showed together with the target values (dashed red line
in Figure 7). This analysis shows that at the beginning the
features are spread across a large range of values, often not
even centered around the target value. However, at the end
of the evolutionary process, the features of evolved levels
converge effectively toward the target values, in all the three
experiments. It is also interesting to note that some features
converge more quickly than others. In particular, the diameter
of almost all the levels evolved at generation 1000 is already

6Please notice that this value differs from the one suggested in [38] and it
was set to 32 for practical reasons: in fact, 32 is the batch size used in our
GAN architecture, making it very convenient to evaluate the whole population
of 33 individuals at once.

7For brevity, we reported the data only for diameter, rooms, solidity, and
skewness features.

(a)

(b)

(c)
Fig. 6. Performance of CMA-ES (in red) and HC (in blue) when the
target features are extract from a level of type (a) complex, (b) arena, and
(c)labyrinth; average fitness is reported as a solid line, best fitness as a dashed
line (the lower the fitness value, the better); each curve is averaged over 30
runs.

equal to the target value; in contrast, it takes more time to
the solidity values to converge toward to the target values.
This suggests that setting the level diameter is a much easier
design objective with respect to the solidity, probably because
the GAN is able to generate levels with a better variety of
diameter values than it is for solidity.

Finally, Figure 8 shows some examples of the evolved
levels. From these results it is possible to see that, despite
having different layouts, the evolved levels are actually able
to capture the design features of the target levels.

VII. CONCLUSIONS

In this paper, we extended our previous work on using GAN
for the level design of DOOM [1]. Following the approach
introduced in [3], we applied CMA-ES to search the latent

Fig. 7. Distribution of the features extracted from the levels evolved by the CMA-ES (at generation 1, 1000 and 2500), when the target is either a complex
level (left column), an arena level (middle column), or a labyrinth level (right column); the distributions of the features are reported in blue using letter-valued
plots [39], all the single values of the features are reported as green dots, and the target value is reported with a dashed red line; the reported data refer to
30 runs.

space of a GAN previously trained to generate DOOM levels.
In the approach proposed in this work, a level is encoded as
a vector of real values and mapped into an actual level by
providing this vector as input to the generator network of the
trained GAN. We computed the fitness of each level as the L2

norm of the difference between the vector of features extracted
from the levels and a target vector of features. Accordingly,
our approach allows to evolve novel DOOM levels that are
based on a set of human-designed levels, i.e., the ones used
to train the GAN, but at the same time they meet the design
objectives identified by the target vector of features, such as the

number of rooms, the size, the density of the level layout, etc.
We designed three experiments to test our approach, using as
target the features extracted from three human-designed levels
very different among them: (i) an arena level, that contains
only few large areas, (ii) a labyrinth level, that consists of
many corridors and small areas, and (iii) a complex level, that
is well balanced mix of the previous ones. Our results are very
promising and show that the CMA-ES is able to effectively
search the latent space of the GAN to evolve DOOM levels
with features that are very close to the ones provided as target,
despite showing a good degree of novelty with respect to the

Fig. 8. Examples of levels evolved by the CMA-ES at the end of the
evolutionary search. The levels in the same column are evolved in the same
experiment and the target levels are depicted in the first row.

target levels.

REFERENCES

[1] E. Giacomello, P. L. Lanzi, and D. Loiacono, “DOOM level
generation using generative adversarial networks,” in IEEE Games,
Entertainment, Media Conference, GEM 2018, Galway, Ireland,
August 15-17, 2018. IEEE, 2018, pp. 316–323. [Online]. Available:
https://doi.org/10.1109/GEM.2018.8516539

[2] P. Bontrager, J. Togelius, and N. D. Memon, “Deepmasterprint: Gener-
ating fingerprints for presentation attacks,” CoRR, vol. abs/1705.07386,
2017. [Online]. Available: http://arxiv.org/abs/1705.07386

[3] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi,
“Evolving mario levels in the latent space of a deep convolutional
generative adversarial network,” in Proceedings of the Genetic
and Evolutionary Computation Conference, ser. GECCO ’18. New
York, NY, USA: ACM, 2018, pp. 221–228. [Online]. Available:
http://doi.acm.org/10.1145/3205455.3205517

[4] N. Shaker, J. Togelius, and M. J. Nelson, Procedural content generation
in games. Springer, 2016.

[5] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation,” in Proceedings of EvoApplica-
tions, C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. I.
Esparcia-Alcazar, C.-K. Goh, J. J. Merelo, F. Neri, M. Preuß, J. Togelius,
and G. N. Yannakakis, Eds., vol. 6024. Berlin, Heidelberg: Springer
LNCS, 2010, pp. 141–150.

[6] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Optimization of
platform game levels for player experience,” in AIIDE, C. Darken and
G. M. Youngblood, Eds. The AAAI Press, 2009.

[7] K. Compton and M. Mateas, “Procedural level design for platform
games,” in AIIDE, J. E. Laird and J. Schaeffer, Eds. The AAAI Press,
2006, pp. 109–111.

[8] N. Shaker, G. N. Yannakakis, and J. Togelius, “Towards automatic
personalized content generation for platform games,” in AIIDE, G. M.
Youngblood and V. Bulitko, Eds. The AAAI Press, 2010.

[9] J. Togelius, R. De Nardi, and S. Lucas, “Towards automatic personalised
content creation for racing games,” in Proc. IEEE Symposium on
Computational Intelligence and Games CIG 2007, 2007, pp. 252–259.

[10] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Automatic track gen-
eration for high-end racing games using evolutionary computation,”
Computational Intelligence and AI in Games, IEEE Transactions on,
vol. 3, no. 3, pp. 245 –259, sept. 2011.

[11] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Interactive evolution
for the procedural generation of tracks in a high-end racing
game,” in Proceedings of the 13th annual conference on Genetic
and evolutionary computation, ser. GECCO ’11. New York,
NY, USA: ACM, 2011, pp. 395–402. [Online]. Available: http:
//doi.acm.org/10.1145/2001576.2001631

[12] J. Dormans and S. Bakkes, “Generating missions and spaces for adapt-
able play experiences,” Computational Intelligence and AI in Games,
IEEE Transactions on, vol. 3, no. 3, pp. 216–228, 2011.

[13] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and G. N.
Yannakakis, “Multiobjective exploration of the starcraft map space,” in
Proceedings of the IEEE Conference on Computational Intelligence and
Games (CIG), 2010, pp. 265–272.

[14] L. Cardamone, G. N. Yannakakis, J. Togelius, and P. L. Lanzi,
“Evolving interesting maps for a first person shooter,” in Proceedings
of the 2011 international conference on Applications of evolutionary
computation - Volume Part I, ser. EvoApplications’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 63–72. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2008402.2008411

[15] P. L. Lanzi, D. Loiacono, and R. Stucchi, “Evolving maps for match
balancing in first person shooters,” in 2014 IEEE Conference on Compu-
tational Intelligence and Games, CIG 2014, Dortmund, Germany, August
26-29, 2014. IEEE, 2014, pp. 1–8.

[16] D. Loiacono and L. Arnaboldi, “Fight or flight: Evolving maps
for cube 2 to foster a fleeing behavior,” in IEEE Conference on
Computational Intelligence and Games, CIG 2017, New York, NY, USA,
August 22-25, 2017. IEEE, 2017, pp. 199–206. [Online]. Available:
https://doi.org/10.1109/CIG.2017.8080436

[17] D. Loiacono and L. Arnaboldi, “Multiobjective evolutionary map design
for cube 2: Sauerbraten,” IEEE Transactions on Games, vol. 11, no. 1,
pp. 36–47, March 2019.

[18] W. Cachia, A. Liapis, and G. N. Yannakakis, “Multi-level evolution of
shooter levels,” in Eleventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 2015.

[19] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (PCGML),” CoRR, vol. abs/1702.00539, 2017.
[Online]. Available: http://arxiv.org/abs/1702.00539

[20] S. Dahlskog, J. Togelius, and M. J. Nelson, “Linear levels through n-
grams,” in Proceedings of the 18th International Academic MindTrek
Conference: Media Business, Management, Content & Services. ACM,
2014, pp. 200–206.

[21] R. Jain, A. Isaksen, C. Holmgård, and J. Togelius, “Autoencoders for
level generation, repair, and recognition,” in Proceedings of the ICCC
Workshop on Computational Creativity and Games, 2016.

[22] S. Snodgrass and S. Ontañón, “Experiments in map generation using
markov chains.” in FDG, 2014.

[23] A. J. Summerville and M. Mateas, “Sampling hyrule: Multi-technique
probabilistic level generation for action role playing games,” in Eleventh
Artificial Intelligence and Interactive Digital Entertainment Conference,
2015.

[24] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial
networks,” CoRR, vol. abs/1406.2661, 2014. [Online]. Available:
http://arxiv.org/abs/1406.2661

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[26] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of International Conference on Computer
Vision (ICCV), 2015.

[27] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, “Lsun: Construction of a
large-scale image dataset using deep learning with humans in the loop,”
arXiv preprint arXiv:1506.03365, 2015.

[28] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” arxiv, 2016.

[29] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video
prediction beyond mean square error,” CoRR, vol. abs/1511.05440,
2015. [Online]. Available: http://arxiv.org/abs/1511.05440

[30] L. Yang, S. Chou, and Y. Yang, “Midinet: A convolutional generative
adversarial network for symbolic-domain music generation using 1d and
2d conditions,” CoRR, vol. abs/1703.10847, 2017. [Online]. Available:
http://arxiv.org/abs/1703.10847

[31] C. Beckham and C. J. Pal, “A step towards procedural terrain generation
with gans,” CoRR, vol. abs/1707.03383, 2017. [Online]. Available:
http://arxiv.org/abs/1707.03383

[32] L. Horsley and D. Perez-Liebana, “Building an automatic sprite gen-
erator with deep convolutional generative adversarial networks,” in
Computational Intelligence and Games (CIG), 2017 IEEE Conference
on. IEEE, 2017, pp. 134–141.

[33] P. Bontrager, W. Lin, J. Togelius, and S. Risi, “Deep interactive evolu-
tion,” in Computational Intelligence in Music, Sound, Art and Design,
A. Liapis, J. J. Romero Cardalda, and A. Ekárt, Eds. Cham: Springer
International Publishing, 2018, pp. 267–282.

[34] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” CoRR, vol. abs/1704.00028,
2017. [Online]. Available: http://arxiv.org/abs/1704.00028

[35] M. Luperto and F. Amigoni, “Predicting the global structure of
indoor environments: A constructive machine learning approach,”
Autonomous Robots, Apr 2018. [Online]. Available: https://doi.org/10.
1007/s10514-018-9732-7

[36] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, pp. 2171–2175, jul 2012.

[37] S. Luke, Essentials of Metaheuristics, 2nd ed. Lulu, 2013, available
for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[38] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001. [Online]. Available: https://doi.org/10.1162/
106365601750190398

[39] H. Hofmann, H. Wickham, and K. Kafadar, “Letter-value plots:
Boxplots for large data,” Journal of Computational and Graphical
Statistics, vol. 26, no. 3, pp. 469–477, 2017. [Online]. Available:
https://doi.org/10.1080/10618600.2017.1305277

