
Timing Interactive Narratives
Thomas Cabioch

ENIB – Lab-STICC
Brest, France

thomas.cabioch@enib.fr

Ronan Champagnat
L3i

La Rochelle université
La Rochelle, France

ronan.champagnat@univ-lr.fr

Anne-Gwenn Bosser
ENIB – Lab-STICC

Brest, France
bosser@enib.fr

Jean-Noël Chiganne
Incarna

Paris, France
jn@incarna.co

Martin Dieguez
ENIB – Lab-STICC

Brest, France
martin.dieguez@enib.fr

Abstract—Research in Computational Narratives has evi-
denced the need to provide formal models of narratives inte-
grating action representation together with temporal and causal
constraints. Adopting an adequate formalization for narrative
actions is critical to the development of generative or interactive
systems capable of telling stories whilst ensuring narrative coher-
ence, or dynamic adaptation to user interaction. It may also allow
to verify properties of narratives at design time. In this paper,
we discuss the issues of interactive story design, verification, and
piloting for a specific genre of industrial application, in the field
of interactive entertainment: in the games we consider, teams of
participants in a Virtual Reality application are guided in real
time through a narrative experience by a human storyteller. Like
in an escape game, the interactive experience is timed: it should
be long enough to provide satisfaction to the players, but come to
a conclusion before the game session is over in order to provide
closure and a sense of achievement to them. We describe how
we integrate narrative time in the story design and use it to
the verification of temporal properties of scenarios, building on
previous work using Linear Logic and Petri Nets.

I. INTRODUCTION

Interactive Storytelling (IS) research focuses on the chal-
lenges posed by a new form of media, which would allow
the audience to influence the unfolding of a story while expe-
riencing it. Foretold by Murray [1], the first fully integrated
Interactive Storytelling System in Virtual Reality was reported
by Cavazza et al. [2]. With the popularization of Virtual
Reality entertainment, and as research in IS matures, ideas
make their way into the entertainment computing industry,
meanwhile raising new practical issues. In this paper, we
describe how we apply and adapt results from research in
IS to the problem of authoring time-constrained interactive
narratives for providing virtual reality narrative experiences for
teams of players. More specifically, we describe how we have
extended a prototype authoring tool and authoring method to
support the validation of time-constrained narratives. We use
Linear Logic [3], [4], with time annotations, to model narrative
actions, and verify temporal properties using a translation into
Petri nets.

II. A STRUCTURAL APPROACH TO NARRATIVE
VERIFICATION

Interactive Storytelling research has often been inspired by
Classical (Structural) Narratology [5]. Building on the work
of the Russian structuralists, theorists like Barthes [6] have

put an emphasis on the underlying structures of narratives.
The conceptual distinction between the raw material of the
narrative (characters, objects, narrative actions, . . .) and the
order and manner in which it is conveyed to the audience
has helped frame a number of approaches in Computational
Narratives. In this paper, we consider the former, the story (the
latter being commonly designated as discourse in IS), follow-
ing terminology borrowed from narratologists like Genette [7]
or Chatman [8]. Another important take away from narrative
theories for research in IS has been the centrality of narrative
actions (such as in the schema actanciel [9]). This has made
action description a fundamental element of formal models of
narratives and the work presented here makes no exception to
this.

In this respect, specifying an interactive narrative requires
defining a story (characters and objects, states of the narrative
world, and how narrative actions impact this world), and un-
derlying each unfolded narrative is an implicit causal structure
of narrative actions (often referred to as plot). AI planning
has been the technique of choice, for many researchers in
IS, since Young [10] proposed to specify narrative actions as
planning operators and to generate causally sound narratives
by tweaking planning engines with narrative goals. To this
day, many successful IS systems rely on planning techniques,
integrating the effects of user interaction through re-planning.
Planners are typically built to counter combinatorial explosion
and as such, endeavour to reduce the search space: the level
of generativity of IS systems has become an issue in itself for
assessing the performances of systems [11].

A dual approach, less concerned with on-the-fly dynamic
generation, is to treat story specification at the logical level and
use formal techniques to establish properties of the possible
narrative discourses: Bosser et al. [12] have shown how
Intuitionistic Linear Logic can be used to specify a story
and adequately account for narrative causality phenomena.
It relies on the use of Linear Logic implication to describe
narrative actions as consuming and producing resources (and
has even led to the design of a linear logic based programming
language particularly well suited to narrative description for
generation purposes [13]). For instance, Bosser et al. [14]
use the Coq proof assistant to establish high level properties
of possible narratives specified in Linear Logic. This can be
compared with the work by Colle et al. [15] for computer
games, where a Linear Logic based specification of game-play

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

was automatically transformed into Petri nets for verification
purposes. These previous work were based on formalisms and
tools which may not be author-friendly, so for this project, we
chose to build on the work of Dang [16], which provides the
specification of a higher-level authoring tool based on linear
logic. Dang et al. [16] describe a tool to model and analyze a
narrative based on Linear Logic description and a translation
into Petri net. This authoring tool front-end is based on state
presentation and then uses model transformation to derive a LL
model and PN to analyze. The tool provides an analysis based
on a coverability graph unfolding. However it faces limitations,
such as infinite branches: we describe in section IV-D how we
addressed this issue. Our contribution here is thus twofold:
• we extend the expressiveness of this tool to account for

the verification of temporal properties using ideas from
the work of Champagnat et al. [17];

• after a translation into Petri Nets following Pradin’s
methodology [18] which allows verification in the spirit
of the work of Colle et al. [15], we use the algorithm
developped by Reynier et al. [19] to verify the story
specification with regards to time constraints on the
unfolding.

III. ESCAPE GAMES FLAVOURED WITH VR NARRATIVE
EXPERIENCES

Our work takes place in an industrial context: the develop-
ment of immersive narrative experiences designed for small
teams of players: participants, each equipped with a Virtual
Reality Head-Mounted Display, enter a shared virtual world
where they experience and act in a narrative. Players are
protagonists and part of the narrative so the user-interaction
is diegetic (following the terminology used by Cavazza et
al. [20]). Contrarily to role playing games, participants are
experiencing the application as themselves and do not play
a role, and whilst interaction and communication is possible
within the virtual environment, the players share the same
point of view of the narrative and witness and trigger narrative
actions as one entity: this provides them with a shared view
of the narrative experience in which they can communicate.

By contrast, a human operator (which we will call here
the narrator) driving the narrative experience is non-diegetic
and the players should be oblivious to her influence on the
narrative unfolding. The role of the human operator is to
ensure that the players enjoy the experience, which involves
dynamic adjustments to ensure that the level of challenge and
implication provided corresponds to the players’ skills. This
is indeed, an essential component of a well-balanced user
centered game-design (see for instance [21]). An important
part of this task is to ensure that the players will be able to
understand the narrative in the time imparted, but also to make
sure the narrative is not unfolded too quickly for the player to
not be disappointed by the duration of the session.

This requires the design of dedicated piloting tools, equip-
ping the narrator with ways of monitoring the plot that
has unfolded so far, compare possible plot trajectories and
narrative actions left to be experienced to the remaining time,

and means to interact with the system in order to nudge
the players on the path to narrative closure by tying ”loose
ends” of the narrative. Authoring such narratives also require
dedicated tools and methods including for the validation of
duration properties: we propose such a solution here, whilst
accounting for the requirement of the future piloting tools
(such as keeping track of the causal relations between narrative
actions through an explicit representation of the plot, and ways
to compute the duration of the remaining possible narratives),
which we intend to develop in the future.

Because a team of players behaves as a unit from a narrative
perspective, the running example we are using in this paper
to illustrate our approach considers one protagonist, and its
available actions correspond to a modified version of the
Interactive Fiction Silver Hair and the three bears 1 (an ancient
version of the tale featuring Goldilocks). Silver Hair is a witch
living in the woods close to the house of three bears. One
morning, while the bears prepare for a walk, Silver Hair came
to visit but the three bears didn’t invite her into their house.
To take revenge, she decides to go and vandalize their cottage
during their walk.

IV. AUTHORING AND VERIFYING TIME CONSTRAINED
NARRATIVES

We extended the tool described by Dang [16], which uses
Linear Logic for story description, with the possibility to
specify an aimed duration for the generated narratives, as well
as minimum/maximum time durations for narrative actions
[17].

These modifications led us to the UML model shown in
figure 1.

A Scenario is composed of a set of States, EventActions,
Choices and Outcomes :
• States are used to define the story world, they represent

what can be True in the world at a given time, they all
have a name and a short text describing their use, they
can be divided in three sub-parts :

– GameStates represents internal states that are
changed internally in the system, they can be set to
be a part of the initial world.

– GameInputs represents states that truth values are
given by the game engine when a certain action is
made.

– GMInputs represents states that becomes true when
the game master wants them to be true, allowing him
to control the scenario in real time.

• EventActions are all the actions that can happen dur-
ing the scenario, they have a name and a description.
However the duration of some actions depend on players
and may vary from a team of players to another so
we use estimated intervals, which can be set during the
authoring process, and later refined using expertise gained

1https://alyssalandry.com/files/295271/silver-hair-and-the-three-bears-june-
2017.html

Fig. 1: Story model based on the work of Dang et al. [22], taking in account time duration

from running play sessions on various player profiles.
This allows us to estimate scenarios durations during the
analysis process. In addition, most actions are made to
be used one time, once they are used, they can’t be done
again, however, for some specific kind of actions such
as displacement actions, it is necessary to allow them to
be used multiple times, thus, the model allows us to set
an action as an infinite one, meaning that it can be done
multiple times. An action is composed of :

– Preconditions : A set of States that are necessary
for the action to be possible, when the action is
made, all the states associated to the preconditions
are consumed.

– Effects : A set of GameStates that are created when
the action has been undertaken.

• Choices represent choices between different actions,
when one of the action is undertook, all the actions linked
to the Possibility that are parts of the choice are disabled
for the rest of the story.

• Outcomes represent the desired outcomes that we want
for our Scenario, they are linked to a set of GameStates
that we want to be true at the end of the story.

We give here the equivalence between the model and Linear
Logic, which we hope will be sufficient for the reader to grasp
the meaning of the connectors for understanding the modelling
in the next section. It may be useful to keep in mind that

in Linear Logic, all formulas are treated as resources, and
not infinitely available as permanent statement as in Classical
Logic. For instance, the linear implication formula A (B,
when used, means that A has been consumed (is not available
anymore) and that B is now available: you get B with the price
of A. This contrast with the meaning of A → B in classical
logic which means that whenever A, then B. This makes this
logic suitable to represent dynamical systems [4]. Details and
examples of similar usage for narrative encoding can be found
in [22]) :

• Atoms correspond to states and inputs.
• ⊗ formulas correspond to a set of states in precondi-

tions/effects for an action
• ⊕ formulas correspond to choices between actions, or

between outcome possibilities.
• A (B correspond to an action, A is the precondition

required, and on its right, there is the set of effect.
• ! before an action means that it is infinitely available.

The authoring process then consists in defining a knowledge
base for our scenario using the editor we created derived
from this model (see figure 2). We refer the reader to [12]
for the underlying details on using LL for narrative encoding.

A. Silver Hair and the Three Bears Story Specification

We start by defining the different possible states in the story.
Silver Hair can move in her home or in the Bear’s house
which contains several places with different available narrative
actions, so we have a state for each. For example, the state
SHKitchen models the fact that Silver Hair is in the bear’s
kitchen.

We also keep track of the bears: they can be preparing for
a walk (BPrepare), walking (BWalk) or back to their house
(BReturned). Once all states have been created, we use them
to describe the possible Narrative Actions. A narrative action
is encoded using the linear implication and describes how
resources or states are consumed when new ones are produced
in a narrative environment. Most of the actions are supposed
to happen only once, and this is the default encoding provided
by linear logic which considers formulae as resources. How-
ever, a more classical specification is sometimes desirable for
encoding actions which are available a number of times, such
as moving between places, and this is possible to define this
in a controlled manner using the ! connector. We can define
exclusive alternatives too using the choice connector: when
the bears are back and that the player (Silver Hair) is in their
bedroom, she can hide under the blanket or in the closet. Here
is a formula specifying the narrative action Hiding under a
Blanket:

SHBedroom ⊗BReturned ⊗ CBlanket (SHBlanket ⊗BReturned

The last step is to define Goal states specifying the desired
outcomes of the narratives. We define two possible outcomes:
(1) Silver Hair is in the bedroom hidden under the blanket and
the bears eat her ; (2) Silver Hair is in the bedroom hidden in
the closet and the bears catch her.

SHHideCloset ⊗BReturned ⊕ SHHideBlanket ⊗BReturned

We can now define a scenario, a specification of all possible
plots, using a LL sequent:

InitialStates,NarrativeActions ` Goal⊕

where InitialStates corresponds to a set of atoms giving
the initial state, and the other multisets respectively specify
all possible narrative actions and the goal state description.
A given proof of this sequent, by giving a partial order for
the decomposition of formulae encoding narrative actions,
corresponds to a plot. Proving a sequent consists in rewriting
the sequent by replacing connectors by their introduction rules
until it remains only the meta-connector ”,”. A sequent is valid
if all the finishing path of the proof tree are of identity rules.
One proof corresponds to an unfolding of the story. Writing
all the proofs gives the scenarios.

B. Adding Time Annotations

In order to reason about time in Linear Logic, we added
annotations to atoms depending on their production date [18].
In our case we consider duration that may vary according to

players’ actions. As a consequence we used intervals that are
set during the authoring process.

Time annotations are calculated during the construction of
the proof graph, the atoms present in the initial marking are
considered to be produced at the date 0. We first simplify times
connector to the left part of the sequent. As a consequence
the production date of the tokens may differ. A set of tokens
with different production date may enable a transition or a
set of transition. When we go through a transition (linear
implication), we look at the time annotations from all the
present states, and we add the maximum values of the mini-
mum and maximum creation time (associated with the linear
implication) from the state to the time estimations associated
to the actions. It is then possible to use a (max, +) algebra to
determine the duration of possible unfoldings of the story (see
example end of section IV-D .

C. Deriving Petri Nets

Pradin et al. [18] also propose a method for deriving Petri
net from linear logic sequents:
• Each atom corresponds to a place. An atom true means

a marked place.
• A linear implication formula corresponds to a timed

transition in the net.
• The left side of the sequent is made up of implication

formulae and propositional formulae. It represents the set
of transitions to be fired and the initial marking.

• The propositional formulae on the right side of the
sequent corresponds to the final marking.

Figure 3 represents the Petri net we obtain from the specifi-
cation of Silver Hair.

D. Verification of Temporal Properties using Petri nets

The main properties that we want to verify are the validity
of the possible narratives. In order for a scenario to be valid, all
its instances must lead to one of the desired end, and the aimed
duration must be within the bounds defined at authoring time.
A naive approach exploring all the paths is impossible here
because loops can be created by those narrative actions which
have been defined as always available. A way to counter this
problem is by avoiding states that have already been visited,
this allows to prune the infinite branches. This is not sufficient
to help with the combinatorial explosion, due to the fact that
a lot of paths correspond to the simple reordering of narrative
actions: in Silver Hair, the player can drink the milk or eat
the porridge of the bears in any order, creating two paths that
should ideally be seen as being the same story as there is no
causal relationship between these two actions.

To solve this problem, we applied to our Petri Net the
Karp and Miller algorithm with pruning described by Reynier
et al. [19]. The algorithm used is based on Miller et al.
[23], it takes a Petri Net N in input (P represents the set of
places, T the set of transitions, I is the bacwkard incidence
mapping between places and transitions, O is the inward
incidence mapping and m0 is the initial marking of the Petri
net) and constructs a tree in which nodes are labelled by ω

Fig. 2: Scenario editor view, showing how actions are created, the left part shows the states that are needed for our action to
occur (in green) and the states that are created by it (in blue) for our example and the right part is the palette, allowing to add
new actions, their preconditions and their effects.

Algorithm 1 Monotone Pruning Algorithm for Interactive
Scenario based Petri Nets
Require: A Petri Net N = (P, T, I,O,m0), a scenario S that

associates to T the corresponding actions.
Ensure: A labelled tree C = (X , x0, B, Λ) and a partition

X = Act] Inact such that Λ(Act) = MCS(N)
1: Let x0 be a new node such that Λ(x0) = m0;
2: X := {x0};Act := X; Wait := {(x0, t)}A(x0) → t
·|Λ(x0)};B = ∅;

3: while Wait 6= ∅ do
4: Pop (n′, t) from Wait
5: if n′ ∈ Act then
6: m := Post(Λ(n′), t)
7: Let n be a new node such that Λ(n) =

Acc(Λ(Ancestorc(n
′) ∩Act),m);

8: X += {n}; B += {(n′, t, n)};
9: if Λ(n) � Λ(Act) then

10: Act -= {x|∃y ∈ Ancestorc(x).Λ(y) ≤ Λ(n)∧(y ∈
Act ∨ y /∈ Ancestorc(n))};

11: Act += {n};
12: Wait += {(n, u)| n → u ·} if u ∈

n.availableActions();
13: end if
14: end if
15: end while
16: return C = (X,x0, B,Λ) and (Act, Inact)

markings and edges represents transitions, which, in our case,
corresponds to an action that can be conducted by players
or by the game master. The monotone pruning consists in
deactivating branches where loops occurs, when we reach a
state that has already been visited and replacing markings
with omega-markings to represent the loop in the Petri Net.
The main difference with the original K&M algorithm is
that when we compute the marking of new nodes, we also
calculate time labels associated as described in the previous
section. Due to the nature of our representation of Interactive
Scenarios, we want some actions to be deactivated when they
are used or if they are part of a Choice that occurred, thus, we
added to the algorithm a way to prune those actions from
happening by verifying if it is still available according to
the rules we defined. Only if the action corresponding to the
transition is not available, we don’t add it to the list of tuple
Node/Transition that we want to visit (Wait).

Figure 4 shows the graph obtained after applying the algo-
rithm on our Petri Net. We can see that Silver Hair can go from
the kitchen to the bedroom and if she drank the bear’s milk,
she can chose to soil the bear’s blanket before their return.
In this example, we associated to each action the following
duration bounds denoted by Action(minDuration, maxDura-
tion), bounds are expressed in seconds : VisitBears (60-70),
GoKitchen (5-10), GoBedroom (10-15), BearsReturn (10-15),
HideCloset (10-15), HideBlanket (10-15), MSoilBlanket (30-
40), DrinkMilk (10-30). To give a simple example of how
time is calculated, we will consider the Petri net represented
in Figure 3.

For our example, we will represent tokens by the name

SHIntro

BPrepare

V isitBears

[60, 70]

BWalk

I1

GoKitchen

[5, 10]
SHKitchen

I2

DrinkMilk

[10, 30]
MMilk

BearsReturn
I6

MSoilBlanket

P2

I3

GoBedroom

[10, 15]
SHBedroom

I4

HideCloset

[10, 15]

SHCloset

BReturned

I5

HideBlanket

[10, 15]
SHBlanket

Fig. 3: Petri Net obtained by applying the method used by Pradin-Chezalviel et al. [18] on the Linear Logic sequent specifying
the story of Silver Hair. Some labels have been omitted for brevity.

of the place they are in and their time annotations place-
Name(min, max). At the beginning of a scenario, tokens that
are already present are considered to have their time annotation
to 0, thus we can represent the initial token of SHIntro by
SHIntro(0,0). In our example, the only transitions that can be
taken at the beginning is VisitBears, in order to execute it
we need to consume the token SHIntro(0, 0), and the token
BPrepare(0, 0), VisitBears will then produce a new token
in BWalk. Because the action associated to this transition
has estimated duration bounds equal to (60, 70), we need
to set the annotation of our new token according to that,
because the token with the highest min and max bounds in
consumed tokens are 0, we add the time estimations of the
action to the annotations of the token and obtain a new Token
BWalk(60, 70), the transition GoKitchen becomes available, to
use it we need to consume the Token I1(0, 0) and the newly
created Token BWalk(60, 70. Because our highest min and
max bounds corresponds to (60, 70) we add it to the estimated
durations of GoKitchen (5, 10) and obtain a new Token
SHKitchen(65, 80). The algorithm uses this process during all
the transitions in order to compute the final estimation of the
branch, if a place with normal tokens is replaced with a one
with omega-markings when a loop occurs, the omega-marking
annotation calculations follows the same principle, however,
because an omega-marking represents a loop, this calculation
only represents the lower bounds of time estimation and
considers that the action is done only once, thus, we need

to assume that players won’t repeat an action many times in
order for our calculation to be accurate. A solution to this
problem would be to define an average or a min and max
bound of times an infinite action is done by players, and
change our calculation of time associated to omega-markings
and infinite actions to take this into account. In practice, this
sort of problem link to erratic user behavior will be solved
during the play session by the narrator, whose task is to gently
put back stray players on the narrative path.

For this algorithm we need to create a tree C (x0 is the
initial node of the tree and Λ(n) represents the function that
associate a marking to a given node n, we need to keep track
of the lists of active nodes (Act) that can be visited and inactive
nodes (Inact) that have been pruned, we also need to create a
list of transitions that we want to visit (Wait), and a list that
record which transition have been fired to reach a node from
another one (B).‘

The first step of the algorithm is to create a node that is
labelled with the initial marking (x0) of the Petri Net (line
2), we add this node to the set of nodes of the tree, we then
add to Wait all the fireable transitions from the node. Once
this initialization step is done, we need to iterate while the list
Wait is not empty.

This loop on line 3 consists in poping the first tuple node(n)
/ transition(t) from Wait (line 4), we then verify that the node
n is in the list of active nodes (line 5), if it is not the case,
we iterate to the next tuple, if the node is still active, we

create a new marking that corresponds to the one associated
to n after the transition has been fired, which correspond to
the marking obtained when tokens needed for the transition
are consumed, and new ones are created with corresponding
time annotations (line 6). We then apply to this marking the
Acceleration function to modify the marking, this function
replaces some markings with omega-markings as described by
Miller et al. [23], we create a new node (n) with this marking
that we add to list of nodes from the tree, we also save the
transition to B (line 7-8).

We then check if the marking of the node is not inferior
or equal to one of the active nodes2, and that all non infinite-
transitions that have been used before arriving to n and the
active node are the same (line 9). If it is the case it means
that there are markings in active nodes that are smaller than
the new marking and that the same transitions are available
for both of them. Thus, we can prune those nodes by making
them inactive (line 10), because they correspond to the same
scenario (same actions happened in a different order), or
because we reached a loop on a certain transition. We then
add the new node n in the list of active nodes and we add all
fireable transitions from n in Wait (line 12). Because of the
nature of Petri nets, transitions cannot be disabled. Thus we
need to verify if the transitions we want to add in Wait have
not been used before if we defined them as not infinite. To
ensure that we wont use transitions that are not supposed to
be used more than once that are part of a Choice in which
we already used a transition. In the case where the marking
of n is inferior to one of the active nodes, we do nothing and
go back to the beginning of the loop while Wait is not empty.
When wait is empty, we can then return the tree obtained,
active leafs will correspond to all possible outcomes for our
scenario, the duration of the scenario corresponds to the latest
time annotations.

This allows to generate the minimal coverability set (MCS)
of the Petri net. This algorithm limits the exploration by prun-
ing nodes that have already been explored in other branches.
Thus, this algorithm is particularly interesting in our case as
it prunes infinite paths and simple actions reordering while
still allowing to validate all the possible discourses. Once the
coverability set has been generated, we look at the active leafs
of the tree, check whether they correspond to a desired ending
and that the calculated duration correspond to the aimed one.

From the user perspective, the developed tool allows the
author to quickly identify which paths leads to undesired
untying or doesn’t respect requirements in terms of duration
by showing them in red for example. The author can then
correct the path once they identified the problem and rerun
the tool to check if their correction was sufficient.

V. RELATED WORKS

The formalisation of narratives has also attracted interest
from researchers for their role as knowledge structures [24],

2This means that the amount of tokens in each place must be inferior or
equal to the one of its corresponding place in the other marking

[25]. Early models of story specification and narrative gener-
ation have been based on logical formalisms [26], or classic
logic programming [27], but lacked the ability to reason about
state and causality afforded by Linear Logic. Martens et al.
[13], [28] have addressed this shortcoming proposing to use
a form of linear logic programming for specifying stories
in a declarative manner and generate and pilot interactive
narratives. The objective of this system is closer to planning-
based approaches than ours which focuses on verification,
but it nevertheless provides a uniform logical framework to
account for specification and generation of causally sound
narratives. More recently, Azad et al. [29] tackle the issue of
scheduling multiplayer interactive narrative by using Mixed-
Interger Linear Programming. They reason under temporal
constraints. On the contrary of our proposed approach they
compute every path even dead-end and do not reason over
resource allocation mechanisms.

Petri Nets have also been previously used for the authoring
and piloting of interactive narratives. For instance, Balas et
al. [30] have defined a customized version of Hierarchical
Petri Nets for modeling the story and staging the narrative
unfolding within a game engine. However, their model does
not account for narrative actions which have a duration, a
common shortcoming of early generative systems. Addressing
this issue in a planning-based prototype fully integrated in a
game engine, Porteous et al. [11] use Temporal Planning to
synchronize various agents actions by taking into account their
duration which solves concurrency issues at the staging level.
We believe that our approach will allow us to solve the same
problem by taking into account action duration at the authoring
stage.

VI. CONCLUSIONS

We have described a system for authoring and verifying time
constrained interactive narratives. Whilst the applications we
consider take place in Virtual Reality, this work can generalize
to authored narratives with one or several participants sharing
the same narrative knowledge, driven by a story narrator.

Future work will tackle the issue of the piloting tool. Whilst
we plan to use a similar underlying approach for representing
narratives, the visual representation of the unfolding narrative
for monitoring purposes will have to be simplified from current
formalisms to be more usable for narrators (as early feedback
suggests). One possibility is to rely on the structures described
by Trabasso et al. [31], which evidences mental models of
story understanding which may be more intuitively understood
by untrained operators.

ACKNOWLEDGMENTS

We would like to thank Alyssa Landry3 Narrative Director at
Incarna, for providing the Interactive Fiction piece Silver Hair
and the Three Bears which we modified for our case study.
Martı́n Diéguez is funded by the ANR ASTRID-Maturation
Project STRATEGIC. Thomas Cabioch is funded by the DGA
in France, for work in cooperation with the UK DSTL.

3https://alyssalandry.com/

Fig. 4: Coverability graph obtained after applying the Karp and Miller with pruning algorithm from Reynier et al. [19], nodes
represents narrative actions and arrows their ordering, a node followed by multiple arrows, shows that two or more actions are
possible, numbers below leaves corresponds to the computed min and max duration bounds of the branch

REFERENCES

[1] J. H. Murray, Hamlet on the Holodeck. The MIT Press, 1998.
[2] M. Cavazza, J.-L. Lugrin, D. Pizzi, and F. Charles, “Madame bovary on

the holodeck,” in MULTIMEDIA ’07, 2007.
[3] J.-Y. Girard, “Linear Logic,” Theoretical Computer Science, vol. 50,

no. 1, pp. 1–102, 1987.
[4] J.-Y. Girard, “Linear Logic: its syntax and semantics,” in Workshop on

Advances in Linear Logic (C. U. Press, ed.), 1995.
[5] M. Cavazza and D. Pizzi, “Narratology for interactive storytelling: A

critical introduction,” in TIDSE’06, Lecture Notes in Computer Science,
Springer, 2006.

[6] R. Barthes, “Introduction à l’analyse structurale des récits,” Communi-
cations, vol. 8, no. 1, pp. 1–27, 1966.

[7] G. Genette, Narrative Discourse : An Essay in Methods. 1979.
[8] S. Chatman, Story and Discourse: Narrative Structure in Fiction and

Film. 1980.
[9] A. J. Greimas, Sémantique structurale: recherche et méthode. Larousse,

1966.
[10] R. M. Young, “Notes on the use of plan structures in the creation of

interactive plot,” in Narrative Intelligence: Papers from the AAAI Fall
Symposium, AAAI Press, 1999.

[11] J. Porteous, J. Teutenberg, F. Charles, and M. Cavazza, “Controlling
narrative time in interactive storytelling,” in AAMAS ’11, pp. 449–456,
2011.

[12] A.-G. Bosser, M. Cavazza, and R. Champagnat, “Linear Logic for non-
linear storytelling,” in ECAI 2010, vol. 215, IOS Press, 2010.

[13] C. Martens, “Ceptre: A language for modeling generative interactive
systems,” in AIIDE’15, 2015.

[14] A.-G. Bosser, P. Courtieu, J. Forest, and M. Cavazza, “Structural analysis
of narratives with the Coq proof assistant,” in ITP’11, 2011.

[15] F. Collé, R. Champagnat, and A. Prigent, “Scenario analysis based on
Linear Logic,” in ACM SIGCHI Advances in Computer Entertainment
Technology (ACE), ACM press, 2005.

[16] K. D. Dang and R. Champagnat, “An authoring tool to derive valid
interactive scenarios,” in Intelligent Narrative Technologies, 2013.

[17] R. Champagnat, “Optimisation d’une séquence de franchissement de
transitions dans un réseau de petri t-temporisé,” in MOSIM’O3 (MOd-
lisation et SIMulation), pp. 94–100, 2003.

[18] B. Pradin-Chezalviel, R. Valette, and L. A. Kunzle, “Scenario durations
characterization of t-timed petri nets using linear logic,” in PNPM ’99,
pp. 208–217, IEEE Computer Society, 1999.

[19] P.-A. Reynier and F. Servais, “Minimal Coverability Set for Petri Nets:
Karp and Miller Algorithm with Pruning.” Jan. 2011.

[20] M. Cavazza and R. M. Young, “Introduction to interactive storytelling,”
Handbook of Digital Games and Entertainment Technologies, 2017.

[21] M.-V. Aponte, G. Levieux, and S. Natkin, “Measuring the level of
difficulty in single player video games,” Entertainment Computing,
vol. 2, no. 4, pp. 205 – 213, 2011.

[22] K. D. Dang, S. Hoffmann, R. Champagnat, and U. Spierling, “How
authors benefit from linear logic in the authoring process of interactive
storyworlds,” in ICIDS’11, pp. 249–260, Springer-Verlag, 2011.

[23] R. Miller and M. Shanahan, “Narratives in the Situation Calculus,”
Journal of Logic and Computation, vol. 4, pp. 513–530, 1994.

[24] A. Kakas and R. Miller, “A simple declarative language for describ-
ing narratives with actions,” Journal of Logic Programming, vol. 31,
pp. 157–200, 1997.

[25] R. Reiter, “Narratives as programs,” in KR’00, Morgan Kaufmann
Publishers, 2000.

[26] R. R. Lang, “A declarative model for simple narratives,” in Narrative
Intelligence: Papers from the AAAI Fall Symposium, AAAI Press, 1999.

[27] D. Grasbon and N. Braun, “A morphological approach to interactive
storytelling,” in CAST’01, 2001.

[28] C. Martens, A.-G. Bosser, J. F. Ferreira, and M. Cavazza, “Linear logic
programming for narrative generation,” in LPNMR’13, pp. 427–432,
Springer, 2013.

[29] S. Azad, J. Xu, H. Yu, and B. Li, “Scheduling live interactive narratives
with mixed-integer linear programming,” 10 2017.

[30] D. Balas, C. Brom, A. Abonyi, and J. Gemrot, “Hierarchical petri nets
for story plots featuring virtual humans,” in AIIDE’08, 2008.

[31] T. Trabasso and L. L. Sperry, “Causal relatedness and importance of
story events,” Journal of Memory and Language, vol. 24, no. 5, pp. 595
– 611, 1985.

