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I. ABSTRACT

Abstract—An increasing number of algorithms in deep rein-
forcement learning area creates new challenges for environments,
particularly, for their comprehensive analysis and searching
application areas. The key purpose of this article is to provide
an extensible environment for researches. We consider a Match-3
game, which has simple gameplay, but challenging game design
for engaging players. The article provides metrics for evaluation
of agents and corresponding baselines in different scenarios.
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II. INTRODUCTION

Releases of new environments that would be suitable for
reinforcement learning tasks are much rarer than releases
of new algorithms. In addition to limiting the possibilities
for experimentation and testing of algorithms, this may limit
researchers in their search for new algorithms, because in
developing them, researchers keep in mind the existing set
of environments or tasks from the real world. Because of this,
developing new environments is an important task, especially
if these environments are connected to the real world. Envi-
ronments in which it is possible to conduct experiments with
a high level of control are in high demand to put forward
hypotheses about the algorithm and then test them.

Match-3 is a tile-matching game where a player manipulates
tiles on a board in order to make them disappear according to a
matching criterion. In many tile-matching games, that criterion
is to place a given number of tiles of the same type so that
they adjoin each other. Match-3 games become very popular
last years, they are top grossing in AppStore and Google Play,
their success is due to the simple rules and a short session.
Such games are not demanding on player’s skills, but level-
design is a big challenge for developers because they should
implement new levels as soon as possible. Besides “beauty”
and “novelty” of new levels, the difficulty is the key variable
in players retention and conversion to payers.

As the complexity of the level is necessary to know before
its official launch there are so-called playing departments that
test the complexity of the level. The duration of the test is
a few days. The main alternative to this is a simulation [1],
which takes hours, and the game does not necessarily look
like a game of real people. Taking into account the described
disadvantages of special departments and simulations, the
solution may be reinforcement learning.

The first contribution is an open-source environment with
gym [2] interface which is easy to use and default 30 levels for
experiments. The second contribution is providing baselines of
state of the art algorithms performance in model-free setting
on the default levels and their augmented versions.

III. REINFORCEMENT LEARNING OVERVIEW

A. General Overview

Two key characters of RL are an agent and an environment.
The agent can interact with the environment, which can change
due to the agent’s actions or on its own.

Every step the agent observes some state (st) of the en-
vironment (not necessary entire state is accessible). For the
given state agent can choose any action (at) from action
space leading to a new state of the environment (st+1) and
giving some reward (rt). These four objects compose transition
(st, at, st+1, rt).

The sequence of states and actions is a trajectory:

τ = (s0, a0, s1, a1, ...), (1)

where s0 is sampled from a state-start distribution. To choose
the action for a given state, the agent uses a policy, which can
be deterministic or stochastic. In deep reinforcement learning
we deal with parameterized policies:

at = µθ(st) (2)
at = πθ(·|st) (3)

The goal of the agent is to maximize cumulative reward over
a trajectory. Finite-horizon undiscounted return is the sum of
rewards over a fixed number of steps, on the contrary infinite-
horizon discounted return is the sum over an infinite number
of steps, but each reward is discounted by factor γ:

R(τ) =

∞∑
t=0

γtrt. (4)

The discount rate determines the present value of future
rewards: a reward received t time steps in the future is worth
only γt times what it would be worth if it were received
immediately. Mathematically, if γ < 1, the infinite sum has a
finite value as long as the reward sequence is bounded [3].
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B. Application to Match-3

For setting reinforcement task for Match-3 game we should
describe key concepts: state, action space, trajectory, reward,
and return. But we will start from the description of a level,
which is specific to the environment.

a) Level: The main element of the game is the level,
which is a board template and the number of shapes on the
board. The template is a map which allows determining height
and width of the board and coordinates of the fixed shapes.
After filling the template with different shapes (number of
shapes is an important part of the level) we get a final board.

The dependence of the level’s complexity on these param-
eters is not always obvious: the bigger the size of the table
implies the greater the choice for action, the more fixed figures
can both simplify the level and complicate it, the greater the
number of different figures will always complicate the level.

b) State: The current state of the game in Match-3 is a
game board, which consists of movable and fixed shapes. Size
of the board is adjustable, the number of shapes on the board
is controllable too. That allows us to manage the difficulty of
the game for our agent.

c) Action space: The core mechanic of the game allows
to swap two neighbors shapes on the board, diagonal moves
are prohibited. Match-3 environment can be classified as
model-based if the agent knows possible moves which lead
to deleting shapes and as model-free if not, that difference
appears as two possible action spaces.

Model-based action space Since the environment is simple
it is possible to find successful moves by brute force and
delegate choice one of them to an agent.

Model-free action space Most of the actions won’t change
the state because only successful moves are allowed, therefore
in model-free setting agent should find actions. For research
purpose agent can try to move fixed figures too, it does not
make any effect on the board, but step will be taken into
account.

d) Trajectory: A trajectory is a sequence of the game
board states and moves of shapes on the board. There is
important to emphasize, that the environment in Match-3 game
is stochastic because each next state generated randomly from
previous state and deleted shapes. A special case is a state
when there are no possible moves which will cause deleting
shapes, in this case, all the shapes on the board will be
shuffled.

e) Reward: For the current state, the action just is taken
and the next state of the board reward is the number of deleted
shapes. Each action of the agent should lead to reward, because
the game mechanic does not allow other moves, therefore
key role plays planning. For a model-free setting, it is more
reasonable to allow the agent to try to make a wrong move and
spend its attempt because otherwise there will be no need to
search for a move. An important feature is extra-reward from
the environment (cascade matching): after deleting shapes on
the board new ones are created and they can form a 3-shaped
sequence which leads to deleting, that mechanic allows to
agent exploit stochastic nature of the environment.

f) Return: Real mobile or web applications consist of
finite-horizon games with different additional goals, for e.g.,
collect N elements of particular shapes or collect Z shapes in
30 seconds (N steps), but core mechanics remain the same:
move shapes in sequences for deleting. A goal of the current
implementation of the environment is the sum of reward
collected after 100 steps.

IV. RELATED WORK

A lot of environments are available in python library gym
[2], from Atari 2600 to robotics and . The interface of this
module is easy to use, it is widely-used software among
researches nowadays.

DeepMind Control Suite is a set of continuous control
tasks with a standardized structure and interpretable rewards
[4]. AI safety gridworlds is a suite of reinforcement learning
environments illustrating various safety properties of intelli-
gent agents [5]. [6] is an environment for studying agents in
competitive multi-agent game, [7] is another one for multi-
agent cooperative game.

[8] is an environment inspired by the human game genre
of MMORPGs (Massively Multiplayer Online Role-Playing
Games, a.k.a. MMOs), this environment is persistent and
supports a large and variable number of agents.

CoinRun environment [9] is another environment which pro-
vides a metric for an agent’s ability to transfer its experience
to novel situations.

Key research in Match-3 agents are King’s projects [1], [10],
[11], [12]. A big difference in current research and King’s is
that we are focused on the general approach of playing Match-
3 game when King tries to predict average human success rate
(AHSR) from metrics of an agent.

The first approach in [1] was based on Monte-Carlo Tree
Search with Upper Confidence Bound selection strategy [13],
which outperforms heuristics and game testers. The biggest
drawback of MCTS is the duration of prediction since simu-
lating of game moves is very time-consuming.

In [10] authors used deep neural network (DNN) to predict
next move from gameplay data of MCTS-bot. DNN allows
to compute AHSR very fast and test level difficulty real-
time by game designers. In [11] instead of MCTS-bot game
data authors used actions of real users with convolution
neural network, which gives the best performance in AHSR
prediction in accuracy and prediction time. Key disadvantages
of CNN based method is collecting data, because if a new level
is very different from others or contains a new feature neural
net will not have good performance on states from that levels,
then the only thing that is required for MCTS-based approach
is the set of possible moves, moreover for the most simple
strategy with random actions only actions space is required.
But as soon as state-actions data of real players is collected
CNN-based approach is possible.

V. ENVIRONMENT AND SCENARIO

For our purposes, we developed a new Match-3 environment
with commonly used gym interface [2] which is well known
among RL researchers.



The current implementation contains 30 levels of different
complexity. Users can add new levels by themselves by
creating a template, which will show where to put the fixed
figures and the number of different figures on the table.

A. Scenarios

a) Scenario 1. Default levels: In the first scenario, we
will test the obtained agents on the whole set of default levels.
The table size, in this case, is 9x9, the minimum number of
figures on the table is 4, the maximum is 7.

b) Scenario 2. Rotated levels: In the last scenario, in
order to evaluate the generalization ability of the trained
agents, we will run the same tests on the rotations of default
levels. Each level was rotated three times on 90 degrees and
then we collected unique templates.

B. Policy tests

Below, we enumerate possible tests of an agent, which acts
in the described environment.

a) Cumulative reward: The classic method is calculation
mean and median cumulative reward on episodes.

b) First correct move: By sorting the algorithm’s outputs
(q-values or probabilities of actions) for one state we can find
the first successful move to evaluate the ability to search for
moves.

c) Reward of first correct move: After finding the first
correct move we can accumulate rewards from these actions
for additional study. The mean and median reward of success-
ful moves can differentiate actions by worthiness.

Length of the test episode is equal to 100. The number of
iterations for the tests is equal to 1000.

VI. PROPOSED APPROACH

For describing our approach we start with a representation
of input state and then give an architecture of the encoder
network.

A. Game state

Since Match-3 game board is similar to other board games
like chess, shogi and go we adapted input for the network
from AlphaZero [14]. Each game has N shapes on the
board, therefore our two-dimensional board transformed into
to W ×H ×N tensor with own dimension for each type of
shape on the board. Due to the fact that each level has its own
size, all levels are padded to the maximum board size with
fixed figures. For the second scenario with immovable shapes
the first dimension of the state-tensor reserved for immovable
shapes mask. No other information is provided.

B. Architecture

Deep neural network architecture consists of two main parts:
an encoder network and dense layers specified for algorithms
(actor and critic parts).

Figure 1. Dynamics of training
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a) Encoder: An encoder architecture includes only one
depthwise separable convolution [15] with 3x3 filter and
ReLU activation. This type of convolution exploits the nature
of Match-3 games. For all algorithms feature extractor was
trained from scratch.

We trained three reinforcement learning algorithms: DQN
[16], PPO [17] and A3C [18]. Intermediate layers specific to
each algorithm have ReLU as an activation, size of hidden
layers is equal to 128. For detailed implementation see RLlib
[19].

VII. EXPERIMENTS

Only Asynchronous Advantage Actor-Critic showed notable
performance, other algorithms work worse than random policy.

The algorithms were trained for 4 hours on 16 CPUs (76437
episodes for A3C, 66840 for PPO and 4560 for DQN). The
plot of the dynamics of the average cumulative reward per
episode for the second scenario is on the figure 1.

a) First Scenario: An agent trained by A3C algorithm
outperforms random policy twice in searching moves, but
reward per successful move is almost the same. Asynchronous
Actor-Critic Agents was additionally trained for 14 hours, but
the mean rank metric was still decreasing. The maximum
return remained virtually unchanged during the training for
both A3C and PPO and remained at 80, while only an A3C
agent made at least one move in the worst case, the others did
not make successful moves at all.

Table I. ALGORITHMS PERFORMANCE FOR MATCH-3 GAME IN THE
1ST SCENARIO

Rank Reward
Mean Median Std Mean Median Std

Random 14.92 11 15.41 5.33 3 4.24
DQN 14.05 9 15.44 5.08 3 3.78
PPO 16.93 13 15.58 5.2 3 3.75
A3C 7.5 4 9.61 5.28 3 3.66

b) Second scenario: For the second scenario, we tested
policies on rotated board as an examination of generalization.
Metrics are on table II. The metrics of the A3C agent are
almost the same, that means the agent learned how to play
the game instead of learning how to play a limited number of



Table II. ALGORITHMS PERFORMANCE FOR MATCH-3 GAME IN THE
2ND SCENARIO

Rank Reward
Mean Median Std Mean Median Std

Random 15.55 10 16.37 3.88 3 5.23
DQN 14.68 9 16.00 3.84 3 5.14
PPO 16.42 12 15.16 4.15 3 5.29
A3C 7.76 4 10.63 3.77 3 5.38

levels in the game. The maximum cumulative return of agents
differs from the first scenario, this time A3C surpassed PPO
by 32.5% (155 vs. 117). The minimum cumulative return is
the same as in the first scenario.

The most important part of the algorithm is an encoder
because it can be used in other algorithms. Most importantly,
the feature maps it produces better reflect the behavior of
the real human who needs to visually assess the board and
then choose the right move. When approaching the task as
a model-based environment, we would either not have an
encoder (MCTS with UCB1 [20]) or we would have one that
evaluates already known moves as it happened when using
DQN for Go [21].

Despite the fact that the model-free setting is closer to the
human condition, a trained agent does not necessarily have a
success rate as the human, so it is necessary to additionally
process such indicators. Also, in order to launch new levels,
the behavior of certain players clusters may be more important:
beginners, experienced, paying, very paying.

VIII. CONCLUSION AND FUTURE WORK

This article presented the open source environment to study
deep reinforcement learning similar to the one played by
millions of people every day. The article described the Match-
3 game in terms of reinforcement learning. Experiments have
been carried out in the model-free setting for 30 default
levels and their rotations. Future improvements of the Match-
3 environment are goal-oriented levels, e.q. achieving some
score in 100 moves and deleting a fixed number of specific
figures in 100 moves, new figures with a more complex
mechanism.

ACKNOWLEDGMENT

The work was supported by the Russian Science Foundation
under grant 17-11-01294 and performed at National Research
University Higher School of Economics, Russia. The research
continues experiment studies on knowledge representation in
Deep RL environments Pong [22] and VizDoom [23].

REFERENCES

[1] E. R. Poromaa, “Crushing Candy Crush,” Tech. Rep. [Online]. Available:
http://kth.diva-portal.org/smash/get/diva2:1093469/FULLTEXT01.pdf

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” 2016.

[3] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[4] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. De, L. Casas,
D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, T. Lillicrap, and
M. Riedmiller, “DeepMind Control Suite,” Tech. Rep., 2018. [Online].
Available: https://arxiv.org/pdf/1801.00690.pdf

[5] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq,
L. Orseau, and S. Legg, “AI Safety Gridworlds,” nov 2017. [Online].
Available: http://arxiv.org/abs/1711.09883

[6] N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F.
Song, E. Parisotto, V. Dumoulin, S. Moitra, E. Hughes, I. Dunning,
S. Mourad, H. Larochelle, M. G. Bellemare, and M. Bowling, “The
Hanabi Challenge: A New Frontier for AI Research,” feb 2019.
[Online]. Available: http://arxiv.org/abs/1902.00506

[7] S. Liu, G. Lever, J. Merel, S. Tunyasuvunakool, N. Heess, and
T. Graepel, “Emergent Coordination Through Competition,” feb 2019.
[Online]. Available: http://arxiv.org/abs/1902.07151

[8] J. Suarez, Y. Du, P. Isola, and I. Mordatch, “Neural MMO: A Massively
Multiagent Game Environment for Training and Evaluating Intelligent
Agents,” mar 2019. [Online]. Available: http://arxiv.org/abs/1903.00784

[9] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman,
“Quantifying Generalization in Reinforcement Learning,” dec 2018.
[Online]. Available: http://arxiv.org/abs/1812.02341

[10] S. Purmonen, “Predicting Game Level Difficulty Us-ing Deep
Neural Networks,” Tech. Rep., 2017. [Online]. Available: http:
//kth.diva-portal.org/smash/get/diva2:1154062/FULLTEXT01.pdf

[11] P. Eisen, S. F. Gudmundsson, and J. Dowling, “Simulating Human
Game Play for Level Difficulty Estimation with Convolutional Neural
Networks,” Tech. Rep. [Online]. Available: http://kth.diva-portal.org/
smash/get/diva2:1149021/FULLTEXT01.pdf

[12] S. F. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen,
B. Kozakowski, R. Meurling, and L. Cao, “Human-Like Playtesting
with Deep Learning,” in 2018 IEEE Conference on Computational
Intelligence and Games (CIG). IEEE, aug 2018, pp. 1–8. [Online].
Available: https://ieeexplore.ieee.org/document/8490442/
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