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Combining Experience Replay with Exploration by
Random Network Distillation

Francesco Sovrano

Abstract—Our work is a simple extension of the paper “Ex-
ploration by Random Network Distillation”[1]. More in detail,
we show how to efficiently combine Intrinsic Rewards with
Experience Replay in order to achieve more efficient and robust
exploration (with respect to PPO/RND) and consequently better
results in terms of agent performances and sample efficiency.
We are able to do it by using a new technique named Prioritized
Oversampled Experience Replay (POER), that has been built
upon the definition of what is the important experience useful to
replay. Finally, we evaluate our technique on the famous Atari
game Montezuma’s Revenge and some other hard exploration
Atari games.

Index Terms—Deep Reinforcement Learning, Actor-Critic,
Prioritized Experience Replay, PPO, Intrinsic Rewards, Mon-
tezuma’s Revenge

I. INTRODUCTION

A REINFORCEMENT LEARNING (RL) problem is typ-
ically formalized as a Markov Decision Process (MDP),

in which an agent interacts with an environment, observing
the effects of its actions (in the environment) while trying
to maximize a cumulative return/reward. In other words, a RL
agent learns how to optimally interact with the environment, by
receiving some environmental feedbacks called rewards. The
more an action is good, the higher should be the reward. But
in many scenarios, rewards are very rare and difficult to get,
thus making Reinforcement Learning very hard to achieve.
A good RL agent has to be able to efficiently explore the
environment while optimally exploiting the information it
already found. Balancing exploration with exploitation is a
well-known problem in RL, very hard to solve when the
environment is too big and the rewards are too sparse and
difficult to find by taking random sequences of actions (eg. in
the Atari game Montezuma’s Revenge).
In literature, several techniques exist to improve the sample
efficiency (the ability to exploit past information) or the
exploratory skills of existing RL algorithms.
For example, many techniques used to improve sample effi-
ciency are based on Experience Replay (ER). ER consists in
storing, into a buffer, information (experience) about the agent
actions in the environment and then replaying this experience
during training. The key idea behind ER is to store memory
of important and meaningful states in order to exploit it, but
replaying such memory can introduce some bias. In other
words, the agent might tend not to explore new states, because
it is too focused on exploiting the old information.
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On the other side, many techniques for improving exploration
exist in the RL literature. Among them we cite the “exploration
by random network distillation”[1] (PPO/RND). PPO/RND is
a recent breakthrough in Actor-Critic based RL, because it
has given a significant progress on several hard exploration
problems, such as the famous Atari game Montezuma’s Re-
venge. PPO/RND uses Proximal Policy Optimization (PPO)
[2] in conjunction with Random Network Distillation (RND).
RND is a recent technique for Intrinsic Motivation based on
prediction errors, in which the environmental feedback (the
reward) is augmented with an extra intrinsic reward that is
proportional to the error of a neural network predicting fea-
tures of the observations given by a fixed randomly initialized
neural network [1].
Our work is a simple extension of PPO/RND. We show how to
efficiently combine Intrinsic Rewards with Experience Replay
in order to achieve more efficient and robust exploration than
PPO/RND and consequently better results in terms of agent
performances and sample efficiency. We are able to do it by
using a new technique named Prioritized Oversampled Experi-
ence Replay (POER), that has been built upon the definition of
what is the important experience useful to replay. In POER we
mix oversampling [3] with experience prioritization [4], trying
to achieve the goal of an optimal balance between exploration
and exploitation. In order to do this, we:
• give a definition of important information
• find a way to know when information is uncommon
• understand how to use important uncommon information

to improve the exploratory skills of the agent
More in detail, with our experiments we show how POER

affects the average cumulative return of a baseline PPO/RND
agent in the following hard exploration [5] Atari games:
Montezuma’s Revenge, Solaris, Venture.
Interestingly we find that our technique seems to properly bal-
ance exploration and exploitation especially in Montezuma’s
Revenge, while in some other games it does not 1.

A. Structure of the article

In section II we introduce some related works, providing
at section III the necessary background information about
Reinforcement Learning. In section IV we show how to
combine Experience Replay and Intrinsic Rewards in PPO.
While in section V we describe the results of our experiments
through an ablative analysis, trying to highlight the complexity
behind combining experience replay and intrinsic rewards, by
showing among other things:

1maybe due to the insufficient amount of training time, or due to the adopted
replay frequency
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• How a too frequent experience replay can negatively
affect the agent performances.

• How an accurate choice of what kind of experience to
replay can impact on the agent performances.

II. RELATED WORK

Our work is an extension of PPO/RND[1]. PPO/RND is
a recent breakthrough in Actor-Critic based Reinforcement
Learning, because it has given a significant progress on
several hard exploration problems, such as the famous Atari
game Montezuma’s Revenge. PPO/RND uses Proximal Policy
Optimization (PPO) [2] in conjunction with Random Network
Distillation (RND). RND is a recent technique for Intrinsic
Motivation based on prediction errors, in which the intrinsic
reward is the error of a neural network predicting features of
the observations given by a fixed randomly initialized neural
network [1]. Furthermore, PPO/RND introduces a simple
method to flexibly combine intrinsic and extrinsic rewards.
Our work extends PPO/RND[1] with a new Prioritized Over-
sampled Experience Replay technique. The goal of our work
is to combine the sample efficiency provided by experience
replay with the exploratory properties of RND, in order to
achieve more efficient and robust exploration and consequently
better results in terms of agent performances and sample
efficiency.
There have been several (successful) attempts to combine
Actor-Critic algorithms (eg. PPO) with Experience Replay.
Probably some of the most interesting are:
• “ACER”[6], a sophisticated technique based on trust

region policy optimization
• “Self-imitation learning”[7], a simple prioritized experi-

ence replay technique applied to PPO
The main differences between our work and [7] are that the
latter:
• does not make any use of intrinsic rewards
• does not use any oversampling technique integrated in

the experience replay mechanism
Furthermore “Self-imitation learning”[7] prioritizes experience
using the Advantage function while our technique prioritizes
experience using Intrinsic Rewards. In section V we show a
comparison of the aforementioned prioritization approaches.
Anyway, trying to combine exploration with exploitation is
historically a challenging problem in modern RL. Among all
the works related to this problem we cite [8]: a new and
interesting approach that tries to balance between exploration
and exploitation by employing optical flow estimation errors
to examine the novelty of new observations and deliver perma-
nent performance without encountering catastrophic forgetting
problems.

III. REINFORCEMENT LEARNING BACKGROUND

This section contains a short introduction to Reinforcement
Learning techniques, mostly with the aim to fix notation. The
content is quite standard, and we largely borrowed it from our
previous works [9], [10], [11].
A Reinforcement Learning problem is typically formalized as

state s t+1

state s
reward r

action a t
t

t

Environment

Agent

Fig. 1: Basic operations of a Markov Decision Process

a Markov Decision Process (MDP). In this setting, an agent
interacts at discrete time steps with an external environment.
At each time step t, the agent observes a state st and chooses
an action at according to some policy π, that is a mapping
(a probability distribution) from states to actions. As a result
of its action, the agent obtains a reward rt (see Fig. 1), and
the environment passes to a new state s′ = st+1. The process
is then iterated until a terminal state is reached. The future
cumulative reward Rt =

∑∞
k=0 γ

krt+k is the total cumulated
reward from time starting at t. γ ∈ [0, 1] is the so called
discount factor: it represents the difference in importance
between present and future rewards.
The goal of the agent is to maximize the expected cumulative
return starting from an initial state s = st.
The action value Qπ(s, a) = Eπ[Rt|s = st, a = at] is
the expected return for selecting action a in state st and
prosecuting with strategy π.
Given a state s and an action a, the optimal action value
function Q∗(s, a) = maxπ Q

π(s, a) is the best possible action
value achievable by any policy.
Similarly, the value of state s given a policy π is V π(s) =
Eπ[Rt|s = st] and the optimal value function is V ∗(s) =
maxπ V

π(s).
The starting points for the RL methodology are two funda-
mental dynamic programming algorithms: value iteration and
policy iteration. In the value-based approach, we define the
parameters of a value function that quantifies the maximum
cumulative reward obtainable from a state belonging to the
state space. While, in the policy-based approach, the policy
parameters are tuned in a direction of improvement.
In figure 2 a simple overview of the RL families is shown.
Value-based approaches (eg. DQN[12]) try to find a policy that

Fig. 2: Reinforcement Learning: Algorithms families
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maximizes the cumulative return by keeping a set of expected
returns estimates for some policy π. Usually π is either the
“current” policy or the optimal one. An algorithm that uses the
current policy is called on-policy algorithm, while an algorithm
using the optimal one is called off-policy.
In policy-based RL, instead of parametrizing the value func-
tion and doing ε-greedy policy improvements to the value
function parameters, we parametrize the policy πθ(a|s) and
update the parameters θ descending gradient into a direction
that improves π, because sometimes the policy is easier to
approximate than the value function.
Actor-Critic methods are in the middle between policy-based
and N-step value-based RL. In Actor-Critic we have two
function approximators: one for the policy (the Actor) and
one for the value function (the Critic).

A. Advantage Actor-Critic and PPO

The idea behind Actor-Critic is that it is possible to reduce
the variance of the policy while keeping it unbiased by
subtracting a learned state-value function V (s) known as
baseline. R−V (s) is called the advantage function A(s). The
advantage is used to measure how much better than “average”
it is to take an action given a state.
Thus, the Actor updates its parameters θ1 in the direction of:

E[A(s) · ∇θ1 log πθ1(a|s)] (1)

While the Critic updates its parameters θ2 in the direction of:

c1∇θ2Ω
(
R− V θ2(s)

)
(2)

Where Ω usually is the L2 loss [13], and c1 is a regularization
constant used to keep the Critic learning rate lower than
the Actor. Commonly c1 < 1 (eg: c1 = 1

2 ). But it is not
uncommon to have c1 = 1.
The Actor-Critic family can count many different algorithms
including: A3C[14], A2C[2], PPO[2].

1) A3C: The Asynchronous Advantage Actor-Critic (A3C)
algorithm [14] is an on-policy technique based on Actor-
Critic. A3C, instead of using an experience replay buffer like
DQN[12], uses multiple agents on different threads to explore
the state spaces, and it makes decorrelated updates to the Actor
and the Critic. It is important to mention that A3C uses a
different version of the policy gradient formula in order to
better tackle the exploration problem. Thus, in A3C, the Actor
objective function is changed to:

JON(θ1) = E [A(s) · log πθ1(a|s)− βS(πθ1 |s)] (3)

Where S(πθ|s) is the entropy of policy πθ given state s, and
β is an entropy regularization constant.

2) A2C: In A3C each agent talks to the global parameters
independently, so it is possible sometimes the parallel agents
would be playing with different policies and therefore the
aggregated update would not be optimal. The aim of A2C is to
resolve this inconsistency. A2C uses a coordinator that waits
for all the parallel actors to finish before updating the global
parameters, for this reason A2C is said to be the synchronous
version of A3C. [15]

3) PPO: Proximal Policy Optimization (PPO) [2] is an
Actor-Critic algorithm based on A2C.
The idea behind PPO is that, in order to improve training
stability, we should avoid parameter updates that change the
policy too much at one step. PPO is a simpler variation of
Trust Region Policy Optimization (TRPO) [16] that prevents
(too) big changes to the policy parameters by clipping them
in a predefined range.
PPO is much simpler to implement than TRPO, more general,
and according to [2] it has empirically better sample complex-
ity.
In order to understand PPO, first of all lets denote the
probability ratio between the old policy and the new one as:

r(θ1) =
πθ1(a|s)
πθ1old(a|s)

(4)

Then, the new Actor’s objective function for PPO is:

E [A(s) · r(θ1)− βS(πθ1 |s)] (5)

Let r̂(θ1) = clip (r(θ1), 1− ε, 1 + ε), then the Actor objective
function of PPO is:

JPPO(θ1) = E [min (r(θ1) ·A(s), r̂(θ1) ·A(s))− βS(πθ1 |s)]
(6)

where ε is the clipping range hyper-parameter.
In PPO the Critic uses the same clipping technique used by
the Actor, but instead of keeping the minimum between the
clipped and the non-clipped objective, it keeps the maximum.
Let V̂ θ2(s) = V θ2

old
(s)+clip

(
V θ2(s)− V θ2old

(s),−ε, ε
)

, the
objective function of the Critic is:

JPVO(θ2) = c1 max
(

Ω(R− V θ2(s)),Ω(R− V̂ θ2(s))
)

(7)

with c1 = 0.5.

B. Experience Replay

Experience Replay [17] is actually a valuable and common
tool for RL that has gained popularity thanks to Deep Q-
learning [18].
The benefits coming from experience replay are:
• More efficient use of previous experience
• Less sample correlation, giving better convergence be-

haviour when training a function approximator
Importance sampling is probably one of the most used tech-
niques to implement efficient experience replay mechanisms
in Actor-Critic algorithms (eg. ACER [6]). The idea behind
importance sampling is to weight the action gain of an old
policy according to its relevance with respect to the current
policy.
Furthermore, to improve learning performances it is possible
to prioritize experience (instead of sampling it uniformly) in
order to replay important experience more frequently [4].
It is interesting to note that the probability ratio adopted in the
PPO loss (eq. 6) is exactly the same importance weight used
in importance sampling. This probably makes PPO already
suitable for efficient experience replay.
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C. Intrinsic Rewards

Improving exploration may be a complex task and it can be
achieved in several ways. Some of them requires changing the
gradient formula in order to maximize policy entropy (as in
A3C), but usually entropy regularization is not enough. An-
other interesting approach consists in giving intrinsic rewards,
in order to motivate exploration/curiosity. Intrinsic rewards
are rewards that do not involve receiving feedback from
the environment (the “outside”), in fact they are a feedback
from the agent itself (the “inside”) and for this reason they
completely differ from usual rewards in RL (the extrinsic
rewards, from “outside”).
Most formulations of intrinsic rewards for exploration can be
grouped into two broad classes [5], [19]:

• Count-Based [20], [21]: the intrinsic reward is inversely
proportional to the number of times a new state has been
seen.

• Intrinsic Motivation [1], [22], [23], [24], [25]: the intrinsic
reward is proportional to how much the new state contains
new information.

Count-Based methods in practice tends to fail with huge state
spaces, while Intrinsic Motivation is usually more difficult to
achieve and generalize. An interesting attempt to unify Count-
Based methods and Intrinsic Motivation has been shown in [5].
Among the Intrinsic Motivation techniques for exploration we
cite Random Network Distillation [1] (RND): a recent tech-
nique based on prediction errors, in which the intrinsic reward
is the error of a neural network (the Predictor) predicting
features of the observations given by another fixed randomly
initialized neural network (the Target). The Predictor is trained
to minimize its predictions error.

IV. COMBINING EXPERIENCE REPLAY AND INTRINSIC
REWARDS, IN PPO

PPO[2] is probably one of the best state-of-the-art actor-
critic algorithms, also because of its simplicity and versatility.
As briefly shown in section III-A, PPO already uses impor-
tance weights in its loss and this makes PPO already suitable
for efficient experience replay without any need to re-integrate
importance sampling. 2

The goal of our paper is to show how to combine “Experience
Replay” and “Intrinsic Rewards”, two different and conflicting
techniques, within PPO. More in detail: in this section we
show how to combine PPO/RND[1] with a new Experience
Replay (ER) mechanism inspired by [3] and [4]. PPO/RND is
a recent breakthrough in Actor-Critic RL, because it has given
a significant progress on several hard exploration Atari games.
PPO/RND uses PPO in conjunction with RND. PPO/RND
introduces a simple method to flexibly combine intrinsic and
extrinsic rewards by using two separate Critics for intrinsic and
extrinsic values, and then mixing these values together in the
final advantage by a weighted sum that gives more importance
to the extrinsic advantage.

2this is more probably the reason behind the results of “Self-imitation
learning”[7]

A. Exploration vs Exploitation

Exploration and exploitation are usually seen as two oppo-
site sides of the same coin. It is hard to optimally balance
them.
Exploration means:
• explore the state space
• gather more information

Exploitation means:
• exploit the already seen state space
• make the best decision given current information

Balancing exploration with exploitation may be a very impor-
tant task to accomplish, because in many realistic scenarios
the best long-term strategy may involve short-term sacrifices,
and gathering enough information to make the best overall
decisions is usually not a naive process.
Lets try to understand it with an example. Lets assume that:
• we are playing a very complex turn-based strategy game

with a partially observable environment
• we can perform only one move per turn

For simplicity, lets say that in this game there are two possible
strategies we can exclusively follow:
• We can play the move we believe is best: this is called

Exploitation
• We can play an experimental move: this is called Explo-

ration
As you may intuitively imagine, optimally choosing between
these two strategies might not be trivial at all. In RL we can say
the same about combining Experience Replay (for exploita-
tion) with Intrinsic Rewards (for exploration). For example, in
section V we will show how a too frequent experience replay
can negatively affect the agent performances.

B. Experience Replay Prioritization and Oversampling

ER consists in storing, into a buffer, information (experi-
ence) about the agent actions in the environment and then
replaying this experience during training. The experience is
stored into mini-batches containing information about per-
formed actions, seen states, rewards, etc.. Every mini-batch
contains information about Bs consecutive steps of an episode,
where Bs is called batch size. The key idea behind ER is to
store memory of important and uncommon batches in order
to exploit it. But replaying this memory can introduce some
bias, worsening the exploratory skills of the agent.
In order to properly use ER within PPO we need to:
• give a definition of important batch
• find a way to know when a batch is uncommon
• understand how to use important uncommon batches to

improve the exploratory skills of the agent
• understand how to efficiently implement ER
1) Definition of important batch: We say that a batch is

important if it belongs to one of the following importance
classes:
• The class of batches that contain positive extrinsic re-

wards.
• The class of batches that lead to positive extrinsic rewards

(without containing such rewards).
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• The class of batches that may probably lead to unseen
states and consequently to new positive extrinsic rewards.

Usually the first and the second importance classes are under-
represented in hard exploration games/problems (eg. some
famous Atari games: Montezuma’s Revenge, Freeway, etc..
[5]). Thus, taking inspiration from [3], we decided to oversam-
ple the important batches, by building 3 different experience
buffers (one for each class) and by uniformly sampling from
them (during replay).

2) How to identify and use uncommon batches: Until now,
we have defined what important batches are, but we still have
not defined how to know when a batch is uncommon. We say
that a batch is uncommon when it has a high cumulative
intrinsic reward. Thus, we can detect uncommon batches
through RND. In fact, when the cumulative intrinsic reward
(generated by RND) of a batch is high, then we can say that
the states contained in the batch are likely to be uncommon.
We can exploit this information by prioritizing experience
replay with the cumulative intrinsic rewards of the batches, in
order to mainly replay important and uncommon batches. The
result is a new Prioritized Oversampled Experience Replay
technique meant to work in conjunction with intrinsic rewards
and able to improve the efficiency of RND in terms of state-
space exploration.

3) ER implementation: We know what important batches
are and how to prioritize them in order to improve explo-
ration efficiency, but we still have not properly defined how
we can concretely implement an efficient Experience Replay
(ER) mechanism. A (too) naive Prioritized ER algorithm may
add too much complexity to the learning algorithm making
experience replay impracticable. For this reason, we decided
to use a simple variation of the efficient algorithm proposed
in [4]. More in detail, our ER algorithm uses a circular buffer
called Experience Buffer. This buffer has a fixed size B and it
is fed with new batches until it is completely full. When the
buffer is full we have to drop an old batch in order to insert
a new one, thus we compute a random number pd in [0, 1]
and if pd is lower than the drop probability Pd, then the batch
having the lowest priority is replaced, otherwise the batch at
position i mod B is replaced and i is incremented by 1.
The replay frequency is defined by a Poisson distribution
with mean µ (the replay ratio constant). In other words, if
µ = 1

2 then we replay 1 old batch every 2 new batches.
This means that at the end of every new batch, k batches
are randomly sampled from the experience buffer, where k
follows the aforementioned Poisson distribution. During the
sampling operation, we take a random number z lower than
the sum of all the priorities in the buffer, then the batch with
the highest prefix sum lower than or equal to z is sampled.
Every time a batch is replayed, its priority is updated according
to the new intrinsic rewards given by RND.
Please, remember that intrinsic rewards are a measure of the
novelty of a state, the more the agent explores the more some
states may lose novelty. In other words, for the same state s
the intrinsic reward at time t may significantly differ from the
intrinsic reward at time t+ c with c > 0.
Furthermore, similarly to [26], all the aforementioned expe-
rience buffers are shared among all the workers of the A3C

network.

C. Intrinsic Reward Replay

Intrinsic Rewards are given by the RND. The RND network
is completely separated by the Actor and the Critic. The RND
is continuously trained in order to properly evaluate the states
in terms of their novelty: the less a state is seen by the agent,
the more it is novel. This implies that high intrinsic rewards
are associated to very uncommon states. For these reasons
the Experience Replay with Intrinsic Rewards requires some
precautions:

1) the RND can not be trained during the replay phase
2) the intrinsic cumulative return of the replayed batches

must be updated in order to properly compute the advan-
tage and the critic loss

3) the value used to get the advantage has always to be up
to date

Training the RND during replay would cause wrong intrinsic
rewards, because the RND would start giving lower intrinsic
rewards to the uncommon states, mostly because with ER we
usually replay the uncommon states.

V. EXPERIMENTS

We conducted some experiments in order to prove the effi-
cacy of PPO/RND extended with our Prioritized Oversampled
Experience Replay technique.
Mainly because our work is an extension of [1] 3, we decided
to focus our experiments primarily on the Atari game Mon-
tezuma’s Revenge and on a few other hard exploration games:
Solaris and Venture.
For PPO/RND[1] we used the implementation publicly avail-
able at [27], while for the prioritized experience replay mech-
anism based on [4] we used the code publicly available at [28]
and then we quickly adapted it to our purposes. The changes
we made to the default PPO/RND implementation are:
• We disabled the default intrinsic rewards scaling. In [1]

the intrinsic rewards are scaled by their running standard
deviation.

• In the RND loss, we changed the dropout rate to 0.5.
• We used A3C instead of A2C: we removed any synchro-

nization barrier between the workers, thus updating the
gradient using the Hogwild[29] approach.

• We used Proximal Value Optimization as in the default
PPO[2] implementation.

• We optimized the vanilla A3C implementation in order
to train more efficiently with GPUs. We did it through
a technique called “delayed training” that is heavily
inspired by [30]. This technique stores batches (even the
replayed ones) into a buffer until a big-enough super-
batch is ready for training.

• We resized the games screen to a 42 × 42 (instead of
84× 84 as in [1]) grey-scaled image.

• We set the maximum number of allowed steps per episode
to 3000.

3and also because we do not have the hardware of OpenAI for testing on
many more environments in less than a life-time
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• We disabled sticky actions.

We think it is important to mention that, among the other
things, we kept unchanged the following aspects of the default
PPO/RND implementation:

• The CNN-based4 neural network.
• The extrinsic rewards clipping, in [−1, 1].
• The state representation, made of 4 consecutive grey-

scaled screens.

The source of the code we used for our experiments is publicly
available at [31]. The aforementioned code is a new release of
the code we published with [9], and it is meant to be easily
extendible, readable and reusable.

A. Statistics for evaluation metrics

We have collected several statistics during training:

• “extrinsic reward”: average cumulative extrinsic reward
per episode

• “extrinsic reward per step”: average cumulative extrin-
sic reward per step in an episode

• “extrinsic value per step”: average Critic extrinsic value
per step in an episode

For every experiment we show how the mean and standard
deviation of these statistics change during training time. Time
is measured in parameters updates, but in the last experiment
(Section V-C) time is measured in steps in order to focus more
on sample efficiency.

B. Ablative Analysis on Montezuma’s Revenge

With our experiments we try to answer the following
questions:

1) Is ER useful when combined with PPO/RND?
2) Is experience prioritization useful in this context?
3) Is prioritized drop useful in this context?

We are going to show, through our ablative analysis, that
extending PPO/RND with Prioritized Oversampled Experience
Replay (POER) can improve sample efficiency without reduc-
ing exploration.
In order to perform an ablative analysis we need to define
a default set of hyper-parameters, this way we are able to
understand the impact of changing these parameters.
In all the experiments, our default set of hyper-parameters
is the same described in [1], but due to the fact that we
extended [1] with POER, we have also the following extra
hyper-parameters (see section IV-B for more details):

• The replay frequency µ = 0.5.
• The prioritized drop probability Pd = 1.
• The experience buffer size B = 27.

Furthermore, the super-batch size we adopted is 26. This
means that every super-batch is made of 26 batches.
In all the experiments, we used PPO trained on t = 128
different Actor-Critics (ACs).

4with no RNNs

1) Is POER useful when combined with PPO/RND?: With
this experiment we try to understand the effects of PPO/RND
combined with POER. We do it by changing the replay
frequency µ. We compare the default experiment (having
µ = 0.5) with 3 different experiments having respectively
µ = 0, µ = 1 and µ = 2. The experiment having µ = 0 is
said to be the baseline, because it is equivalent to PPO/RND
without any ER mechanism.
In figure 3 we show the training statistics. As you can see, dur-
ing training the default implementation of PPO/RND/POER
(blue line) produces better results (in terms of mean extrinsic
reward) than the baseline (orange line). As expected, our
implementation of PPO/RND combined with POER seems to
be more sample efficient than the baseline, this is more evident
when plotting the statistics against the steps instead of the
parameters updates as shown in figure 6 .
It is interesting to notice that the replay frequency µ is a very
important parameter to tune. In fact we can see that when µ is
too big (eg. µ = 2), the exploratory skills of the agent tends
to be worse. Intuitively this means that if we replay too much,
then we also exploit too much the past experience without
producing enough new information and thus losing in terms
of exploration.

Fig. 3: Experiment 1 - Replay Frequency

2) Is experience prioritization useful in this context?: With
this experiment we try to understand the effects of experience
prioritization in PPO/RND combined with POER. We do it by
disabling prioritization and by changing the priority function.
We compare the default (that uses ER prioritized with intrinsic
rewards) with three different experiments having respectively
no prioritization, ER prioritized with extrinsic rewards and ER
prioritized with advantages.
In figure 4 we show the training statistics. As you can see,
during training the default (blue line) produces the best results,
while the other experiments perform significantly worse.
We believe that this fact supports the theory that we should
mainly replay only uncommon batches (identified by high
intrinsic rewards).

3) Is prioritized drop useful in this context?: With this
experiment we try to understand the effects of changing the
prioritized drop probability Pd in PPO/RND combined with
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Fig. 4: Experiment 2 - Replay Prioritization

POER. We compare the default (that has Pd = 1) with
two different experiments having respectively Pd = 0.5 and
Pd = 0.
In figure 5 we show the training statistics. As you can
see, during training the default (blue line) produces the best
results, while Pd = 0 (green line) produces the worst results
only initially. Thus, the prioritized drop seems an extremely
important feature in POER. In other words, the strategy of
replaying only the most uncommon important batches seems to
be much more effective than randomly replaying both common
and uncommon important batches.

Fig. 5: Experiment 3 - Prioritized Drop Probability

C. Ablative Analysis on other hard exploration games

In the previous ablative analysis we have shown that our
combination of PPO/RND with POER, as expected, per-
forms better in terms of sample efficiency than the baseline
PPO/RND on the Atari game Montezuma’s Revenge.
Technique-combination papers are somewhat rare in RL re-
search because their results tend to have low significance:
somehow we already expect independently good ideas for
different aspects of an algorithm to combine somewhat well.

Despite the aforementioned expectation, we will show with
the following ablative analysis that our technique-combination
does not always lead to performance improvements on hard
exploration games, supporting the counter-intuitive fact that
combining different ideas on different aspects of an algorithm
does not always lead to better results. This is true especially
when trying to combine techniques for exploration with tech-
niques for exploitation.
With this experiments we compare the performance of three
different algorithms:

• PPO/RND/POER (using the default set of hyper-
parameters defined in section V-B).

• PPO/RND (the default but with µ = 0).
• PPO/POER (the default but with no intrinsic rewards and

thus with ER prioritized by extrinsic rewards)

in 3 different hard exploration [5] Atari games:

• Montezuma’s Revenge: characterized by very sparse re-
wards, also difficult to get by random actions because the
agent can die very easily.

• Solaris: compared to Montezuma it is characterized by
more frequent rewards that are also easier to get by
random actions.

• Venture: characterized by sparse rewards but apparently
easier to get by random actions than Montezuma.

In order to focus more on sample efficiency, in figure 6 we
show the training statistics plotted against the steps instead
of the parameters updates. As we can see: in Montezuma’s
Revenge the best algorithm is PPO/RND/POER (blue line),
in Solaris the best one is PPO/POER (orange line), while in
Venture only those algorithms using RND perform decently
enough and, as expected, PPO/RND/POER is the most sample
efficient. In all the aforementioned games we can see that the
statistics of the algorithms using POER seem to have a lower
standard deviation and a more stable mean than PPO/RND,
and we think this is an indicator of the better sample efficiency
of PPO/RND/POER with respect to PPO/RND.
We believe that tuning further the replay frequency µ might
help to improve the performance of PPO/RND/POER in both
Solaris and Venture.

Fig. 6: Experiment 4 - Different Hard Exploration Games
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VI. CONCLUSIONS

In this paper we have shown a simple way to combine
Experience Replay with Intrinsic Rewards, or in other words
a simple way to balance exploration with exploitation.
In order to do that, we:
• give a definition of important batch
• find a way to know when a batch is uncommon
• understand how to use important uncommon batches to

improve the exploratory skills of the agent
Furthermore, through our experiments we try to answer the
following questions:

1) Is ER useful when combined with PPO/RND?
2) Is experience prioritization useful in this context?
3) Is prioritized drop useful in this context?

The answers we got are:
1) ER seems very useful, but a too high replay frequency

might unbalance the agent toward the exploitation of old
information, losing in terms of exploratory skills, espe-
cially in environments characterized by more frequent
extrinsic rewards than Montezuma.

2) Experience prioritization based on intrinsic rewards is
definitively important in order to replay the uncommon
batches.

3) A fully prioritized drop seems to give the best perfor-
mances. The strategy of replaying only the most uncom-
mon important batches seems to be much more effective
than randomly replaying both common and uncommon
important batches.
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[25] Ö. Şimşek and A. G. Barto, “An intrinsic reward mechanism for efficient
exploration,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 833–840.

[26] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. Van Hasselt, and D. Silver, “Distributed prioritized experience
replay,” arXiv preprint arXiv:1803.00933, 2018.

[27] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by ran-
dom network distillation,” https://github.com/openai/random-network-
distillation, 2018.

[28] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,” https:
//github.com/openai/baselines, 2017.

[29] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in neural
information processing systems, 2011, pp. 693–701.

[30] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning et al., “Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner architectures,”
arXiv preprint arXiv:1802.01561, 2018.

[31] F. Sovrano, “Combining ’experience replay’ with ’exploration
by random network distillation’,” https://github.com/Francesco-
Sovrano/Combining--experience-replay--with--exploration-by-
random-network-distillation-, 2019.

http://amslaurea.unibo.it/16718/
https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss
https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss
https://doi.org/10.1038/nature14236
https://github.com/openai/random-network-distillation
https://github.com/openai/random-network-distillation
https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/Francesco-Sovrano/Combining--experience-replay--with--exploration-by-random-network-distillation-
https://github.com/Francesco-Sovrano/Combining--experience-replay--with--exploration-by-random-network-distillation-
https://github.com/Francesco-Sovrano/Combining--experience-replay--with--exploration-by-random-network-distillation-

