
Reveal-More: Amplifying Human Effort in Quality
Assurance Testing Using Automated Exploration

Kenneth Chang
University of California, Santa Cruz

Santa Cruz, CA, USA
kchang44@ucsc.edu

Batu Aytemiz
University of California, Santa Cruz

Santa Cruz, CA, USA
baytemiz@ucsc.edu

Adam M. Smith
University of California, Santa Cruz

Santa Cruz, CA, USA
amsmith@ucsc.edu

Abstract—Attempting to maximize coverage of a game via
human gameplay is laborious and repetitive, introducing delays
in the development process. Despite the importance of quality
assurance (QA) testing, QA remains an underinvested area in
the technical games research community. In this paper, we show
that relatively simple automatic exploration techniques can be
used to multiplicatively amplify coverage of a game starting from
human tester data. Instead of attempting to displace human
QA efforts, we seek to grow the impact that a human tester
can make. Experiments with two games for the Super Nintendo
Entertainment System highlight the qualitative and quantitative
differences between isolated human and machine play compared
to our hybrid approach called Reveal-More. We contribute a
QA testing workflow that scales with the amount of human and
machine time allocated to the effort.

I. INTRODUCTION

In quality assurance (QA) testing for videogames, con-
ventional wisdom holds that automated approaches answer
software questions (e.g. does processing this sequence of
inputs yield the expected output?) and manual testing answers
gameplay questions (e.g. will the game crash if I collect this
item?). Nascent research efforts in automatic testing have tried
to apply artificial intelligence (AI) methods to the problem of
demonstrating interesting possibilities in play that developers
might interpret to answer design and implementation questions
that impact gameplay. So far, separated human and machine
testing processes have shown complementary strengths [1],
as expected [2]. In this paper, we are interested in directly
amplifying human tester effort to answer gameplay questions
by using recordings of their play as the seeds for automated
exploration.

Without automation, identifying inputs that lead to game-
play issues is a massive exploratory search problem that
requires significant resource expenditure. Even in the simplest
of videogames, there may be an astronomical number of
distinct gameplay paths, only a few of which trigger a bug.
In an ideal world, QA testers would indicate which span of a
game is most relevant to them, and a system would quickly
show them what was possible (or impossible) in that part of the
game. Testers would save their efforts for directing, rather than
enacting, repetitive gameplay experiments. Towards this goal,
we formulate our problem as maximizing game state coverage
in the service of encountering game design problems.

While there has been high profile successes in automatic
gameplaying research [3], only recently has exploration specif-
ically drawn attention [4]. Score optimization techniques such
as Reinforcement Learning (RL) [5] and Monte-Carlo Tree
Search (MCTS) [6] are setup to solve a different problem
from the one faced in exploration. Techniques like MCTS may
systematically avoid exploring certain play styles of interest
simply because they earn lower scores. Additionally, the
timescale on which automated gameplay techniques achieve
useful results (i.e. minutes versus years of simulated game-
play) has only recently drawn attention [4]. For exploration
to be useful in the QA process, useful reports need to be
generated on timescales comparable to the pace of game
design cycles (such as being able to provide feedback on
weekly or daily game builds).

In this paper, we demonstrate a new technique, Reveal-
More, that combines automatic exploration with just minutes
of human gameplay, resulting in game state coverage that
is superior to using each individual method alone. In such
a manner, an automated method of exploration is used to
amplify what a person can contribute to testing, thus lowering
the strain placed upon testers to find all the paths in a game.
To anchor our work in game development practice, we carry
out experiments in the commercial implementation of two
culturally significant games. In several experiments with Super
Mario World and The Legend of Zelda, we demonstrate up
to a 5X increase in our quantitative exploration metric, and
qualitatively illustrate the significance of increased coverage.
Furthermore, we show that this amplified coverage can be
helpful in visualizing design changes and, in turn, help char-
acterize the impact of design changes.

II. RELATED WORK

Common practice in game QA testing involves having
many people play the game with the goal of covering the
most ground in it. There exists some automation towards
this goal [7], however the majority of the technical games
research community has focused on creating algorithms that
aim to maximize in-game score. In the search for the best
QA practices, whether through automation or manual testing,
many have agreed that maximizing some sense of coverage is
a central concern [8]–[10].

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

A. Automated Gameplay

The original DeepMind paper on Atari gameplay by Mnih et
al. [5] and the work that it inspired shows that automated
gameplay by deep reinforcement learning can be successful
in maximizing rewards when given very large amount of in-
game experience time. Unfortunately the brittleness of such
learning methods [11] and the amount of resources it requires
to become effective [12] makes these techniques infeasible for
our purposes of testing and answering design questions in an
environment where the game design is constantly changing.

Beyond algorithms designed to play one game well, the
field of general videogame playing aims to excel at many
games using generalizable gameplaying techniques [13] and
has been refining these approaches via the General Video
Game AI (GVGAI) Competition [14]. Some work has focused
on using proxy tasks such as maximizing exploration leading
to maximizing score [15]. While these approaches (including
some based on MCTS) are effective in creating agents that
optimize rewards metrics, they are not a good fit for maxi-
mizing coverage of the the game spaces due to their reliance
on a game-specific reward signal.

The current state-of-the-art gameplay algorithms lean to-
wards maximizing the score of a given game. An obvious
advantage of such an algorithms is that they can reveal avenues
of gameplay that humans would have never thought possible.
At the same time, they may skip past and leave unexplored
many other parts of a game relevant to QA.

B. Automated QA Testing

In QA testing, a frequent goal is to find examples of
gameplay that demonstrate a problem to be fixed or to verify
that a previously-known problem has been eliminated. The
job of the game tester is often monotonous and repetitive,
conducting regression testing, matrix testing, and functionality
testing [16]. The tester’s job is to make sure that any newly
implemented features work as planned, and any bugs that were
solved remain solved [17]. Towards this goal, QA testers are
asked to continually revisit the game content, touching upon
as many game paths as possible in every iteration of the game
build. Overall, QA constitutes a major expenditure for game
development organizations [18].

The resource requirement needed for proper testing is even
more pronounced for independent studios [18], who spend
a larger ratio of their funding on testing than AAA studios.
Given this expense, software unit testing (which does not ad-
dress gameplay issues) becomes the default testing framework
for many developers. Software test automation techniques
originally devised for other kinds of software are challenging
to apply to continuously changing design requirements, a
commonality in game development [19]. The usage of such
tools to comprehensively analyze source code does not neces-
sarily translate to coverage of testing the qualitative features
of software [20]. In cases where AI is used for testing, the
turnover time to design and implement a new AI for a new
video game is significant, and outstrips the capabilities many
independent studios can provide towards testing.

Because of the resource expenditure, game testers would
rather have their time spent translate into more testing done.
QA testing can require long hours where the testers are often
fatigued from repetitive work and low pay [21]. Providing
advanced tools for human game testers that amplify their
testing efforts could lower fatigue, lead to more thorough
testing, and open up new, high-skill career tracks for testers
who can make best use of these tools.

If QA testing were to be eased for developers and testers
alike, more testing could be done for every hour spent. Current
research focuses much on removing the human aspect from
QA testing as much as possible. Several implementations of
automated QA testing have been proposed, and many are
effective at testing specific aspects of a game. Xiao et al. [7]
proposed an active learning solution to testing Electronic Arts
soccer games for sweet spots. These sweet spots were the
best locations a player could shoot the ball and maximize the
number of points. By finding these sweet spots, Electronic
Arts was given the opportunity to rebalance the game prior
to release. Another project, ICARUS [22], used deep learning
to learn how to detect bugs for the adventure game focused
Visionaire Engine, completely removing the need for human-
supervised testing. In fields where game playing AIs such as
MCTS is used to play games as humans do [23], successful
results have been observed for tracking down design problems
in video games. In further applications to playtesting [24],
personas can be developed to figure out how players eventually
learn how the game is played. In all of these applications,
the sentiment towards testing involves removing the human as
much as possible. However, humans are the only ones who
can claim that a game is fun and/or engaging, and should be
tasked to test those aspects of video games rather than acting
as human software drivers.

Nantes et al. suggests otherwise, that software agents can
be used to supplement human QA testing [25]. Our focus
is on the latter, where human game testers are augmented
by software to achieve greater game coverage in the same
timespan. In the world of game development, it is difficult for
AAA and independent studios to invest time and resources into
developing better tools for QA. In all cases, the time needed
to develop an algorithm that will play any build of a game
can be arduous and slow, and with the rapid pace of game
development the time expenditure needed is unfeasible. Hence,
we believe that attempts to removing the human tester from
the QA cycle completely are headed in the wrong direction.

C. Automated Exploration Algorithms

Automated exploration algorithms take a different approach
to gameplay. Instead of being guided by the game’s notion of
score, they can instead be intrinsically motivated to find more
novel experiences in a videogame, referred to as moments.
Moments are instances in a video game, such as when a
player encounters the first boss or picking up a key to a room.
To determine if a moment is novel, one can utilize moment
vectors [26] to embed memory and screenshots into a multi-
dimensional space. Once a moment space is created, one can

reason about the vectors in the space to show how a moment
in a videogame differs from another. In their following work,
the same method was used to measure gameplay coverage by
Zhan et al. [4].

Other techniques that require exploration as part of game-
play have shown a strong connection between the depth of ex-
ploration of a videogame and subsequent score increases [27].
These automated exploration techniques became the basis of
Go-Explore [28], a gameplay algorithm that achieved record
breaking scores in the Atari game Montezuma’s Revenge.

III. REVEAL-MORE DESIGN

Reveal-More is a new technique for expanding coverage
of the interaction space in a game starting from a sample
of human tester gameplay. Reveal-More is aimed to be used
by any team of game developers who do not have the time
or knowledge to train a thorough AI testing agent for their
game as long as adequate hooks are given to control the
game remotely. The technique depends on an ability to save
and load states at any point in a game. For this capability
we used the OpenAI Retro Python library.1 Retro is an
extension of the OpenAI Gym library, which gives developers
an interface to run automated gameplay algorithms on several
different emulated platforms from the Atari 2600 to the Super
Nintendo Entertainment System. Save states for the emulators
are snapshots of the game platform’s memory (and other
stateful components) at any given time that allow us to jump
between different moments in a game without re-playing the
game from the initial states. The Retro library also gives us
the ability to control these games programmatically (to provide
button inputs and observe display pixels) and allows us access
to key ranges of memory which enable our game-specific tile
count metrics.

The Reveal-More technique has two phases: data collection
using human effort and amplification using automated explo-
ration. In the initial step, a human game tester (in this work,
one of the authors) plays the game as they normally would,
making progress within the areas of the game on which a test
is intended to focus. From this play, at prescribed intervals
(typically a few seconds apart), Reveal-More records save
states. These states are then used as the seeds for exploration.
Algorithm 1 captures Reveal-More in pseudo-code, a function
of human player data H , exploration granularity γ, the total
exploration budget β, and an automatic exploration method E
(parameterized by a starting state and an exploration budget).

Once the game tester has finished their playtrace and the
save states are created, Reveal-More takes over to amplify
coverage of the game. The system starts by loading the first
save state into the emulator and runs the exploration algorithm
to cover more ground around that state. When the allocated
time for the given state has elapsed (typically an amount
of wall clock time equal to the intervals used in the first
phase), the system loads the second state that was created, and
algorithmic exploration restarts from that state. This process

1https://github.com/openai/retro

Algorithm 1: Reveal-More algorithmic description
alg Reveal–More(H, γ, β,E)
Let S ⊂ H with |S| = γ be a selection of seeds
forall si ∈ S do

Let Ri be the result of running E from si for β/γ
steps
Ri = E(si, β/γ)

end
Output

⋃
iRi all data seen in any exploration run

continues for all remaining save states from the first phase. In
our experiments, we use the Rapidly-Exploring Random Trees
(RRT) algorithm [29] as our exploration algorithm, which has
been previously used to explore game spaces [4].

For the purpose of demonstrating amplification of human
data, the details of the exploration algorithm are not partic-
ularly relevant beyond the fact that, given more time, the
algorithm yields more coverage downstream from the given
starting state. For action selection, actions are sampled from
a weighted sample of the buttons players press when playing
the game. The samples are generated from playtraces from the
players, and determine the ratio of each button pressed from
those traces.

In contrast to maximizing score, Reveal-More aims to max-
imize the coverage. As both of the games we picked involve
predominantly spatial exploration, we operationalize coverage
by tiles touched, which is a measurement of how many unique
spatial tiles the player character occupied. The tile count
metric is similar to the Walk Monster2 implementation of ex-
ploration, where they are interested in the number of colliders
touched instead of tiles traversed. Our metric counts the level
number the player has traversed through and the X and Y
coordinates of the player, which we extract from the game
platform’s memory. Every 16 pixels of horizontal and vertical
position is counted as a distinct tile, and assigned a unique
identifier based on the level and game mode. This approach is
similar to other game-specific metrics such as levels completed
in VGDL based projects [14], or the number of rooms explored
in papers focusing in Montezuma’s Revenge [28]. For games
where the most significant aspects of game state are non-
spatial (such as the inventory and character statistics for role-
playing games), a different metric for coverage would be more
appropriate.

IV. EVALUATION

To demonstrate the effectiveness of our system we applied
the Reveal-More technique to two culturally significant games
that have different notions of progression: Super Mario World
(SMW) [30] as a 2D side-scroller action game and The Legend
Of Zelda: A Link to the Past (Zelda) [31] as a top-down
adventure game. ROM images for these games were obtained
from public archives.3 Both games sold millions of copies

2https://caseymuratori.com/blog 0005
3https://archive.org/details/SNESRoms

Fig. 1: Comparison of tiles touched by a human player, by algorithmic exploration alone (with the RRT algorithm), and by
Reveal-More for SMW. Magenta tiles are tiles touched by the player, teal tiles touched by Reveal-More, and yellow tiles are
touched by only RRT. Blended colors indicate that a combination of the techniques have touched that tile.

following their 1990s commercial releases. SMW is a linear
game with few branching paths and a specific set of win
conditions. Zelda, however, has many branching paths to the
end of the game, and has non-linear methods to win the game.

We first wanted to know whether combining human game-
play with algorithmic gameplay can increase the area covered
given comparable amounts of wall clock time, compared
to exclusively human play and exclusively algorithmic play.
We played the two games (in the same style we would
for enjoyment purposes) for approximately fifteen minutes to
create both our human exploration baseline and also the save
states used in Reveal-More. In both games, we saved a state
every three seconds. In our recordings, SMW gameplay corre-
sponded to reaching level 2–2, Zelda gameplay demonstrated
finding and finishing the first dungeon.

As a baseline for automated exploration, we also apply RRT.
Our RRT implementation samples actions from a fixed game-
specific action distribution for each game. RRT is started at
the boot state of the game for SMW, and at the front of
Hyrule Castle for Zelda. Instead of operating in the very
high-dimensional space of visual pixel data, we apply two
dimensionality reduction techniques suggested by Zhang et
al. [26]. For SMW we used the Pix2Mem embedding strategy
to reduce the pixel observations into a 256 dimensional space.
For Zelda we used a Principal Component Analysis of the first
8KiB of RAM into 64 dimensions (enough to account for 93%
of the variance in the human gameplay recordings).

The action granularity (the number of frames for which
a controller state is held before selecting a new action) for

the two games differs since the gameplay is different. Our
automated gameplay holds each selected action for 6 frames in
SMW, as it takes six frames for Mario to reach the maximum
jump height, and 40 frames in Zelda due to the top down
player perspective of the game. Given that there are no obvious
directions to move (compared to always going right in SMW)
having a coarser action granularity helped with exploration in
Zelda. We ran the RRT algorithm with these hyperparameters
from its starting location with an amount of wall clock time
equal to what was given to the human game tester.

We also choose to further experiment with the hyperparam-
eters of Reveal-More, namely varying the amount of human
input into Reveal-More, the amount of algorithm time allotted
to a single human playtrace, and the number of states extracted
from a human playtrace, all while holding the other two
hyperparameters static. In one instance, we test Reveal-More
with different amounts of human input in increments of 5
minutes, saving 50 states per gameplay (with even divisions
of time between each state), and exactly 15 minutes of
algorithmic play. In the second instance, we vary the range
of RRT gameplay from one minute to 25 minutes per state
while keeping 5 minutes of human gameplay and 15 states.
Finally, the last hyperparameter experiment extracted states
every second from a long 25 minute gameplay, however we
only use a proportion of the saved states in running Reveal-
More. In this manner, we demonstrate the effect of each
hyperparameter on the exploration effectiveness of Reveal-
More.

Our experiments are run on a Gigabyte Aero 15X laptop.

We observed a roughly 10X speed increase in SMW and a
7X speed increase in Zelda when automatically exploring the
game compared to real-time human gameplay. The laptop is
equipped with sufficient RAM and flash storage to facilitate
fast execution of the emulator and gameplay algorithms.

A. Quantitative Analysis

In Fig. 2 and Fig. 3, we show that Reveal-More touched
up to 2X more tiles in Zelda and 5X more tiles in SMW.
The slope differences suggests a multiplicative increase in
effectiveness in state coverage whenever Reveal-More is used.
This increase is not simply the result of running automated
exploration, nor is it simply the result of summing independent
contributions of two exploration strategies.

The sudden flatness of the scores in Zelda is explained
by the time taken for the core gameplay to start. The RRT
algorithm, started from the location where the player first
encounters Hyrule Castle, was able to adequately cover the
entirety of the castle grounds, however it fails to discover how
to open the door to the first dungeon. The mechanism required
for RRT to discover the entrance is to destroy a specific shrub
on the top right corner of the castle map. Although the RRT
algorithm destroys many shrub, it does not destroy the one
required to allow entry after 17 minuets of gameplay.

When we vary the hyperparameters of Reveal-More, we
see several effects on effectiveness of the technique. For
clarity, only SMW is considered in these experiments. First, we
consider the impact of scaling the amount of automated explo-
ration when holding the human gameplay under consideration
(both the input dataset and the selection granularity) fixed.
Results in Fig. 4 illustrate the same kind of sub-linear growth
in final coverage as seen for the algorithm-only samples for
Figs. 2,3 while growth within each run of Reveal-More is
roughly linear. Next, holding the amount of exploration time
fixed and increasing the amount of human data considered,
we see similar trends in Fig. 5: roughly linear growth within a
run and sub-linear response in final coverage. Together these
show that either mode of exploration (human or algorithmic)
faces diminishing returns when scaled in isolation.

To understand how the granularity of interleaving human
and algorithmic exploration, we sweep the number of states
considered as start points for exploration (holding the total
automated exploration budget fixed). Fig. 6 shows that final
coverage is maximized with a moderate number of starting
points: using too many points with too little budget for the
vicinity of each point to be sufficiently explored (or using too
few points) invests exploration budget where the algorithm is
facing diminished returns. The optimal balance surely depends
on the game design, the diversity of play represented in the
human data source, and the particular exploration algorithm.
Holding all other features fixed, we observe here that tuning
the granularity of exploration results in at more than a doubling
of the final coverage.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Wall Clock Minutes

0

250

500

750

1000

1250

1500

1750

2000

To
uc

he
d

Ti
le

s

Reveal More
Human
Algorithm

Fig. 2: In Zelda, we immediately notice that the RRT algorithm
fails to discover more tiles after a point due to its inability
to discover the dungeon’s door. As expected, Reveal-More
touches significantly more tiles than a human game tester in
the same time window.

0 1 2 3 4 5 6 7 8 9 10 11 12
Wall Clock Minutes

0

2000

4000

6000

8000

10000

12000

14000

16000
To

uc
he

d
Ti

le
s

Reveal More
Human
Algorithm

Fig. 3: In SMW, the algorithm performs better than the human
player for several minutes. However, RRT begins to taper off
in tiles touched while human exploration increases linearly.
Reveal-More however trumps both aforementioned techniques
from the start of execution.

B. Qualitative Analysis

To understand the significance of tiles covered by the three
different methods of exploration, we visualize those tiles
touched on top of level maps [32] for the two games.

In experiments with SMW, we demonstrate the tiles covered
by a human player, the RRT gameplay algorithm, and Reveal-
More in Fig. 1. This particular visualization is the first five
levels in SMW, referred to as Yoshi’s Island. These levels
give a comprehensive overview of the game’s mechanics, such
as jumping on enemies, mounting platforms, power-ups, and
finding secrets in the level. In normal gameplay, it is unlikely
that a single playthrough of a level encounters all of the secrets
in a level, giving Reveal-More opportunities to discover them.

This visualization shows that starting RRT (green) from the

1 3 5 7 9 11 13 15 17 19 21 23 25
Wall Clock Minutes

0

2000

4000

6000

8000

10000

12000

14000
To

uc
he

d
Ti

le
s

5 min human, 1 min rrt
5 min human, 5 min rrt
5 min human, 10 min rrt
5 min human, 15 min rrt
5 min human, 20 min rrt
5 min human, 25 min rrt

Fig. 4: Impact of varying amounts of algorithmic gameplay
time versus tiles touched. As the amount of algorithmic play
increases, the difference in tiles touched tapers off.

1 3 5 7 9 11 13 15
Wall Clock Minutes

0

5000

10000

15000

20000

25000

To
uc

he
d

Ti
le

s

5 min human, 15 min rrt
10 min human, 15 min rrt
15 min human, 15 min rrt
20 min human, 15 min rrt
25 min human, 15 min rrt

Fig. 5: Impact of varying amounts of human input time
versus tiles touched. The change in tiles touched as human
input increases also diminishes when more human time is
introduced.

boot state allowed it to cover a wide breadth of tiles that are not
far from the game’s menu (in terms of gameplay time needed
to reach them); RRT provides good breadth of exploration. In
SMW, both level 1–1 and level 1–2 can be accessed without
finishing any other levels. However, RRT alone does not make
much progress deeper into the game beyond level 1–2. In
human gameplay, the human player (magenta) makes much
deeper progress into the game, and yet did not achieve the
same amount of tile coverage in the areas that they have made
progress in compared to algorithmic methods, due to the way
humans play. In contrast to both these methods, Reveal-More
(teal) combines the strengths of both approaches, retaining the
depth reached by the human player while also retaining the
breadth of tiles covered within that depth.

A similar observation can be made for Zelda. In Figure 7,
we demonstrate that Reveal-More (teal) covered more tiles
in comparison to the tiles a human covered (magenta). This

1 3 5 7 9 11
Wall Clock Minutes

0

200

400

600

800

1000

1200

1400

To
uc

he
d

Ti
le

s

15 states
30 states
75 states
150 states
300 states
750 states
1500 states

Fig. 6: Impact of varying the number of states extracted from
a single 25 minute gameplay. Too few states does not give
enough places for RRT to start, too many and it similar to
measuring tiles touched from the human gameplay trace itself.

particular game tester was instructed to walk around until
they discovered the first dungeon, and to complete the game
to the best of their ability. In their gameplay, they were
able to traverse though the available map at the start of the
game, and were blocked from leaving the area shown in
Figure 7. We observe that by replaying from many states in

Fig. 7: A comparison between human and Reveal-More play
in Zelda. Reveal-More covers areas not touched by human
play as well as thoroughly covering areas that a human only
slightly touched.

Fig. 8: A comparison of two different versions of SMW. The top image shows the human gameplay trace in the original
(magenta) and modified (blue) designs while the bottom image shows the amplified coverage discovered with Reveal-More.
Note how certain areas are now reachable due to the reduction in the gravity effect.

their exploration, Reveal-More covered 2X as many tiles as
the person, as well as going to locations that the game tester
did not go through. For example, the woods location near the
red house was explored more by Reveal-More and not at all
covered by the human player. As the RRT algorithm did not
make it out of the red house, we do not see any (yellow) tiles
covered by the algorithm alone.

These results confirm that Reveal-More can quantitatively
and qualitatively amplify the coverage of a game given human
tester data. Through ablation (either removing human or
machine contributions) we can see that this outcome is the
result of amplification rather than independent contributions.

C. Visualizing Design Changes

Simply providing additional coverage of a game does not
directly increase assurances of its quality. Interpretation of the
resulting gameplay data (and system behavior like software
crashes) is required to find and eliminate problems. In this
subsection, we examine Reveal-More’s ability to gather data
that might help reflect on the impact of a game design change.

Using the All-Inclusive Mario Physics Modification
romhack4 we were able to modify the original SMW game
to use different values for the accel_fall_noab and
accel_fall_ab constants which model the effects of grav-
ity. This change reduces gravity by roughly 50%, causing
Mario to fall slower when jumping and to jump higher.
This introduced significant gameplay changes where areas
previously unreachable are now reachable, and enemies that
were one considered environmental doodads are now hazards.5

In this experiment, we asked a volunteer to play the first
world in SMW with and without the gravity modification.
Then we then used Reveal-More to amplify coverage. In Fig. 8
we depict the qualitative differences in tiles touched.

While it is possible to discern that the change applied to
the game had an effect when comparing the two human play
traces, it is not immediately obvious how much of the game

4https://www.smwcentral.net/?p=section&a=details&id=14894
5In levels 1–3 and 1–4 of Yoshi’s Island, there are several red koopas

and winged koopas that hug the top of the screen that are very hard to touch
because Mario cannot jump that high. In the romhack, the lower gravity allows
Mario to touch those koopas if the player jumps at the wrong time.

has been impacted by the change. Visualizing the space of
changes in an amplified coverage created by Reveal-More
allows the designers to more easily judge the effects of the
change at the level of reachable zones rather than just sample
paths (which might be prone to overinterpretation).

In closer examination of Fig. 8, we observe that neither
human playtrace traversed the upper platform at the far left
of the image. In the unmodified version (magenta) the player
cannot get to the upper platform, and in the romhack (blue),
the human player simply did not choose to go there. This
information may lead the designer to conclude that the top left
platform is still not reachable. However, in the figure where
the Reveal-More amplified coverage is visualized, we can see
that the top left platform is now reachable. Another example
is the dark solid blocks near the middle of the image. In the
human playtrace, the player did not choose to visit there,
leaving the question unanswered about whether or not the
design change allowed a player to go there. In the visualization
created with Reveal-More, it is evident that the player can
reach that location after the modification.

V. FUTURE WORK

Immediate future work should examine ways of improving
the usefulness of actions selected during exploration. Algo-
rithms such as Go-Explore and our implementation of RRT
are state-oblivious, leading to diminishing returns as the explo-
ration budget is increased when effectively-equivalent actions
are repeated. The integration of local search with MCTS may
be able to identify more relevant actions. New, high-capacity
exploration methods should aim for linear scaling in coverage
even when exploration budgets are set very high.

Selecting the seeds for exploration with equal spacing from
the human gameplay and then investing an equal exploration
budget in each seed is just one possible strategy for allocating
an that budget over the input data. Future work should consider
ways to prioritize input states, usefully allocate time among
a portfolio of automated exploration strategies, and identify
when to best to allocate additional exploration.

We want to be able to differentiate more design changes
between different builds of a videogame. Since we have an
algorithm that can find more moments in a videogame, we

want to be able to show how two builds of a game have
different potential moments in non-spatial video games. This
extension would be useful for developers and QA testers,
because it would immediately show what differences lie in two
builds. Our current work already demonstrates some promise
in differentiating accessible spaces in SMW, however we want
to consider non-spatial changes such as increasing damage
taken from environmental hazards or hitbox modifications.

In its current iteration, we do not retain any information
between runs of Reveal-More or between individual explo-
ration runs within the process. Future work should consider
ways in which exploration in one part of a game can benefit
exploration in another and, further, how exploration in one
version of a game can benefit exploration of a new version
of a game slightly changed from the first. Modest abilities to
transfer human input from one build to the next could greatly
increase the pace of feedback in game design cycles.

VI. CONCLUSION

In this paper, we demonstrate the effectiveness of the
Reveal-More technique on two culturally significant games,
showing that we are able to explore qualitatively and quan-
titatively more of the game’s space with comparable wall-
clock time spent. Using Reveal-More, we can multiplicatively
amplify the efforts of QA testers to cover more moments in a
videogame that could highlight problems or confirm fixes to
them. Doing so, we augment a tester’s ability to make impacts
for their team.

ACKNOWLEDGEMENTS

We would like to thank Eugene Chou, Farhan Saeed, and
Mitchell Pon who equally contributed the human gameplay
traces used in this paper.

REFERENCES

[1] A. M. Smith, M. J. Nelson, and M. Mateas, “Computational Support
for Play Testing Game Sketches,” in Proc. of the AAAI Conference on
Artificial Intelligence in Interactive Entertainment (AIIDE), 2009.

[2] M. J. Nelson, “Game metrics without players: Strategies for understand-
ing game artifacts,” in Proc. of the Workshop on Artificial Intelligence
in the Game Design Process (IDP) at the AAAI Artificial Intelligence
and Interactive Digital Entertainment Conference (AIIDE), 2011.

[3] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M.
Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds,
D. Horgan, M. Kroiss, I. Danihelka, J. Agapiou, J. Oh, V. Dalibard,
D. Choi, L. Sifre, Y. Sulsky, S. Vezhnevets, J. Molloy, T. Cai, D. Budden,
T. Paine, C. Gulcehre, Z. Wang, T. Pfaff, T. Pohlen, Y. Wu, D. Yogatama,
J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, C. Apps,
K. Kavukcuoglu, D. Hassabis, and D. Silver, “AlphaStar: Mastering the
Real-Time Strategy Game StarCraft II,” 2019.

[4] Z. Zhan, B. Aytemiz, and A. M. Smith, “Taking the scenic route:
Automatic exploration for videogames,” Proc. of the 2nd Workshop
on Knowledge Extraction from Games co-located with 33rd AAAI
Conference on Artificial Intelligence (AAAI 2019), 2018.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 02 2015.

[6] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

[7] G. Xiao, F. Southey, R. C. Holte, and D. Wilkinson, “Software testing
by active learning for commercial games,” in AAAI 2005, pp. 898–903,
2005.

[8] J. Collins, “Conducting in-house play testing,” Gamasutra, July 1997.
[9] D. Wilson, “Quality quality assurance: A methodology for wide-

spectrum game testing,” Gamasutra, Apr. 2009.
[10] M. Burghart, “Evolving test in the video game industry,” Gamasutra,

June 2014.
[11] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,

“Deep reinforcement learning that matters,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[12] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “Rl2: Fast reinforcement learning via slow reinforcement
learning,” CoRR, vol. abs/1611.02779, 2016.

[13] T. Schaul, “A video game description language for model-based or inter-
active learning,” in 2013 IEEE Conference on Computational Inteligence
in Games (CIG), pp. 1–8, IEEE, 2013.

[14] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and
S. M. Lucas, “General video game AI: a multi-track framework for
evaluating agents, games and content generation algorithms,” arXiv
preprint arXiv:1802.10363, 2018.

[15] C. Guerrero-Romero, A. Louis, and D. Perez-Liebana, “Beyond playing
to win: Diversifying heuristics for GVGAI,” in 2017 IEEE Conference
on Computational Intelligence and Games (CIG), pp. 118–125, IEEE,
2017.

[16] C. M. Shultz, Game Testing All In One. Thomson Course Technology
PTR, 2005.

[17] R. Gillet, “Inside the ’dream job’ of a video game tester,” Business
Insider, June 2015.

[18] M. Lachance, “How much people, time and money should QA take?
part 1,” Jan. 2016.

[19] M. Huo, J. Verner, L. Zhu, and M. A. Babar, “Software quality and agile
methods,” in Proc. of the 28th Annual International Computer Software
and Applications Conference, 2004. COMPSAC 2004., pp. 520–525,
IEEE, 2004.

[20] K. Alemerien and K. Magel, “Examining the effectiveness of testing
coverage tools: An empirical study,” International journal of Software
Engineering and its Applications, vol. 8, no. 5, pp. 139–162, 2014.

[21] J. Schreier, “Quality Assured: What It’s Really Like To Test Games For
A Living,” Jan. 2017.

[22] J. Pfau, J. D. Smeddinck, and R. Malaka, “Automated Game Testing with
ICARUS: Intelligent Completion of Adventure Riddles via Unsupervised
Solving,” in Extended Abstracts Publication of the Annual Symposium
on Computer-Human Interaction in Play (CHI Play), pp. 153–164, 2017.

[23] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Evolving
personas for player decision modeling,” in 2014 IEEE Conference on
Computational Intelligence and Games, pp. 1–8, IEEE, 2014.

[24] C. Holmgård, M. C. Green, A. Liapis, and J. Togelius, “Automated
playtesting with procedural personas through MCTS with evolved
heuristics,” arXiv preprint arXiv:1802.06881, 2018.

[25] A. Nantes, R. Brown, and F. Maire, “A framework for the semi-automatic
testing of video games,” in Proc. of the AAAI Conference on Artificial
Intelligence in Digital Entertainment (AIIDE), 2008.

[26] Z. Zhan and A. M. Smith, “Retrieving game states with moment
vectors,” in In Proc. of the Workshop on Knowledge Extraction from
Games at the Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[27] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A.
Efros, “Large-scale study of curiosity-driven learning,” arXiv preprint
arXiv:1808.04355, 2018.

[28] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune,
“Go-explore: a new approach for hard-exploration problems,” CoRR,
vol. abs/1901.10995, 2019.

[29] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” tech. rep., Iowa State University, 1998.

[30] Nintendo, Super Nintendo Entertainment System, “Super Mario World,”
1990.

[31] Nintendo, Super Nintendo Entertainment System, “The Legend of Zelda:
A Link To The Past,” 1991.

[32] Mike, “Mike’s RPG center,” 2000–2019.

