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Abstract—As a common but critical module, cache manage-
ment plays more and more important roles in modern videos
games, especially for the games on mobiles whose hardware is
weaker than the desktop computers. Current cache management
policies typically resort to heuristics designed for the common
access patterns, which cannot fully utilize the information in
mobile games and may fail on the complex access patterns in
it. In this paper, we propose a future-oriented cache manage-
ment (FOCM) to cope with the cache management problem
in mobile games’ typical scenarios. FOCM leverages a dual
Markov model to bridge the cache management’s decision-
making process and the behavioural process of the players in
games, resulting in modelling the potential access requests in
the future more accurately. Based on this model, we propose
two cache management methods based on imitation learning and
reinforcement learning, with each one suitable for different types
of games. The experimental results in both the cache simulation
environment and the industrial massively multiplayer online role-
playing game (MMORPG) demonstrate the effectiveness of the
proposed methods.

I. INTRODUCTION

In recent years, the game industry has developed vigorously
[1], [2], in which the mobile games account for nearly half
of the market share [3]. Generally speaking, most mobile
games run on mobile phones, whose memories are smaller
than desktop or laptop computers. Meanwhile, the 3D models
used in modern mobile games are more and more complex,
which may result in large latency for loading the models when
the game scene is initializing or changing, especially on some
old phones. A widely used solution is to introduce the cache
system and decrease the 3D model loading latency by storing
the most popular models in the cache from which the game
can access data faster than from the lower-level storage. On
the other hand, the game quests system is the footstone of a
modern game, which guides players to know the characters
and the game world. A typical example in a massive online
role-playing game (MMORPG) is shown in Fig. 1. The player
is required to accomplish this quest with four steps: accepting
the quest, finding the related non-player character (NPC),
talking to the NPC and accomplishing the quest. The game
quests system is an important sub-module for mobile games
nowadays and the number of quests in the game is quite a
few, especially in MMORPGs. Thus an obvious reduction of
model loading latency in quests scenarios can also improve
the player’s overall game experience significantly.
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Fig. 1. A typical example of accomplishing a quest in a mobile MMORPG.

As the capacity of the cache is limited, correctly selecting
what data to store in the cache is critical for reducing the
latency. Prior cache management methods usually rely on
manually-engineered heuristics to capture the most common
cache access patterns, such as evicting the least frequently
used (LFU) or least recently used (LRU) data. These data-
independent methods are simple and applicable to various
kinds of caches. However, because of the lack of adaption to
the game scenarios, these methods are commonly not capable
of achieving high performance in mobile games. As illustrated
in Fig. 1, the players are requested to complete the sub-tasks
in a fixed order in quests scenarios, and thus there exist some
implicit behaviour patterns in the process of accomplishing
a quest. These behaviour patterns imply the data (e.g., 3D
models) may be used next, which is important for the cache
replacement arrangement.

In this paper, we propose a future-oriented cache man-
agement (FOCM) framework for the game quests system,
which improves the cache scheduling according to the implicit
behaviour patterns of the players in games. FOCM bridges
the players’ behaviours and the cache management’s decisions
with a dual Markov model, which consists of two Markov
decision processes (MDPs). The visible MDP is the decision-
making process of the cache management that determines
what data should be stored in the cache. The hidden MDP
is the behavioural process of the players, whose different be-
haviours leading to various kind of data requests. FOCM also
includes two cache management methods based on imitation978-1-6654-3886-5/21/$31.00 ©2021 IEEE



learning (IL) and reinforcement learning (RL), with each one
corresponding to the situations where the transition probability
distribution between the hidden MDP and the visible MDP is
explicitly accessible or not, respectively. Besides, unlike the
previous methods that rely on accessing the histories of the
data (such as LRU, LFU), our methods try to infer the data
that are most likely to be used in the future by learning the
behaviour patterns of the players directly or indirectly.

The main contributions of this paper are summarized below:
• We propose a novel cache management framework which

is optimized for the quests system scenarios in mobile
games. Our framework connects the cache management’s
decisions with the player’s behaviours in a dual Markov
model and leverages the implicit patterns contained in the
player behaviours to increase the cache hit rate;

• We propose two cache management methods based on
different learning paradigms, i.e., imitation learning (IL)
and reinforcement learning (RL), with the former one for
learning the player’s behaviour directly and the later one
for learning indirectly;

• Experimental results in both the open-source simulated
game environment and the real industrial MMORPGs
confirm the effectiveness of our modelling method as well
as the cache management methods.

II. BACKGROUND

A. Cache Management

The cache is a faster data storage system, which plays a
critical role in improving the systems in various domains, such
as content delivery infrastructures, web servers and terminal
devices. The cache has a fixed storage capacity C and we
assume that every piece of data uses the same cache size. The
data in the cache can be defined as Dc = {d1, d2, ..., dc}, di
means the ith data and c ≤ C. The requested data can be read
from the cache if it exists in the cache, this is called a cache
hit. Otherwise, this is a cache miss, the requested data need
to be read from a slower data storage.

As we all know, the cache is commonly faster than the
lower-level storage but the capacity is usually limited, and the
goal of cache management is to reduce the overall data reading
latency by storing proper data in the faster cache. The main
work of the cache management can be divided into three steps:
1) Hit check: comparing the requested data with the data in
the cache to determine whether the cache hits; 2) Caching
decision: deciding whether to put the requested data into the
cache if the cache misses; 3) Location selection: selecting a
proper location to put the requested data if the cache misses
and the requested data needs to be stored in the cache.

B. Belady’s Policy

Generally speaking, the third step, i.e., the cache replace-
ment, is the most important one in cache management, and
it is also the focus of research. In the most ideal situation
when the list of all future requested data is known, there exists
a cache replacement policy named Belady’s policy [4]. This
policy will compute the reuse distance dis(di) of each data

di in the cache, which is defined as the number of the future
requests until the next requested data is di. Then the data that
has the highest reuse distance will be replaced because it will
be used furthest in the future. In Belady’s policy, the window
size of the future requested data list is important for the final
performance, and the larger the window size, the better the
effect of this policy.

C. Markov Decision Process

A Markov decision processes (MDP) is a discrete-time
stochastic control process, generally expressed as a four-tuple
(S,A, P,R). S is the state space, A is the action space,
P (st+1 = s

′ |st = s, at = a) is the probability that action
a ∈ A in state s ∈ S at time t will lead to state s

′ ∈ S at
time t+ 1 and R(s, s

′
) is the reward received from the state

s to the state s
′
.

D. Imitation Learning

Imitation learning refers to learning from the examples
provided by the instructor, generally the provided exam-
ple is decision data of human experts like {τ1, τ2, ..., τm}.
Each decision contains a state and action sequence τi =<
si1, a

i
1, s

i
2, s

i
2, ..., s

i
n >, and all state-action pairs are extracted

to construct a new data set D = {(s1, a1), (s2, a2), ...}. Then
making the state as feature and the action as label, we can use
supervised learning algorithms to learn a model imitating the
human behaviour.

E. Reinforcement Learning

In recent years, reinforcement learning [5]–[9] has been
successfully applied to sequential decision-making problems.
The reinforcement learning problem is modelled as an MDP,
and the goal is learning a policy π : A × S → [0, 1]
to maximize the expected cumulative reward. The learning
process is the agent continuously performs actions in the
environment under current policy, and gets a reward from the
environment to adjust the policy until it finds a policy that
can maximize the cumulative reward. This process allows the
agent to keep trial and error in the environment, accumulate
experience, and find the optimal policy. Unlike supervised
learning algorithms, reinforcement learning does not require
large labelled data sets.

III. METHODOLOGY

In this section, we first introduce our FOCM framework for
solving the cache management problem. Then, we present two
specific methods based on the proposed model.

A. Future-Oriented Cache Management

There are three main components in the caching system: the
cache, the requested data and the cache management method.
The cache has a fixed storage capacity C and the data in
it are denoted as Dc. The request list consists of a series of
requested data, represented by Req = {req1(d1), req2(d2)...},
where reqi(dj) means the ith request calls for the jth data.
For brevity, we use reqi represents requested data in the later
sections. And for each given reqi, the cache management
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Fig. 2. The framework of the future-oriented cache management (FOCM). The model consists of two MDPs: the visible MDP (cache management decision-
making process) and the hidden MDP (requester behavioural process). And the T v

h represents the transition probability distribution between the hidden MDP
and the visible MDP.

method needs to process it following three steps introduced
in Section II-A.

For the caching system illustrated above, we propose a
future-oriented cache management framework dubbed FOCM
to cope with the cache management problem in typical sce-
narios of mobile games. The model allows for the behaviours
of the players because the reqi is closely bound up with
the player’s behaviour in the game world. The framework
of FOCM is illustrated in Fig. 2. Our model leverage a duel
Markov model to bridge the decision-making process of the
cache management and the behavioural process of the players
in games.

The hidden MDP is the behavioural process of the players,
i.e., (Sh, Ah, Rh, Ph), shi ∈ Sh represents the state of the
player at timestep ti, ahi ∈ Ah is the behaviour of the player
and Ph is the transition probability. The reward Rh is 1 when
the player accomplishes the quest and 0 otherwise. The cache
does not contain the player behaviour information explicitly
thus the behavioural process of the player is defined as a
hidden MDP.

The visible MDP is the process that the cache management
operates the cache according to the current status of the cache
and the requested data, that is, (S,A, P,R). Here, si ∈ S =
[sci , s

d
i ] represents the combination of sci and sdi , with each

one corresponding to the cached data and the requested data,
respectively. The action ai ∈ A is the operation of the caching
system, such as replacing data from the cache or putting data
into the cache. P and R are the transition probability and the
reward for the visible MDP respectively, with the latter one
related to the hit rate.

To understand our framework more easily, we first assume
that the transition probability T v

h between the hidden MDP
and the visible MDP is deterministic. The player and the
caching system are linked together during the process of data

requesting and data reading, which is illustrated in Fig. 2.
In the game, the player will call for data in different states
such as encountering monsters or skill special effects. The reqi
generated based on the state of the player as follows:

{req1, req2, ..., reqo} = f(shi ) (1)

where f(·) is the function to calculate the data need to be
requested in player’s visual domain and o ≥ 0. For example,
the player generate requested data (req1(d1), req2(d2)) in sh1
and no request in sh2 as shown in Fig. 2. The sdi is the reqi
which occurs cache misses:

sdi = h(reqi, s
c
i ) (2)

h =

{
h1, reqi /∈ Dc,

∅, reqi ∈ Dc.
Dc = k(sci ) (3)

h1(reqi) = reqi (4)

where k(·) is the map from the state of the cached data to
the Dc, h(·) is the function for hitting check and there will
be no map from reqi to sdi when the cache hits. For example,
when req5(d3) is coming, the d3 can be found in the cache,
so the cache hit occurs and there is no corresponding sdi in
this situation as shown in Fig. 2. The sci is the data storage
status in the cache, which depends on the si−1 and ai−1:

sci = g(si−1, ai−1) (5)

where g(·) means doing the action ai−1 on the state si−1, the
action is putting the requested data in the cache or not. The
process will be clearer in conjunction with Fig. 2. d1, d3, d7, d4
are all cache misses, so they have the corresponding state
s1, s2, s3, s4. And a1, a2, a4 denote actions of putting d1, d3
and d4 into the cache. Besides, if the cache management
method thinks that the requested data will not be required in



the future, it will not put this data into the cache even when a
cache miss happens. The action a3 on data d7 is an example
of this situation. The relation between the hidden MDP and
visible MDP as follows:

si = [sci , s
d
i ]

= [g(si−1, ai−1), h(reqi, s
c
i )]

= [g(si−1, ai−1), h(f(s
h
i ), g(si−1, ai−1))]

(6)

And if the transition probability is not deterministic, the
P (si|si−1, ai−1) is defined as follows:

P (si|si−1, ai−1) = P (sci |si−1, ai−1) · P (sdi |si−1, ai−1)
= P (sci |si−1, ai−1) · P (sdi )
= P (sci |si−1, ai−1) · P (sdi |shi , sci )

(7)

where P (sdi |shi , sci ) is the transition probability between the
hidden MDP and visible MDP, we defined it as T v

h .
Good cache management can perform proper operations on

the cache, which can improve the overall hit rate, reduce
the frequency of data replacement in the cache, and speed
up the reading speed. Based on the FOCM framework, the
cache management problem will be transformed to finding
an optimal action ai at the state si. And in MMORPGs, the
current destination of the player is closely tied to his quests,
and thus many players’ behaviour patterns will be similar. Our
FOCM framework takes the player’s behaviours into account
during the modelling process, which can help the cache
management to make decisions by learning the behaviour
patterns of the players. To be concrete, FOCM includes two
cache management methods based on the behaviour of the
player, which are imitation learning based (IL-based) method
and reinforcement learning based (RL-based) method.

B. Imitation Learning Based Method

The imitation learning based (IL-based) method predicts the
future behaviours of the player first by imitation learning from
a data set including a large number of the players’ historical
behaviours and then inferring the list of the future requested
data when the T v

h is explicitly accessible. Finally, the Belady’s
policy can be used to make decisions according to the future
requested data list and the current cache status.

The IL-based method imitates the player’s behaviours to get
a future requested data list indirectly. The future requested
data list can also be got by directly predicting the future
requested data based on a great deal of historical requested
data. However, in complex systems such as mobile games, the
compounding errors [10] caused by predicting the requested
data list are much more serious than predicting the player’s
future behaviours, which is shown in the experiments in
Section IV-B. So we design our IL-based method upon the
behaviours of the player to get the future requested data more
accurately.

We get many players’ behaviour list {τ1, τ2, ..., τn},
where τi means a player’s behaviour list. Every be-
haviour list includes a sequence of states and actions,

that is, τi =< shi1 , a
hi
1 , s

hi
2 , a

hi
2 , ..., s

hi
m >. We ex-

tract all state-action pairs to construct a new data set
{(sh1 , ah1 ), (sh2 , ah2 ), (sh3 , ah3 ), ...}. Then we can imitate the
player behaviours as follows:

ahi = Fplayer(s
h
i ) (8)

where Fplayer(·) is a non-linear function for predicting the
behaviour of the player ahi based on the current state shi
in the game. The Fplayer(·) is usually modelled with neu-
ral networks. Then, we use the predicted behaviour to get
the next state shi+1 according to the transition probability
Ph(s

h
i+1|shi , ahi ) in the player behaviour MDP (hidden MDP),

and the next action ahi+1 can be obtained through inputting the
shi+1 into Fplayer(·). The subsequent states and actions can be
obtained in the same manner and finally we can get the whole
behaviour track of the player. At last, we can infer the future
requested data list according to the T v

h .
After obtaining the future requested data list, we can use

the planning method to operate the current cache. We use
Dc = (dc1, d

c
2, ..., d

c
i , ..., d

c
c) to denote the data in the cache,

dcurrent denotes the current requested data and Dfr =
(dr1, d

r
2, ..., d

r
j , ..., d

r
m) denotes the future requested data by

prediction. There are two cases in the planning method. On
the one hand, if dcurrent not in Dfr, dcurrent should not be
put into the cache, because the data will not be requested in
the future. On the other hand, we use Belady’s policy to find
the data to be replaced in the cache. Because our window size
of the predicted requested data list is not infinite, so not every
data in the cache can compute the reuse distance dis(d). In
this situation, the reuse distance is defined as +∞. Based on
dis(d), the data to be replaced in the cache can be got as
follows:

dreplace = arg max
d∈Dcurrent∪Dc

dis(d) (9)

where dreplace means the data need to be replaced. If
dreplace = dcurrent, dcurrent should not be put into the cache.
Otherwise, dreplace in the cache will be replaced by dcurrent.

C. Reinforcement Learning Based Method

As the decision-making process of the cache management
is a sequential decision-making problem, it is appropriate to
use the reinforcement learning based (RL-based) method to
find the optimal policy to manage the cache.

Using reinforcement learning, we take the cache manage-
ment module as an agent, which learns to perform different
operations on the cache in different states. Formally the cache
management process is defined by G = 〈S,A, P,R〉, where
S denotes the state space, A denotes the action space, P
denotes the state transition function and R denotes the reward
function. The state s ∈ S including the information of the
player, the requested data and the cache status. The action
space is A = {0, 1, 2, ..., C}, where C is the cache capacity,
and the size of the action space is C + 1. When the selected
action is 0, it means the requested data should not be put into
the cache. When action j ∈ {1, 2, ..., C} is selected, it means
the requested data should be put into the cache in the jth
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location if this location is blank, or replace the data in the jth
location if this location is not empty. We define the reward
function as follows:

R = Rimmediate +Rfinal (10)

Rimmediate =

{
1, hit,

0, otherwise.
(11)

Rfinal = α× hitrate (12)

where Rimmediate is the immediate reward, Rfinal is the final
reward and α is a hyper-parameter. The immediate reward will
take effect at every step and will be 1 if the cache hits and
0 otherwise. The final reward will be activated only at the
end of one episode and its value is tied to the episode overall
hit rate. The policy π is trained to achieve a higher hit rate.
There are many deep reinforcement learning methods that can
be applied to this problem, such as DQN [9], DDPG [11],
PPO [12], IMPALA [13].

The RL-based method will get the optimal policy after a
large number of trial-and-error. And as it does not need the
T v
h to infer the list of the future requested data explicitly,

it can be applied in the games regardless of whether T v
h is

accessible.

IV. EXPERIMENTS

In this section, we conduct experiments in a cache sim-
ulation environment and a very popular commercial mobile
MMORPG in China to evaluate the performance of our
method. Firstly, we introduce the environments used in our
experiments. Then, we design an experiment to compare the
compounding errors of the sequential predictions upon the
requested data sequences and the player behaviour sequences,
respectively. At last, we compare the performance of our
methods with the traditional cache management approaches
such as LRU and FIFO in the two environments.

A. Experimental Environment

In this section, we introduce our cache simulation environ-
ment and the real mobile MMORPG.

1) Cache Simulation Environment: The cache simulation
environment simulates the process of the player calling for
the data and the operations of the cache management. The
cache simulation environment includes the player, cache and
data. As shown in Fig. 3, the white circle represents the
requester (i.e., player), the yellow square represents the current
destination, and the triangle represents the data. The player
moves towards the destination along a certain route, which
simulates the situations where the player finds a series of NPCs
in a specific quest in the real games. When the data appears
in the player’s field of view, it will need to be loaded from the
cache if it is in the cache. Otherwise, the cache management
needs to decide whether to put the data in the cache or not.

The basic settings of this simulation environment are as
follows: 1) Each data has an id and goes through a series
of destination points DP = {dp1, dp2, dp3...} in the grid.
The subsequent destination dpi+1 after arriving at current
destination dpi is sampled from a probability distribution
P(dpi), which is formalized as follows:

P(dpi+1) = [p(dpi, dp1), p(dpi, dp2), p(dpi, dp3)...] (13)

where p(dpi, dpj) means the probability to choose dpj as the
next destination after arriving at dpi. There are two movement
modes: stochastic and fixed, and in the fixed mode P(dpi) will
be a one-hot vector indicating a deterministic dpi+1 for each
dpi. Based on this definition, we can represent the overall
destination transition process with a matrix Pdp as follows:

Pdp = [P(dp1)T ,P(dp2)T ,P(dp3)T ...] (14)

2) The movement mode of the player is similar to the data,
which can also be divide into the fixed situation and the
stochastic situation. 3) The player will have a vision domain
during the movement and the data that enter this vision
domain need to be loaded. The vision domain of the player is
calculated through the Manhattan distance.

Data request will occur during the movement of the player.
Assume that the cache capacity is 10, the Manhattan size of
the vision domain is 2, and the cache management strategy is
FIFO. The process is shown in Fig. 3, where the pink triangle
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Fig. 4. The cumulative prediction accuracy of the method of predicting the requested data and the method of predicting the behaviour of player in four
different movement modes.

represents the data in the cache, and the status of the cache
is shown at the bottom of Fig. 3. The number in the cache is
the id of the data and the order of data entering the cache is
from right to left.

2) A Real Mobile MMORPG: The real environment is a
popular mobile MMORPG in China, which has many daily
active users. As shown in Fig. 1, the screen of the mobile
phone is the vision domain of the player. During the player’s
movement in the game, data on the screen will be called
for. The requested data include other players, pets, NPCs or
skill effects. The number of the total requested data in the
game is 55000, and the behaviour of one player will affect
the requested data of the other players. For example, player A
enters the vision domain of player B, then player B needs to
call for data about player A. We will carry out the experiment
during the player accomplishing a quest. As shown in Fig. 1,
when the player accepts a quest, the player will find some
NPCs orderly to accomplish the quest. The cache management
problem in the MMORPG is complicated and difficult.

B. Compounding Error

In this section, we design an experiment to compare the
compounding errors of the sequential predictions upon the
requested data sequences and the player behaviour sequences,
respectively.

1) Experiment Settings: In the cache simulation environ-
ment, since both data and player have two movement modes,
there are four modes in total. We will compute the com-
pounding error of two methods in these four modes. And we
compute the cumulative prediction accuracy of requested data
and behaviour as evaluation criteria, the lower accuracy means
the larger compounding error. The experimental environment
is based on a 20× 20 grid with 40 dynamic data. The cache
capacity is 10 and the size of the vision domain in Manhattan
distance is set to 2.

The method of predicting the future requested data list is
modeled as follows:

reqi+1 = Frequest(reqi, reqi−1, ..., reqi−j) (15)

where Frequest(·) is a non-linear function for predicting the
upcoming requested data based on the recently j+1 requested
data that have been called for and reqi means the ith requested
data. In our experiment, the Frequet(·) is modeled with
deep neural network (DNN). The input of the Frequest is
the recently requested 10 data, the output is the probability

distribution on the data space and we choose the data with
the highest probability as the next requested data. The loss of
the method is cross-entropy.

The method of predicting the behaviour of player is intro-
duced in Section III-B. The Fplayer(s

h
i ) is also modelled by

a DNN, and the input is the current state of the requester,
including current coordinates and starting point. The output is
the probability distribution on the action space and we choose
the action with the highest probability as the next behaviour
of the requester when we use the model. The loss function
and the training process are the same as the predictive model
of the requested data list.

2) Results and Analysis: As mentioned above, there are
four modes in our simulated environment. In each mode, we
perform 1000 tests for these two methods respectively. The
results are shown in Fig. 4 and each point represents the av-
erage cumulative prediction accuracy up to the corresponding
step. The yellow dashed line and the blue line represents the
results of the behaviour’s prediction and the requested data’s
prediction, respectively. The abscissa represents the number of
subsequent steps predicted, we intercept to 80 steps because
the number of the player’s behaviours and the number of
requests are about 80 until the player finishes one episode.
And the yellow dashed line in Fig. 4(a) and Fig. 4(b) is the
same because the player’s behaviours in these two modes are
fixed. The situation in Fig. 4(c) and Fig. 4(d) is similar because
of the same reason.

In Fig. 4, the four cumulative prediction accuracies of the
behaviour’s prediction are all higher than the requested data’s
prediction, which means the compounding error of the former
one is tinier than the latter one. The behaviour’s prediction is
only related to the movement of the player, but the requested
data’s prediction is related to the movement of the player
and the dynamic data, so it is relatively difficult to predict
the future requested data in the requested data’s prediction
case. In the sequential prediction situation, the subsequent
predictions are based on the previous predictions, and thus
the errors in the middle predictions will affect subsequent
predictions, which raises the difficulty of making an accurate
prediction.

C. Performance In the Cache Simulation Environment

1) Experiment Settings: We verify the performance of
different methods in the cache simulation environment at four
modes. The basic settings of the cache simulation environment



TABLE I
THE AVERAGE HIT RATE OF DIFFERENT METHODS ON FOUR KINDS OF MOVEMENT MODES IN THE CACHE SIMULATED ENVIRONMENT.

Movement Mode Method

Player Data Random FIFO LRU IL-Baed RL-Based Belady’s Policy

Fixed Fixed 0.1639 0.1818 0.1667 0.4091 0.4091 0.4091
Fixed Stochastic 0.1455 0.1540 0.1451 0.2547 0.2853 0.4016
Stochastic Fixed 0.1379 0.1416 0.1305 0.2877 0.2658 0.3937
Stochastic Stochastic 0.1382 0.1424 0.1350 0.1981 0.2421 0.3917

TABLE II
THE AVERAGE HIT RATE OF DIFFERENT METHODS IN THE MMORPG GAME. THE GAME’S BUILT-IN METHOD IS BASED ON THE RULE AND LRU.

Method Game’s Built-In Method RL-Based Method Belady’s Policy

Average Hit Rate 0.5096 0.5929 0.7221

are the same as the experiment of compounding error. We
use the average hit rate as the evaluation criterion of the
method performance. We carried out LRU, FIFO, random
policy, IL-based method and RL-based method to guide the
cache management to manage the cache. At the same time, the
optimal solution by Belady’s policy can be calculated with all
subsequent requested data lists known, that is, an upper limit
of the average hit rate.

The detailed parameters and model design of the IL-based
method are the same as the experiment of compounding error.
The RL-based method takes the cached data, the requested
data, the state of the requester, and the route information as the
state, the operations of the cache management as the action.
The reward function is defined as Equation 10, where α is
500. And we use IMPALA [13] to train the parameters of the
network.

2) Results and Analysis: We perform 10,000 tests for each
method in the same environment and calculate the average
hit rate. The results are summarized in Table I and it shows
that our two methods are better than other baselines in all four
modes. In the easiest mode where the movements of the player
and data are fixed, our two methods get to the upper limit
whereas the three baselines cannot even reach half of the upper
limit. In other more difficult modes, our two methods cannot
get the upper limit due to the stochasticity, but compared with
the three baselines, the hit rate can still be improved by nearly
100%.

Under the modes where the movement of the data is
stochastic, the average hit rate of the RL-based method is
higher than the IL-based method. The reason is that the IL-
based method learns the behaviour of the player, but it cannot
capture the randomness of the transformation relationship
between the player and the data. However, the RL-based
method models the player and the data together and catches
the relationship between them to reduce the influence of the
randomness.

D. Performance In the Real Mobile MMORPG

1) Experiment Settings: We take a specific quest as a test
case to verify the performance of our proposed method with

the game’s built-in method which based on the rule and LRU
in the real game environment. During the quest, the player
will call for a lot of data and the cache capacity is set to 100.
This specific quest will require players to complete a series of
small quests.

Because this environment is a real game environment, the
T v
h is not explicitly accessible. Therefore, we use the RL-

based method which takes the data in the cache, the requested
data, the location of the player, the quest execution point as
state, and the operations of the cache management as action.
The reward function is defined as Equation 10, where α is
3000. And we use the IMPALA to train the model. Besides,
we record the whole trajectory and compute the hit rate of
Belady’s Policy using this trajectory at the end of one episode.
The results of Belady’s Policy are also summarized in Table
II for reference and it is worth noting that we cannot reach
this upper limit in practice as it uses the future information in
the whole trajectory at each decision-making step.

2) Results and Analysis: We conduct different methods
to guide the cache management for this quest in the real
game environment. And we test every method 200 times and
calculate the average hit rate. The results are shown in Table II.
It can be seen that the average hit rate of the RL-based method
is 16% higher than the game’s built-in method, which indicates
that our cache management methods can adapt to the real game
environments and outperform the game’s built-in method.

V. RELATED WORK

Traditional cache management methods include LRU, FIFO
and LFU, which are mainly focused on the cache replacement
strategies. And some manually-engineered heuristics methods
[14]–[17] are variations of the previous traditional methods.
Some researches [18]–[22] take learning-based approaches to
learn a cache management policy approximating the Belady’s
policy [4]. These methods perform well on some simple
cache access patterns, but they perform poorly on complex
cache access patterns because of the lack of knowledge from
complex scenarios.

In recent years, some researches in the scenarios such as
web caching and content caching consider the knowledge



of the scenario like content popularity and user preference.
A large body of researches [23]–[27] focus on learning the
content popularity distribution by rule-based mechanisms or
machine learning to achieve near-optimal results. Some re-
searches [28]–[30] seek the optimal caching policy by consid-
ering user preference together because the user preference will
influence the requested data. In principle, the aforementioned
approaches make decisions on cache based on information in
application scenarios. And the mobile game as an application
scenario closely related to players, taking the behavioural
process of the players in games into consideration will help
the cache management in selecting the right data to store in
the cache.

VI. CONCLUSION

In this paper, we propose a future-oriented cache manage-
ment (FOCM) to solve the cache management problem in
mobile games. FOCM bridges the players’ behaviours and
the cache management’s decisions with a dual Markov model,
which consists of two Markov decision processes (MDPs).
Based on this framework, we have put forward the imitation
learning based (IL-based) method and reinforcement learning
based (RL-based) method to infer the data that are most likely
to be used in the future by learning the behaviour patterns of
the players directly or indirectly. The experimental results have
demonstrated that the proposed methods can achieve a higher
hit rate in both the cache simulation environment and the real
mobile MMORPG than other methods. To facilitate further
research in this area, we release our simulated environment
which includes Gym-like interfaces and can be easily called
by various RL algorithms.
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