
978-1-7281-1884-0/19/$31.00 ©2019 IEEE 

Deep Reinforcement Learning to train agents in a 
multiplayer First Person Shooter: some preliminary 

results 
Daniele Piergigli  

Dept. of Computer Science 
University of Milan 

Italy 
daniele.piergigli@studenti.unimi.it 

 

 

Laura Anna Ripamonti 
Dept. of Computer Science 

University of Milan 
Italy 

laura.ripamonti@unimi.it 
https://orcid.org/0000-0001-8167-7870 

Davide Gadia 
Dept. of Computer Science 

University of Milan 
Italy 

davide.gadia@unimi.it  
http://orcid.org/0000-0003-4491-9150 

Dario Maggiorini  
Dept. of Computer Science 

University of Milan 
Italy 

dario.magiorini@unimi.it 
https://orcid.org/0000-0002-7460-2966 

Abstract—Training agents to play in contemporary 
multiplayer actions game is a challenging task, especially when 
agents are expected to cooperate in a hostile environment while 
performing several different actions at the same time. 
Nonetheless, this topic is assuming a growing importance due to 
the rampaging diffusion of this game genre and its related e-
sports. Agents playing in a multiplayer survival first person 
shooter game should mimic a human player, hence they should 
learn how to: survive in unexplored environment, improve their 
combat skills, deal with unexpected events, coordinate with 
allies and reach a good ranking among the players community. 
Our aim has been to design, develop and test a preliminary 
solution that exploits Proximal Policy Optimization algorithms 
to train agents without the need of a human expert, with the final 
goal of creating teams composed only by artificial players. 

Keywords — machine learning, neural network, deep 
reinforcement learning, e-sports, video games, shooter games, 
artificial intelligence, first person shooter game, artificial player. 

I. INTRODUCTION 

Artificial Intelligence (AI) is exploited by the game 
industry to support gameplay, to enhance the immersivity of 
games and to aid game and level designers in their everyday 
work. Although its progresses are impressive, it struggles in 
keeping up the pace with the players-driven innovation 
regarding, among the others, how video game can be fruited. 
The explosion of the so-called e-sports is a clear evidence of 
this phenomenon. New games became huge successes in a 
brief amount of time, and tons of fans crowd e-sports 
tournaments to see their favourite champions playing. Also, 
the streaming of e-sports and their related events is undergoing 
a rampaging diffusion. The most successful games feature 
multiplayer cooperative interaction patterns (such as League 
of Legends and Fortnite), thus requiring teams of expert 
players that train together. It is quite easy to foresee that, in 
the future, team composed by human players and artificial 
ones could develop, provided that the AI managing the agents 
is good enough to produce reliable teammates. We can even 
conjecture that teams composed uniquely by artificial players 
would, sooner or later, sprang out. In such a hypothesis, 
training such teams by hand would become an impossible task 
(especially if simulations are very realistic – e.g. soccer 
championships).  

In this context, the goal of our work has been to design, 
prototype and test a preliminary solution aimed at 
automatically training members of a team composed entirely 
by agents to play a survival shooter game in an unexplored 
environment. We have picked shooters game as a model for 
our research basing on the current most diffused e-sports. Our 
prototype aims at mimicking the training necessary to become 
good at playing a multiplayer survival First Person Shooter 
(FPS) game. Hence, each agent will train – alone or in couples 
– in a hostile (littered with enemies) 3D environment 
procedurally generated at runtime. Also, random events will 
affect the performances of each agent, to force the algorithm 
to adapt (thus simulating what would happen in a real-life 
situation, where, e.g., a player gets hurt during a match). Last 
but not least, to simulate the competitiveness that 
characterizes this type of games, a leaderboard system will 
rank the agents’ performances. We have exploited Machine 
Learning (ML) techniques and Neural Networks (NNs) to 
train agents. The procedural generation of the environment has 
been configured in such a way to guarantee the creation of 
maps whose structure forces some kind of strategical thinking 
onto the agents.  

The remaining of this work is organized as follows: §II 
briefly examines the state-of-the art in AI applied to video 
games, the following §III describes our methodological 
approach, while §IV digs into how the prototypal game has 
been designed and implemented. The subsequent §V tackles 
the problem of how the learning system has been 
implemented. Sections VI and VII gets into the details of some 
testing we have done, and, finally, §VIII derives some 
conclusions and suggestions for future work. 

II. ARTIFICIAL INTELLIGENCE AND VIDEO GAMES 

AI in video games has some peculiarities (see, e.g., [1,2]), 
that distinguish it from the classical AI, especially because, in 
many cases, it must deal with real-time applications and not 
necessarily needs to optimize results. It can be exploited for 
many purposes, that can be collected in three main macro-
categories: assisting gameplay, enhancing the player 
immersion in the game world (also simulating the psychology 
of the agents representing Non-Playing Characters – NPCs) 
and supporting the work of game and level designers. Among 
the most diffused AI techniques, we can count those used to 
procedurally generate contents (see e.g. [3,4,5,6,7]) and those 



aimed at supporting the decision-making system of the 
artificial agents (see e.g. [8,9]). Machine Learning (ML) and 
Neural Networks (NN) have been applied to games since a 
long time [10], but their use has recently known a renewed 
interest and addresses a wide variety of topics (see e.g., 
[11,12,13,14]). Nonetheless, using these techniques to train 
agents in complex environments, with several possible 
concurrent actions – such as moving while aiming and firing 
– is quite a challenging result to achieve, as underlined by 
Harmer et al. [15], the authors of one among the most recent 
and interesting approaches to the problem. To tackle this 
dilemma, they adopt a Deep Reinforcement Learning 
architecture to train an agent to perform multiple actions while 
playing a First-Person Shooter (FPS) game. In particular, they 
exploit Imitation Learning [16,17] and Temporal Difference 
Reinforcement Learning. On one hand this produces effective 
results, but on the other it suffers of several limitations that 
makes it difficult to adapt it straight-away at the problem we 
are tackling. Actually, it requires the intervention of a human 
expert that plays the prototypal game they have developed in 
order to supply data that contribute in the training of the agent. 
Moreover, its main aim is to train, in a predefined fixed 
environment, one single agent that combats with one enemy, 
thus reducing a lot the complexity of the task.  

III. METHODOLOGICAL APPROACH 

Our aim has been to teach to several artificial agents how 
to play appropriately in a multiplayer FPS survival game, thus 
simulating a human player. This implies that, beside learning 
to cooperate, each agent should also learn to explore the 
environment, to improve its aiming skill and to decrease its 
reaction time. To tackle this problem, we have split our study 
into several subsequent steps. First of all, in order to obtain a 
sound simulation, we have examined the characteristic shared 
among shooter games, so to derive their core characteristics to 
build a model of the game. This phase included the analysis of 
the game world, the player enemies’ behavior and the set of 
skills that an artificial player would have needed to resemble 
a real human one, including how to simulate the incomplete 
perception of the game world. Our second step has been to 
examine the current state-of-the-art Machine Learning (ML) 
and Neural Network (NN) techniques to select the most 
appropriate solution and build a solid theoretical model for the 
problem. Since we had to deal with real-time decision-making 
with implication on the survival of the agent, we have opted 
for designing a learning system based on the Proximal Policy 
Optimization algorithm (PPO) [18], which is rooted into Deep 
Reinforcement Learning techniques. Then, since – for the sake 
of generality – we wanted to adapt our learning system to the 
use with games developed with state-of-the-art commercial 
game engines, we have dealt with the problem of creating a 
communication channel between the artificial intelligence 
managing the agent while in-game and the external learning 
system. This meant passing to the learning system the 
observations and the experiences (observations plus actions 
and rewards) collected by the agent while playing and, on the 
other way around, obtaining from the learning systems 
suggestions about the decisions that needed to be taken in-
game. Basing on the prior phases’ outcomes, we have 
developed a prototypal survival-shooter game, developed in 
C#, exploiting the Unity 3D game engine. Unity 3D offers a 
dedicated software development kit to implement 
reinforcement learning algorithms. The “brain” of the agent 
has been implemented in Phyton, exploiting TensorFlow, and 
communicates with the game via API. Once our prototype has 

been fully operational, we have set up several experiments to 
test whether the agents were able to learn and develop 
strategies solely based on the environment in which they were 
embedded.  

IV. DESIGNING AND BUILDING THE PROTOTYPAL GAME  

A. Main features of Shooter Games 

Shooter games are a sub-genre of action games [19], whose 
preeminent characteristic is to test the players’ “twitch” (i.e. 
their reaction time and hand-eye coordination) and their 
ability to develop strategies in real time under condition of 
stress. As a matter of facts, it is the actual ability of the player 
that determines the “victory”, not the mere characteristics and 
“power” of the character she uses to play, as often happens in 
other game genres. They are widely diffused and, according 
to recent market analysis, they represent the best-selling type 
of game. Part of this success derives from the widespread 
diffusion of online, multiplayer, cooperative shooters (e.g., 
Overwatch). Shooter games came in a wide variety of sub-
genres, among which, anyway, a set of well-defined common 
features are shared. The emphasis is always put on the 
players’ character actions, which generally is equipped with 
some sort of long-ranged weapon (e.g. rifles, bow and arrows, 
etc.). The goal of the game is to kill (artificial) enemies, while 
staying alive till the end of the level/game or of a predefined 
time interval. When dealing with survival shooter games, a 
“victory conditions” rarely exists: the goal of the player is to 
survive the longest possible time in a hostile environment, 
before succumbing to the overwhelming enemy’s forces. 
Most shooter games are played in a 3D environment, where 
the main difference, in term of impact on the player 
experience, derives from the positioning of the camera 
through which the player observes her surroundings. In FPSs, 
such as Doom by id Software, the player has a first-person 
view, while in Third Person Shooters (TPSs) the camera is 
positioned behind and over the player’s character, which can 
be observed in its entirety by the player. In many shooter 
games, both the environment and part of the contents 
(including enemies) can be procedurally generated, to 
increase the replayability and unpredictability of the game. 
Typically, the environment offers the possibility to find 
places to ambush enemies, and to observe their behavior 
unnoticed.   

B. Procedural Generation of the Environment 

Basing on what happens in commercial shooter games, we 
have prototyped the environment as a set of 3D maps, 
constituted by obstacles distributed pseudo-randomly on grids 
composed by MxN cells (see Fig.1). The number of maps, 

Figure 1 – Example of a map of our prototype 



cells and the numerosity and height of obstacles can be varied 
depending on the type of training and tests to which the agent 
is undergoing. Obstacles are unsurmountable cells in the grid, 
and, by varying their number, it is possible to reduce the 
visibility the agent has of its surroundings and the number of 
different actions among which it can choose. Moreover, the 
different heights of the obstacles allow the agents to examine 
freely its surroundings (e.g. to locate NPCs), but not to aim 
and fire at enemies through the obstacles. Thus, simulating 
environments supporting stealth strategies and testing the 
strategical thinking of the agents, which, for example, could 
decide to hide and shoot the enemy just around the corner, 
instead of attacking it in the open. For each map, the algorithm 
generates a grid composed by NxM blocks measuring 2x2mt, 
basing on the values for N and M chosen by the user. In the 
following step, the generation algorithm places on the grid 
blocks that constitute the obstacles. The parameter  is 
calculated as  where belongs to the interval [0;0.9] 
and it is defined by the user before starting the generation. 
Each time it places a block, the algorithm verifies whether its 
positioning creates an isolated area or not. Those areas must 
be avoided in order to exclude the possibility, for an enemy or 
an agent, to be spawn in unreachable spots. The height – in 
meters – of each obstacle is randomly chosen in the interval 
[1;2]. Once the generation has been completed, 
unsurmountable blocks are planted around the borders of the 
map, thus avoiding the agent to wander outside the playing 
area and be accidentally killed (this would negatively affect 
the training). Finally, for each map, the values chosen for its 
dimensions and for the “density” and positioning of obstacles 
are saved as a “seed” that can be used to replicate the same 
experiment.    

C. The artificial player and its enemies  

Our first assumption has been that the agent should be able 
to learn how to survive alone and to improve by itself its 
aiming skill and its strategical and tactical thinking. As a 
matter of facts, this is what happens in multiplayer games 
when the player’s teammates get killed or when she is self-
training. Only when appropriately trained to survive alone, the 
agent should learn how to cooperate with teammates. Our 
artificial player is represented by a 2mt high green capsule that 
moves 5mt/s on the map, and its movement is bonded to the 
terrain surface (i.e. no jumping or flying over obstacles is 
allowed). At the beginning of each match, it spawns on a 
random free cell in the centre of the map. It can cross every 
cell that does not contain an obstacle by moving along the X 
and Z axis, also, it can rotate anti/clockwise on its own axis. 
As we already pointed out, it cannot jump over or onto 
obstacles: it is only allowed to peer over them, when possible. 
It is equipped with a semi-automatic long-range weapon able 
to deal 2 damage points to enemies. The weapon cannot fire 
uninterruptedly, thus limiting the intrinsic ability of the agent 
to fire at each frame, to best suit what a human player would 
do. The agent’s perception of its environment was initially 
based on what it can “see” through its camera, since the 

knowledge it has must be a subset of the current game state. 
Anyway, the processing of the scenes “seen” by the agent 
became quite a burden on the whole system, hence, after a first 
phase of experimentation, we have substituted it with a more 
performant perception system based on ray-casting. The 
enemies of the agent are very simple agents, whose behaviour 
is managed by a state machine with only 3 states: stand still, 
chase, attack (Fig.2). Enemies are represented by blue 
capsules 2mt high, which move at 4.5mt/s. They, too, can 
cross only empty spaces of the grid, and the frequency of their 
spawning and the amount of health points they have can be set 
in the setup phase of the experiment. There is no maximum 
number of enemies to generate: they simply continue to spawn 
(on random free cells) until the agent impersonating the player 
is defeated, as it happens in actual games. They have no long-
range weapons, they only deal 2 points of contact damage 
when they are near enough to the agent.  

V. TEACHING SURVIVAL TO THE ARTIFICIAL PLAYER 

A. The overall architecture: Learning Environment (LE) 
and Learning System (LS) 

The basic idea is that the AI simulating the human player 
should take its decision basing on what it has learned from its 
experience while playing. This implies the necessity to devise 
an architecture that allows the flow of information and data 
between the prototypal game and the LS. This structure should 
be able to supply perceptual data about the game state to the 
LS and, the other way around, to translate what the LS outputs 
into in-game actions (such as: move back, turn to your left, 
fire, etc.). The architecture we have devised is represented in 
Fig.3. The LE includes: the perception of the game scene (i.e. 
the agent interacting with enemies and environmental 
obstacles), the AIs which manage the agents (Ai), one or more 
Brains (each Brain is connected to one or more agents, but 
each agent, in turn, can be connected to only one Brain) and 
the Academy (equipped with an External Communicator - EC 
to interact via socket with the LS). 

The Brain manages rewards and observations about the 
agent’s surroundings, it oversees the policy for each agent and 
determines which action should be performed next, both 
during the training and the inference phase. In the first case, 
decisions are taken externally: Brains collect observations and 
rewards and send them to the LS via EC and get the next action 
to perform for each agent. During the inference phase, instead, 
decisions are taken internally, basing on the policies 
developed by the LS during the training and then passed on to 

Stand still 

Chase Attack 
Distance from agent <= 0.5mt  

 
Distance from agent > 0.5mt 

Figure 2 - Enemies' state machine 

 
 
 
 
 
 
 
 
 
 

 
 
Learning Environment (LE) 

Academy 
External Communicator (EC) 

Brain1 Brainj 

A1 A2 Aj An-1 An 

…   … 

… … … 

Learning System (LS) 

Figure 3 – The overall structure of our project 



the Brains. To note that, if necessary, it is also possible to map 
different actions on different Brains and to train them 
separately, to exploit them jointly during the inference phase. 
Each Brain is connected to the Academy, which synchronizes 
Brains and agents and manages the observations and the 
decision processes. Moreover, the Academy is a layer where 
the values of several global parameters can be set and 
modified by the user to tune the whole application (e.g., the 
rendering quality). Obviously, the more agents are connected 
to each Brain and the more Brains are connected to the 
Academy, the best the learning, at the expense of the CPU 
performances.      

B. Design and implementation of the Learning System  

The LS is basically constituted by a Neural Network (NN) 
which exploits Deep Reinforcement Learning (DRL) 
techniques. We have adopted the Proximal Policy 
Optimization (PPO) algorithm [18], since the most suited for 
our peculiar scope and more performant than, for example, the 
Trust Region Policy Optimization (TRPO) algorithm [20]. 
Actually, this technique not only allows to use a States and an 
Actions Space continuous, but it also exploits a NN to 
approximate the ideal function which associates the 
observations of an agents to the actions it can perform (thus 
cutting down the complexity of the calculus necessary to 
revise the model policy). This feature makes PPO a 
particularly suitable solution when dealing with real-time 
problems. This is testified, e.g., by the fact that few months 
ago, OpenAI beat some of the best Valve Corporation’s Dota2 
human players of the world with OpenAI Five 
(https://openai.com/five/), a team of 5 agents based on PPO. 

 The reinforcement learning approach that we developed 
is based on an Observations Space (OS) constituted by only a 
subset of the information useful for describing entirely the 
current game state, hence it is slightly different from the States 
Space as it is usually defined. This, as already pointed out, 
allows us to simulate the human visual perception. As already 
stated, our starting approach was based on what the agent saw 
through the camera. Hence, it was not necessary to define an 
OS for the learning algorithm: at each frame, the scene seen 
by the agent was transformed into a 2D texture and then in a 
features map that was processed by a NN. When this approach 
has been substituted with ray-casting, it has been necessary to 
define the number of observations () the agent should take 
into consideration during the training, where:  

  k  )   (1) 

k = 3 is a constant empirically defined basing on the velocity 
of the agent,  = 21 is the number of rays casted by the agent 
(one each 7° in the interval [15°,165°], to simulate human 
vision) and  depends on the number of observations 
generated by each ray. It is possible to label elements present 
on the scene, hence observations are generated each time a 
labelled object is encountered (thus the agent is able to 
distinguish among: enemies, obstacles and the map borders). 
Moreover, since the number of observation vectors produced 
by the rays casted is directly proportional to the learning 
performance and to the time necessary for processing the 
information, we have employed 4 different observation 
vectors: one keeps track of the agent velocity, and the 
remining 3 record the observation of 7 out of 21 rays each. 
The Actions Space includes all the 5 actions the agent can 
perform (move forward, move backward, turn right, turn left, 
fire). Finally, the Reward is a scalar that evaluates the 

performance of the agent during specific moments of the 
training. In particular, the agent gets a negative reward when 
it stands still (camping) or each time it gets hit or dies; it gets 
a positive reward when it moves (explores the map) or 
fires/kills an enemy. Also, to simulate a leaderboard, the 
higher the agent’s position in the ranking of the “players”, the 
higher the reward it gets (this last reward is used only when 
the agent competes with other agents).  

During the learning phase, the brain stores experience, that 
is sent via socket to the LS each time is has reached a 
predefined dimension or the agent has been killed and the 
Academy has reset the game. Before being processed, the 
experience is randomized, in order to avoid that the LS learns 
mainly from the situation that was affecting the agent 
immediately before its death. The experience is memorized in 
a tuple <state, action, reward, nextstate> and stored in a buffer 
(whose dimension can be set during the setup of the 
experiment), before being transformed into a tensor and sent 
to the NN to be processed. The experience can be composed 
by continuous or discrete observations or by pictures taken by 
the agent’s “camera”. In particular, when we were using 
images, the Brain sent an array of 2D pictures taken by the 
camera. The images were processed by a two-layered 
convolutional network with an exponential Linear Unit (eLU) 
activation function [21], which pre-processed them and 
reduced their dimensions in order to be easily handled. Also, 
no polling layer had been applied, since it would have made 
the NN unaware of information that are relevant in a game 
(e.g. the position of the ball in a soccer match is essential to 
calculate the possible reward), but irrelevant in image 
processing. The result was then reduced to a unidimensional 
tensor (continuous or discrete) of observations. The discrete 
and continuous observations, instead, are processed by a 
feedforward NN composed by n layers completely connected 
(Fig.4). The activation function we have used is Swish [22], 
since it performs better than others with PPO. While 
continuous observations are directly fed to the NN, the 
discrete ones pass through a one-hot-encoding [23] for each 
element of the tensor, categorizing it according to the action 
type to which it refers. The resulting processed tensor, in both 
cases, defines the policy (s) and the value function V(s) for 
the actor-critics system (in the continuous case, (s) and V(s) 
are managed in two different ways, hence we process the 
observations two times). (s)  and V(s) measure respectively 
the validity of a certain state and the consequent probability of 
performing certain actions. Anyway, to improve its decision-

Brain 
continuous 
vector 

policy 
…

n-layer completely connected NN 

Value 
function 

Brain 
discrete 
vector 

policy = value 
function 

…

n-layer completely connected NN 
Figure 4 - Processing of continuous and discrete observations 



making process, the agent should also be able to remember the 
decisions it took in the past. To provide this functionality, we 
have used two Recurrent Neural Networks (RNNs) in their 
Long Short-Term Memory variant (LSTM) [23]. Thus, we are 
both introducing the temporal dimension and mitigating the 
effect of the reduction and disappearance of the gradient by 
controlling the overfitting, hence allowing the agent to learn 
on several instances and providing it a mean to connect effects 
to causes on a certain time horizon. In particular, each of the 
vectors produced by the previous layer is taken distinctly as 
an input by a completely connected feedforward neural 
network; consequently, the agent can use the resulting 
estimate of the V(s) to adjust (s) in what it is, at least in our 
opinion, a smarter way than the more traditional gradient 
approaches. The RNN-LMST is applied to the feedforward 
network in one single hidden layer with a linear activation 
function (Fig.5). Moreover, to improve overall performances, 
instead of back-feeding the whole set of gradients detected 
during the training, only the most relevant half of them is 
considered, consistently with the approach described in [24]. 
Basing on the input, a tensor is generated for each possible 
action. This tensor is then processed in two different ways 
according to its nature. In the discrete case, the tensor is 
processed through a softmax function, that produces a 
probability distribution on the possible effect of different 
actions (thus allowing to the agent to ignore the least 
interesting choices). In the continuous case, instead, an 
opportune gaussian in produced. In both cases the results are 
then processed by the PPO algorithm. Anyway, to function 
properly, the PPO algorithm needs also an entropy value. In 
the continuous case, the entropy depends on the extension of 
the gaussian curve, while in the discrete case the entropy is 
applied to each single action. 

Once we have evaluated (s), V(s) and the entropy, the 
PPO algorithm calculates the Surrogate Loss Function as 
follows:   

𝐿௧
ூାிାௌ = 𝐸௧ [𝐿௧

ூ(𝜃) − 𝑐ଵ𝐿௧
ி(𝜃) + 𝑐ଶ𝑆[𝜋ఏ](𝑠௧)]   

(2)   

Where: 𝐿௧
ூ is the target function of PPO (see e.g. [18]), c1 

and c2 are constants varying in the interval [0;1], S is the 

entropy, 𝐿௧
ி  is the square loss function,  is the set of 

observations that have determined the current policy, and st is 
the state of the agent at time t. For each step of the network, 
provided that the hyperparameters (see §VI) are well 
balanced, the agent’s performance should increase, since the 
entropy decreases and the coherence of (s) and V(s) values 
increases. Hence, for each step, the network updates the 
experience (observations, actions and corresponding rewards) 
table, which is then used by the brain to take new decisions 
(Fig.6). To note that this architecture allows also a multiagent 
training, since more than one agent can be connected to the 
same Brain in the same moment (thus also accelerating the 
network convergence). Actually, no operation happens in 
parallel: each agent passes its information to the network, 
which generates a policy, whose effect is to modify the 
experience table by updating its rewards. As a consequence, 
the Brain applies the same policy to every agent connected to 
it, choosing, for each of them, the most suitable action given 
their current state. A nice side effect of our approach is that 
the overall training time shrinks, thank to the fact that dead 
times (occurring, for example when one of the agents waits for 
the environment to reset) are cut down. Nevertheless, this 
implies also a degradation in the CPU performance, due to the 
burden deriving form processing more than one agent at time.   

VI. TESTING THE SKILLS OF THE AGENTS 

Once the architecture described in §V.A has been 
deployed, we started to test and fine tune it, via a set of 
experiments. We have tested the behaviour and learning of our 
agents under the following conditions:  

 1. Basic: agents trained alone in a randomly generated 
environment, where no events or leaderboard are 
present. The results of this test constituted the 
benchmark for the following phases; 

 2. With random events: in this case, an event system 
has been added to the basic training conditions, to 
simulate human fallacies. The basic idea was to apply 
some bonuses/maluses to the rewards randomly and 
verify whether or not the system altered accordingly 
the agents performances;  

 3. One-man on the same map: the agent was trained, 
under the basic conditions, always on the same map 
(generated from the same seed). The scope has been 
to evaluate to what extent the randomness of the 
environment affected the network convergence;   

 4. Competitive: agents trained alone in an 
environment where events were deactivated, but a 
leaderboard was active. This simulated the 
competitiveness of human players;  

NN 

Experience table 
reward 

observations 

ac
tio

ns
 

brain 

agent 

Figure 6 – Update of the experience table 

policy policy (n actions) 

RNN 

value 

RNN 

value 

Figure 5 – Use of RNN-LMST to keep track of past decisions 



 5. Cooperative: couples of agents were spawn in 
randomly chosen maps, where they trained together 
(no leaderboard, nor event systems were turned on).  

For each type of test, several different sets of experiments 
have been run, varying some features of the LS. These 
variations are summarized by Tab.1: LM is the length of the 
experience sequences processed by the RNN (if any) during 
the training, and DM is the dimension of the arrays used to 
memorize the hidden layer of the RNN (if any). The variant 
D, which uses visual observations, has been abandoned 
immediately after the basic test, since it performed very 
poorly. In the same vein, the observation space is maninly 
continuous, since the preliminary results we have collected 
with discrete observations demonstrated an unsatisfactory 
behaviour, due to the complexity of the environment. 

Table 1 – Experimental configurations of the LSs 

   RNN 

Exp. Action 
Space 

Visual 
Observations LM DM 

A discrete no - - 

B continuous no - - 

C continuous No 64 256 

D continuous Yes 64 256 

 

The general setting of the environment has been the same 
for all the tests we have ran, thus producing comparable 
results. Specifically, the map dimensions were 20x20mt and 
obstacles occupied 40% of the cells. Except for the experiment 
“one-man on the same map”, in which we have used always 
the same seed, in all the other cases, maps were generated 
starting from all different seeds. The agents contemporary 
running were always 16. Using 16 agents – all connected to 
the same Brain – moving into maps generated from different 
seeds, offered us the possibility to train them to develop a 
more general-purpose policy. Enemies were spawn at the rate 
of 1 each 0.5sec. and they had 2 life points, while the agent’s 
life was set to 10 points. The values we have set for the 
rewards were: camping 0.2, agent got hit 0.2, agent fires 0.05, 
death of the agent 0.5, enemy killed 1. The reward associated 
with the presence in the leaderboard was set either to 0.5 or to 
0, depending on whether the leaderboard was active or not. 
Moreover, since we wanted to simulate a human player, we 
took into consideration the possibility that her performances 
are affected by unforeseeable external accidents or events (e.g. 
illness or a particularly euphoric moment). To simulate this, 
we randomly applied transient modifiers (bonuses or maluses, 
that we omit in this manuscript for the sake of brevity) to the 
values of the rewards. This approach permits to introduce a bit 
of variation without affecting the structure of the LS. Finally, 
the number of observations was set to 108, except for the 
cooperative test, where they were 129. This number has been 
calculated with (1), were  = 5, since the one-hot-encoding 
uses 3 labels (obstacles, map borders and enemies). Visual 
observations have been used only during one basic test, and 
then have been substituted with ray-casting for the motivation 
already stated. The network has been trained by 500,000 
decisional steps of the Brain: this value has been fixed 
empirically (it is the value for which no more relevant 
improvement of the cumulated reward were registered), both 
for the discrete and the continuous case.   

The hyperparameters of the feedforward NN has been set 
as follows:  

  = 0.9 is the discount factor for future rewards;  

  = 0.93 is used for the estimation of the advantage 
(how much the agent is basing on its esteem of the 
current value when it is updating the value of the 
reward);  

 BuD value is 5,120 when AS is discrete, 20,480 in the 
continuous case. It represents the buffer dimension 
(number of experiences – observation, action and 
corresponding reward – that must be collected before 
any update to the policy);  

 BaD value is set to 512 and 2,048 in the discrete and 
continuous case respectively and it is the batch 
dimensions (i.e. the quantity of experience used for 
each iteration in the algorithm applied to reduce the 
gradient);  

 E = 3 is the epochs number (how many times the 
experience passes through the buffer during the 
gradient reduction);  

 LR = e-4 is the learning rate (how much the gradient is 
reduced at every interaction);  

 TO = 256 is the time horizon (number of steps 
performed by the agent before collecting experience);  

   = e-3 measures the entropy;  

  = 0.2 is the acceptable divergence threshold between 
the new and old policy during the updates to decrease 
the gradient;  

 LY = 2 is the number of hidden layers in the NN,  

 HU = 128 is the number of units in each layer of the 
NN;  

 =3 is the “fire rate” of the agent. 

 

VII. OUTCOMES OF THE EXPERIMENTS 

In the following Tab.2 we report the cumulated values of 
the rewards and we summarize qualitatively the result we have 
obtained so far. The values of the first column correspond to 
the configuration of the LS summarized in Tab.1. To evaluate 
the efficacy of the different LS solutions, we have tracked the 
trends of the following variables: R – total cumulated reward 
(it should grow in time, its trend is qualitatively measured), S 
- entropy (it should decrease in time), LR - learning rate (it 
should drop in time), PL - policy loss (should stay under a 
predefined threshold), V - value (measures the future reward 
the agent thinks to receive in the future), and VL - value loss 
(should drop when the cumulated reward stabilizes, since the 
action chosen by the policy should ideally be the same 
predicted by V). Except for the final value of the cumulated 
reward, actual values of the functions are omitted for the sake 
of brevity, since it would have been necessary to add a relevant 
number of graphs, that would have gone beyond the scope of 
a conference paper.  

  

 



Table 2 – Qualitative description of the experiments outcome  

Exp R R trend S LR PL V VL 

1. Basic (on casual maps) 

A -269.68 Initial growth, 
then drops tf cd c mR os 

B 259.58 Grows cd cd c mR os 

C 438.66 Grows cd cd os mR os 

D -953.43 <0, no growth tf cd c mR fd 

2. Random events 

A -118.72 Initial growth, 
then stabilizes tf cd c mR os 

B 548.17 Grows cd cd c mR itd 

C -61.38 Grows cd cd os mR itd 

3. One-man on the same map 

A -462.47 Initial growth, 
then drops tf cd c mR os 

B 115.90 Grows cd cd c mR os 

C 321.54 Grows cd cd os mR os 

4. Competitive 

A 393.43 Steep initial 
growth tf cd c mR itd 

B 403.65 Grows cd cd c mR itd 

C 250.17 Grows cd cd os mR itd 

5. Cooperative 

A -959.03 Initial growth, 
then drops tf cd c mR <0 

B -424.72 No growth cd cd c mR os 

C -359.27 No growth cd cd os mR os 

tf = decrease too quick  
cd = smooth and constant decrease  
c = decrease rate quite constant (very small oscillations) 
os = relevant oscillations around a certain value  
mR = the trend of V mirrors that of R (correctly) 
itd = the trend of VL initially evidences an increases and then drops  
        (correctly) 
fd = fast drop  

 

The basic experiment (#1 in Tab.2) produced the results 
that we have used as a benchmark for the remaining ones. The 
main problem of the first experiment (A) in the group derived 
from the fact that S dropped too quickly, thus not leaving 
enough time to the agent to learn how to behave before starting 
to take decisions all by itself. The following two cases (B, C) 
produced better results. As already stated, the case with visual 
observation (D) performed very poorly, since, differently 
from what happens in situations as those described, e.g., in 
[24], the agent is unable to determine a schema in the enemies’ 
appearance, therefore negatively affecting its learning. During 
the subsequent inference phase, we have observed that the 
agents behaved correctly from the perspective of the 
movement (also avoiding standing still for too long, thus 
preventing to attract enemies) in all the cases, except with 
visual observations. The combat strategy, instead, has not 
been completely understood in all the experiments. In 
particular, in experiment A, agents fired quite randomly, while 
in the two subsequent experiments they fired more correctly, 
but they generally get confused when hit in the shoulder or 

when they got too near to enemies. In the totality of cases, the 
agents seemed to oscillate when moving. This effect derived 
from the fact that the rays casted cannot accurately simulate 
what would have been perceived by a camera. Last but not 
least, since no reward has been set for “staying alive”, the 
agents showed “suicide” behaviours (they attacked more than 
one enemy at the same time in the tentative of collecting a 
higher reward). 

Experiment 2, that considered the presence of random 
events affecting the agents’ performances, registered a strong 
effect on R, which improved in the first two cases (A, B) and 
decreased a lot in the case of continuous actions space with 
RNN. The first two cases seem to suggest that the random 
variation in the reward has not been memorized by the 
network, which, consequently, has been able to adapt to 
varying circumstance. On the contrary, the presence of 
unforeseeable events heavily conditioned the RNN. To note 
that in the discrete case the entropy fell too quickly, thus 
negatively affecting the agent’s learning process. During the 
inference phase, we noticed that the agents’ behaviour slightly 
improved in the cases with no RNN (they moved more and 
quicker and had a better aim), especially in the continuous 
case, while it drastically worsened in the remaining one. In 
this latter situation, the agents seemed to move and fire 
randomly, likely because they did not understand the scope of 
the bonuses/maluses.    

In the one-man on the same map experiment (#3), we 
obtained quite unexpected results: R trend was similar to that 
of the basic experiment, but all the values were smaller. This 
effect derived from the fact that, by observing always the same 
map, the LS processed always the same information, thus 
shrinking the action space that the AI could explore. In 
particular, when the RNN was present, instead of quickening 
the learning process due to the redundancy of information, R 
struggled to increase, and it resulted even worse than in the 
basic case. In the inference phase, the agents substantially 
behaved in the same way that in the basic case. 

In the competitive case (#4), despite the high values of R, 
the RNN seemed to get confused by the fact that the reward 
deriving from the agent’s rank in the leaderboard was 
independent from the observations about the environment. 
Actually, the network memorized to have reached a certain 
reward with a specific sequence of actions, but – obviously – 
their repetition not necessarily produced the same result. This 
effect seemed evident especially in the continuous case with 
RNN, where the policy loss struggled to stabilize. Anyway, 
the discrete case performances were greatly improved, with a 
learning curve that approximated that of the continuous case. 
During the inference phase, the agents seemed to get more 
aggressive and aimed at getting quickly a high reward. The 
agents moved rapidly, to collect more information on the 
environment and to detect enemies. Although the 
understanding of the movement strategy seemed to be 
improved, the attack tactic was still lacking: the agents 
showed imprecise aiming and semi-random fire. Moreover, 
the opportunity to ambush enemies seemed to be completely 
ignored. 

Probably the worst performance that we obtained is in the 
cooperative case (#5). Actually, in neither experiment the 
agents managed to get a R>0, with the worst result in the 
discrete case. This is coherent with the S trend, which, in the 
discrete case, dropped to 0 very soon and with the trend of the 
VL, that in all the cases showed anomalies, particularly evident 



in the discrete case. Tu sum up, the network seemed unable to 
generate an effective model to pass on to the Brain. The 
situation has been sadly confirmed in the inference phase: not 
only the agents performed poorly, but they even aimed and 
fired to the ally, although it was labelled differently from the 
enemies (and correctly detected during the ray-casting).   

As shown in Tab.2, the agents perform quite well in at least 
more than half of the cases, since they manage to collect high 
values of R, even in very complex situations. Nevertheless, if 
we take into considerations the trend of the remaining 
indicators, we notice that – overall – the LS performances 
evidence problems, especially in the competitive and 
cooperative cases.  

VIII. CONCLUSIONS AND FUTURE DEVELOPMENTS 

In the present work we have started to tackle the problem 
of training agents without any human intervention to play in a 
multiplayer survival shooter game. Our goal has been to move 
some steps in the direction of producing self-training teams of 
agents able to compete with humans in unexplored 
environments. We have designed, developed and tested a 
preliminary solution that couples a learning system to a 
prototypal game with randomly generated maps. In particular 
we have adopted a deep reinforcement learning approach 
based on PPO, an algorithm that seems to perform well when 
dealing with real-time situations. We also have exploited the 
characteristic of RNNs to provide the agent with a “memory”, 
thus allowing it to remember which actions have produced the 
highest rewards. We have tested different possible 
configurations of the LS, and the results we have obtained so 
far (see §VII), although not yet completely satisfactory, seems 
promising. In the majority of cases, the best results in terms of 
cumulated reward have been obtained with a continuous 
observation space, but without the use of the RNN, that got 
confused in the less “standard” situations (e.g. unforeseeable 
events affecting the agent performance). Nevertheless, the 
results we have obtained so far are still improvable. Probably 
a finer tuning of the hyperparameters we have used could 
improve the agents’ overall performances. Nonetheless, we 
think that the LS we have devised would benefit from a finer-
grained and an ad-hoc solution, able to better pair with the 
complexity of a game in which the agent is called to perform 
multiple actions at the same time (e.g. moving, aiming and 
firing at enemies in an unexplored map), while developing a 
survival strategy and coordinating with teammates [25]. This 
is precisely the next aim of our research. 

IX. ACKNOWLEDGMENTS  

We wish to warmly thank Prof. Nicolò Cesa-Bianchi for his 
help and encouragements during the development of this 
project.  

REFERENCES 
[1] I. Millington, and J. Funge. Artificial Intelligence for Games, Second 

Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 
2nd edition, 2009. ISBN 0123747317, 9780123747310.  

[2] G. N. Yannakakis. Game AI revisited. In Proceedings of the 9th 
conference on Computing Frontiers, pages 285-292. ACM, 2012.  

[3] D. Karavolos, A. Liapis, and G. N. Yannakakis. Using a Surrogate 
Model of Gameplay for Automated Level Design. 2018 IEEE 
Conference on Computational Intelligence and Games (CIG), 2018. 

[4] C. Mazza, L. A. Ripamonti, D. Maggiorini, and D. Gadia. Fun pledge 
2.0: A funny platformers levels generator (rhythm based). In 
Proceedings of the 12th Biannual Conference on Italian SIGCHI 

Chapter, CHItaly '17, pages 22:1-22:9, New York, NY, USA, 2017. 
ACM. ISBN 978-1-4503-5237-6. doi: 10.1145/3125571.3125592. 

[5] L. A. Ripamonti, M. Mannalà, D. Gadia, and D. Maggiorini. 
Procedural content generation for platformers: designing and testing 
FUN pledge. Multimedia Tools Appl., 76(4):5001-5050, 2017. doi: 
10.1007/s11042-016-3636-3.  

[6] A. Guarneri, D. Maggiorini, L. A. Ripamonti, and M. Trubian. 
GOLEM: generator of life embedded into mmos. In Proceedings of the 
Twelfth European Conference on the Synthesis and Simulation of 
Living Systems: Advances in Artificial Life, ECAL 2013, Sicily, Italy, 
September 2-6, 2013, pages 585{592, 2013. doi: 10.7551/978-0-262-
31709-2-ch084.  

[7] D. Norton, L. A. Ripamonti, M. Ornaghi, D. Gadia, and D. Maggiorini. 
Monsters of Darwin: A strategic game based on artificial intelligence 
and genetic algorithms. In Proceedings of the 1st Workshop on Games-
Human Interaction (GHITALY 2017) co-located with CHItaly 2017, 
the 12th Edition of the biannual Conference of the Italian ACM 
SIGCHI Chapter, Cagliari, Italy, September 18, 2017.  

[8] C. Guerrero-Romero, S. M. Lucas, and D. Perez-Liebana. Using a 
Team of General AI Algorithms to Assist Game Design and Testing. 
2018 IEEE Conference on Computational Intelligence and Games 
(CIG). 

[9] L. A. Ripamonti, S. Gratani, D. Maggiorini, D. Gadia, and A. Bujari. 
Believable group behaviours for NPCs in FPS games. In: Computers 
and Communications (ISCC), 2017 IEEE Symposium on. p. 12-17, 
IEEE, ISBN: 9781538616291, grc, 2017, doi: 
10.1109/ISCC.2017.8024497.  

[10] A. L. Samuel. Some studies in machine learning using the game of 
checkers. IBM. Journal of research and development, 3(3):210-229, 
1959. 

[11] M. Świechowski, T. Tajmajer, and A. Janusz. Improving Hearthstone 
AI by Combining MCTS and Supervised Learning Algorithms. 2018 
IEEE Conference on Computational Intelligence and Games (CIG). 

[12] Z. Yang, and S. Ontañón. Learning Map-Independent Evaluation 
Functions for Real-Time Strategy Games. 2018 IEEE Conference on 
Computational Intelligence and Games (CIG). 

[13] S. F. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen, B. 
Kozakowski, R. Meurling, and L. Cao. Human-Like Playtesting with 
Deep Learning. 2018 IEEE Conference on Computational Intelligence 
and Games (CIG).  

[14] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den 
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. 
Lanctot, et al. Mastering the game of Go with deep neural networks and 
tree search. Nature, 529(7587):484-489, 2016.  

[15] J. Harmer, L. Gisslén, J. del Val, H. Holst, J. Bergdahl, T. Olsson, K. 
Sjöö, and M. Nordin. Imitation Learning with Concurrent Actions in 
3D Games. 2018 IEEE Conference on Computational Intelligence and 
Games (CIG).  

[16] K. Subramanian, G. Tech, C. L. I. Jr, G. Tech, and A. L.Thomaz. 
Exploration from Demonstration for Interactive Reinforcement 
Learning. Aamas, 2016. ISSN 15582914. 

[17] G. Andersen, P. Vrancx, and H. Bou-Ammar. Learning Highlevel 
Representations from Demonstrations. CoRR, 2018. 

[18] J. Schulman, F. Wolski, P. Dhariwal, Al. Radford, and O. Klimov. 
Proximal policy optimization algorithms. arXiv preprint 
arXiv:1707.06347, 2017.  

[19] M. McGuire, and O.C. Jenkins. Creating Games: Mechanics, Content, 
and Technology. Ak Peters Series. Taylor & Francis, 2009. ISBN 
9781568813059.  

[20] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust 
region policy optimization. In International Conference on Machine 
Learning, pages 1889-1897, 2015.  

[21] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep 
network learning by exponential linear units (elus). ICLR 2016: 
International Conference on Learning Representations 2016. 

[22] P. Ramachandran, B. Zoph, and Q. V. Le. Swish: a self-gated activation 
function. arXiv preprint arXiv:1710.05941, 2017. 

[23] S. Hochreiter, and J. Schmidhuber. Long short-term memory. Neural 
computation, 9(8):1735-1780, 1997.  

[24] G. Lample, and D. S. Chaplot. Playing fps games with deep 
reinforcement learning. In AAAI, pages 2140{2146, 2017. 

[25] V. M. Petrovic. Artificial Intelligence and Virtual Worlds – Toward 
Human-Level AI Agents. IEEE Access, Vol.6, pp.39976-39988, 2018. 


