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Abstract—We present an algorithm to add puzzles to maps
represented as graphs. The algorithm starts from an empty
map, represented as a graph, with at least one entry area and
one exit area. It runs several specialized agents responsible for
adding puzzles (e.g., locked doors, keys, switches). It generates a
map with at least one acceptable solution (path) whose difficulty
depends on the type of agents used (that is, the variety of puzzles
added) and the number of puzzles added by each agent. Most
importantly, no sequence of actions can leave the players stuck in
a dead-end situation with no way to reach the goal. We include
two examples of agents specialized in (i) switch mechanics (e.g., a
lever that opens a passage and closes another one, the lighting of
a fire that shows an inscription needed to solve another puzzle),
and (ii) element collection mechanics (e.g., collecting keys or other
puzzle elements to open a passage).

I. INTRODUCTION

Puzzles are vital components of many game genres. They
are an effective way to enrich gameplay by asking players to
stop and think about solving interesting problems. Sometimes,
puzzles are visible and explicitly presented to players, like
in The Witness,1 or so much entangled into the gameplay to
become almost invisible, like in Tomb Raider2 or Uncharted3

series. Puzzles are challenging to design both in terms of
mechanics and level design. In fact, once players understand
how to solve a puzzle, this most likely ceases to be fun
[1]. Procedural content generation has been applied to create
almost any type of game content, such as music, levels,
narrative, rules [2], even entire universes as in No Man’s Sky.4

Its application to puzzles however, remains limited, mainly
focused on games based on puzzle mechanics, and rarely on
creating puzzles as accessories to other genres [3].

Mazes are puzzles that require players to reach an exit
in environments that can be hazardous or just very complex
to navigate. This paper presents an agent-based algorithm to
populate maps, with at least one entry and one exit point, with
different puzzle types. Our algorithm is inspired by agent-
based procedural content generation approaches [2] that are
often applied to generate terrains using agents specialized

1https://en.wikipedia.org/wiki/The Witness (2016 video game)
2https://en.wikipedia.org/wiki/Tomb Raider
3https://en.wikipedia.org/wiki/Uncharted
4https://www.nomanssky.com

in different content types (e.g., forests, rivers, roads). Our
algorithm starts from an empty map, represented as a con-
nected graph, and runs a set of specialized agents, each one
responsible for adding a specific type of puzzle to the map.
The algorithm guarantees that there is one feasible solution:
one sequence of actions to take the players to the exit.
Most importantly, it guarantees that no sequence of players’
actions will leave players unable to solve the maze. We show
examples using agents specialized in (i) switch mechanics
(e.g., a lever that opens/closes a passage) and (ii) element
collection mechanics (e.g., collecting keys or other puzzle
elements to open a passage). We present the results of an
experimental evaluation showing that our algorithm can create
quite complex mazes in a small amount of time.

The paper is organized as follows. In Section II, we preview
a brief review of the relevant literature. In Section III, we give
an overview of our algorithm using simple examples while, in
Section IV, we give a detailed description including pseudo-
code of the main procedures. In Section V, we present the
results of an experimental evaluation we performed focused
on the time required to generate puzzles and the complexity
of the puzzles generated. Finally, in Section VI, we delineate
the future research directions.

II. RELATED WORK

Procedural content generation (PCG) has been widely ap-
plied since the late 1970s for creating several types of game
assets (worlds, levels, characters, narrative, rules). Togelius et
al. [2] provide a thorough overview of the field up to 2016.
Summerville et al. [4] surveys the PCG approaches based on
machine learning models trained on existing content. Liu et
al. [5] discuss the recent approaches based on deep learning.

Puzzles are popular game genres and critical ingredients
in many games that improve gameplay by asking players to
stop and think about solving interesting problems. Compared
to other game content types, the application of procedural
content generation to puzzles is quite limited. It typically
focuses on creating content for actual puzzle games rather
than puzzles viewed as accessories to other game genres.
De Kegel and Haahr [3] provide an excellent overview of
the procedural generation of puzzles covering 32 techniques
and 11 puzzle categories. It includes Sokoban-like puzzles,
sliding puzzles, tile-matching puzzles, assembly puzzles, path-
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building puzzles, narrative puzzles, physics puzzles, logic
puzzles, word puzzles, and, of course, mazes.

Mazes are puzzles that ask players to find a valid path from a
starting position to a goal position while avoiding hazards and
learning how to overcome implicit boundaries and obstacles
that might obstruct the way. Procedural generation of mazes
dates back to the late 1970s when Beneath the Apple Manor5

asked players to traverse ten procedural generated dungeons
(with enemies, secret doors, hidden traps, and treasures) to get
a golden apple. Two years later, Rogue6 created the genres
of rogue-like games. Buck [6] is an excellent reference for
most constructive maze generation algorithms. Shaker [7]
identifies four categories of maze generation algorithms: (i)
space-partitioning (the same used to generate the mazes in this
paper); (ii) agent-based algorithms (the same approach we use
to inject puzzles in maze graphs); (iii) cellular automata; and
(iv) grammars. van der Linden et al [8] focus on controlling
the procedural generation of mazes created using cellular au-
tomata and generative grammars; Nelson and Smith [9] applied
answer set programming solvers for generating different types
of mazes, based on a set of constraints expressed in a Prolog-
like language. Baron [10] analyzed several algorithms for map
generation separating the placement of the rooms and their
connection. Aversa et al. [11] proposed an “inventory driven”
pathfinding approach based on the grid based Jump-Point-
Search [12] algorithm that preserves the optimality guarantees
of the original algorithm. Although, [11] does not deal with
the building of mazes, the proposed approach may be used as
a solver for the maps created by the algorithm presented in this
paper. Pereira et al. [13] presented an evolutionary algorithm
to generate dungeon maps with locked door missions. Their
algorithm works on a tree based representation of the maps
and aims at evolving a map that is as close as possible to an
configuration provided by a designer. The map has information
about the rooms, connections between them, position in a 2D
grid, and semantic information for generating narrative. They
evaluated the algorithm experimentally showing that it can
create maps fitting the designer desiderata, which are also
perceived as human-designed. Picariello et al. [14] applied
procedural generation for a collaborative maze-solving game
for team building that used asymmetric interactions and com-
bined a digital maze exploration game with paper-based tools.
Gutierrez and Schrum [15] combined Generative Adversarial
Networks (GANs) and graph grammars to generate Zelda-like
dungeons using the data collected from The Legend of Zelda
to train the neural network. In this case, the focus was on
generating rich environment are players engagement which
was validated with a user-study.

III. ALGORITHM OVERVIEW

The algorithm starts from a graph representing the con-
nected areas of a map, with at least one starting area and one
goal area. It runs a series of specialized agents that add various

5https://en.wikipedia.org/wiki/Beneath Apple Manor
6https://en.wikipedia.org/wiki/Rogue (video game)

types of puzzles to the map (e.g., locked doors, keys, switches)
on the paths connecting the starting areas to the goal areas.
The specialized agents explore the underlying map graph and
create a separate puzzle graph in which nodes represent states
in the space of feasible puzzle configurations. Edges identify
high-level actions that players can do on the puzzles.

A. Simple Running Example using Maps

Figure 1 shows an example run using a basic map consisting
of four rooms (Figure 1a); the blue marker identifies the
starting area, and the green one identifies the goal area; all
the rooms are connected. At first, the algorithm runs an agent
specialized in building puzzles on collection mechanics (e.g.
locks and keys). This adds (i) a collectible item (the blue circle
labeled A) to be found in the upper-right room and (ii) a
door that blocks the entrance to the bottom-left corner, the
red square labeled A (Figure 1b). Next, the algorithm runs an
agent specialized in switch mechanics that adds a switch in
the bottom-left corner (the blue circle labeled 1) that activates
the door leading to the goal area. To reach the goal position,
the player should first collect the element A in the upper-right
corner, use it to enter the room in the bottom-left corner, find
the switch in the room to open the passage leading to the goal,
and finally exit the map.

The puzzle elements in Figure 1 are placeholders to indicate
the position of the puzzle elements in the underlying graph and
their effect on the same graph. For example, collectible item
A in Figure 1b might be hidden inside furniture (a treasure
chest or a desk drawer) or a non-player character (NPC) might
have it. Accordingly, players might need to take some kind of
action to get it (thoroughly search the area, negotiate or fight
an NPC). Switch 1 in Figure 1c might be a lever positioned
in plain sight, a mechanism hidden in the walls, or simply
identify the need to turn on some kind of light to see the
passage leading to the exit. How the puzzle elements and the
connected mechanics are actually added to the in-game map
and the level of challenge required to collect/activate them are
issues of game design. Our algorithm aims at adding puzzles to
map represented as graphs so that there is at least one feasible
solution. Most importantly, no sequence of players actions
can leave the player stuck with no way of progressing in the
map. Their specific in-game implementation is left to the level
designers. Thus, Figure 1c is just a graphical representation
of the connections between the map areas and to the puzzle
elements in the map; it shows what switches and collectibles
are available in each area, what mechanisms connect two areas,
possibly what activates them, and their effect.

B. Simple Running Example using Graph Representation

Our algorithm works using two main data structures (i) a
Map Graph MG, representing the connections between areas;
and (i) a Puzzle Graph PG, representing how players’ actions
modify the state of the puzzles and the connections between
areas. Accordingly, in the previous example, the algorithm
actually started from the map graph MG, shown in Figure 2a

https://en.wikipedia.org/wiki/Beneath_Apple_Manor
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(top graph), in which node r0 corresponds to the starting area
and node r3 to the goal area.

At first, the map has no puzzles and players can move
around the map until they reach the goal position. Thus,
the algorithm creates the puzzle graph (PG) depicted in
Figure 2a (bottom) with just two (puzzle) states: ps∗ for
players exploring the map; psg for players reaching the goal
area. The transition between them is triggered when the player
enters the goal area (action ag). A state of PG is characterized
by a vector of integers identifying the current state of the
puzzles. Initially, there are no puzzles and players can be either
exploring the map (state ps∗ characterized by vector 〈0〉) or
reaching the goal (state psg characterized by vector 〈1〉). In
this case, none of the puzzle states modifies MG.

Collectible Mechanics. Next, the algorithm adds a collectible
item A that is needed to move between two areas (Figure 1b).
The initial map graph MG is modified by disabling the edge
between r0 and r1 that can be enabled if when players collect
item A. The puzzle state must now take into account whether
players have the collectible item and so it will be described
by a vector of two integers 〈pA, pg〉: one identifying whether
players have collected item A, one for players reaching the
exit. The new state psA is added to PG to take into account
the possession of collectible A (Figure 2b, bottom). The puzzle
graphs states are now characterized as follows: ps∗ by vector
〈0, 0〉 since when staying in r0 players have no item nor
reached the goal; psA by vector 〈1, 0〉 since when entering r2
players can collect item A; psA also enables the edge between
r0 and r1 since when players have item A, they can move
between the two areas; psg by vector 〈1, 1〉 since to reach the
goal, players must have both item A and enter r3. Note that,
there is no state corresponding to 〈0, 1〉 in PG, since it is
impossible to reach the exit before collecting item A, and it is
supposed to be not possible to loose the key without using it
to open the passage. As before, it is important to note that PG
models the map in terms of feasible solutions not gameplay.
Accordingly, the transition to state psA has only one direction
since in term of solution, when reaching r2 players have access
to item A allowing them to access r1 from r0. Thus, there is a
feasible solution to the puzzle. However, how players get A is
an issue of game design, it might require exploration, fighting,
negotiation.

Switch Mechanics. Finally, the algorithm adds a switch 1 that
is needed to move between r1 and r3 so that the edge between
the two areas is initially disabled (Figure 2c, top left graph). A
new state ps1 is added to PG to model the possible transitions
due to the switch status. The vector describing the state of
puzzles now takes into account also the state of switch 1
using a vector of three values 〈p1, pA, pg〉. ps∗ corresponds to
〈0, 0, 0〉, psA to 〈0, 1, 0〉, ps1 to 〈1, 1, 0〉, and psg to 〈1, 1, 1〉;
psA enables the edge between r0 and r1 (Figure 2c, top right
graph); ps1 can enable or disable the edge between r1 and r3.
Note that the transition between ps1 and psA is bidirectional
since players can use the switch by enabling and disabling the

edge between r1 and r3, so as to transition in the puzzle space
between ps1 (〈1, 1, 0〉) and psA (〈0, 1, 0〉).

C. Advanced Example

Figure 3 shows a run for a slightly more complex map.
Starting from an empty map (Figure 3a) represented as a con-
nected graph (Figure 3b), first the algorithm adds a collectible
item A that is needed to enter the goal area (Figure 3c).
Next, it adds the switch 1 in r1 that controls the access to r2
and r3 from r0 and r1 respectively (Figure 3d); initially the
switch enables moving between r1 and r3 (the corresponding
boxed 1 is green), but disables the edge between r0 and
r2 (the corresponding boxed 1 is red); when the switch is
activated, the state of the edges swaps. Finally, as shown in
Figure 3e, the algorithm adds switch 2 in r2 that controls
access to r1 from r0 and to r4 from r2). Figure 3f shows
the initial map graph—dashed edges identify the connections
that are initially disabled. Figure 3g shows the final puzzle
graph. As before, ps∗ and psg identify the starting and goal
areas respectively; edges a1 and a2 are triggered by the state
change of switch 1 and 2; edge aA is triggered when players
collect item A. Puzzle states are described by a vector of four
variables 〈p2, p1, pA, pg〉: p2, p1, pA describe the status of the
corresponding puzzle elements; pg identify whether players
entered the goal area.

D. Discussion

In the previous examples, we used collectible and switch
mechanics to activate connections between areas mainly be-
cause their are more intuitive; however, our algorithm can use
the same mechanics to build more general scenarios like the
one shown in Figure 4, which highlights three rooms of a
more complex map. In this case, players must find a way to
open a connection (square 1 in the middle-right area). For
this purpose, players need to find a key (collectible item A
in the top-left area) to open a treasure chest (square A in
the bottom-left area) and get a torch, identified by circle B
that will remain inactive until players access square A. The
torch can be lit when fire (square B) is found in another
area (to the right) that will make lever visible (circle 1 will
remain inactive until players access square B) that open the
connection to another area (square 1). Actions can be even
more abstract, like acquiring a certain skill or completing a
story quest (a typical scenario in many role-playing games).
Furthermore, while our examples show visual map-based
environments, our algorithm can also be applied to any graph-
based representation of environments like the ones used in
text-based adventure/narrative games which typically involve
explorations of maps represented as connected graphs (see
for example [16]). Our approach is also not limited to the
simplified model of players interactions we discussed in the
above examples, which assumes players collect items as soon
as they enter the area containing it. For example, suppose
players must pick up a torch, light it up and use it to burn
an obstacle. We can model the collectible item torch using
three values in the configuration vector: 0 for the initial state



(a) (b) (c)

Fig. 1: Example of simple run using a map with four connected areas. The blue marker identifies the starting area. The green marker identifies the goal area. The circled A symbol
is a collectible needed to enable the connection blocked by the square A symbol. The circled 1 symbol is a switch that can activate/deactivate the passage marked with the square
1 symbol.
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Fig. 2: The graph representation of the maps in Figure 1: (a) the initial map graph (top) and puzzle graph (bottom); (b) the map graph and puzzle graph after the collectible A is
added; (c) the final graphs after the switch 1 is added, the top graphs show the initial graph map and the same map after players have collected item A, the bottom graph shows
the final puzzle graph. Action ag is triggered when players enter the goal; action a1 when the player interact with the switch; action aA when the player collects item A. Dashed
lines identify disabled edges.

(players do not have it), 1 when players picked up the torch,
and 2 when the torch is lit.

The action to pick up the torch can be activated at any time
once the item can be reached by the player, while players can
light it up only if they have collected it; in this interaction
model, players can drop the torch, going back to the initial
state. The algorithm can also model actions that players might
perform unintentionally; for example, falling into a water pool
would extinguish the torch. This is particularly important to
ensure that the player always has a path to the end of the level.

IV. THE ALGORITHM

Our algorithm takes as input a graph-based representation
of a map and a set of specialized puzzle agents responsible
for adding various types of puzzles to the map. It outputs (i)
a modified map graph showing the initial state of the map
enriched with the puzzles; and (ii) a puzzle graph specifying
how the exiting puzzle mechanics modify the underlying map
based on the players’ actions.



(a) (b) (c) (d) (e)

r0 r1

r2 r3

r4 r5

ps∗ ps1 ps2

ps3ps4ps5psg

e1

e1

e2

e2

eA

e2

e2

e1

e1
eg

(f) (g)

Fig. 3: Example run using a map with six connected rooms (a) represented by the map graph (b). First, a collectible item A is added (c), next two switch mechanisms (d) and (e).
This results in the initial map graph (f) and puzzle graph (g). Dashed lines identify disabled edges.

Fig. 4: Example of collectible mechanics applied to elements in the same area.

A. Map and Puzzle Graphs

A map graph MG is a direct graph in which nodes ri
represent areas of the map (e.g., rooms, caves) and edges
(ri, rj) represent connections between areas; edges can be
either enabled or disable depending on whether players can
move between the areas. A puzzle state psi is defined by (i) a
map graph MGi representing the current state of accessibility
between map areas; (ii) a set of areas Ri that players can reach
given the current graph map MGi; and (iii) a configuration
vector of integers Pi = 〈p0 . . . pk〉 describing the state of each
puzzle in the map.

A puzzle graph PG is a direct graph in which nodes are
puzzle states psi edges between states are labeled with the
players’ actions aj that can cause such a transition between
puzzle states. Actions A in PG can thus be viewed as
functions defined over the space of feasible puzzle states.
These actions comprise all those events that are (intentionally
or unintentionally) triggered by players and modify status of
the map by enabling or disabling edges. For example, burning
a barrier with a torch to open a passage, fighting or negotiating
an NPC to get a key are all examples of actions that modify
the puzzle graph. In contrast, interactions that do not modify
the status of the puzzles are not actions in the puzzle graph,
like for example, fighting a random enemy or talking to an
NPC, are not encoded in the puzzle graph. The configuration
vector Pi of psi keep track of the outcome of the actions that
must be performed to reach a state. For example, Pi would
include a 0/1 value for every collectible item and any switch
mechanic needed to reach the goal area. Its values are not
limited to 0 and 1 since we can have mechanics that require
more values, like for example, a lever mechanic with more
positions, a container that must be filled with a certain amount
of water to activate another element.

In a puzzle graph, we label the initial puzzle state as ps∗ and
the goal puzzle state as psg . The map graph MG∗ connected
to the initial puzzle state ps∗ represents the initial situation
that players will find when entering the map (e.g., the top



graph in Figure 2b); R∗ for the same state includes the areas
that are initially accessible to the players when entering in the
starting position (e.g., r0 and r2 in Figure 2b); P∗ have all
the values set to zero that, by definition, represents the initial
state of every puzzle in the map (e.g., 〈pA, pg〉) in Figure 2b).

B. Puzzle Agents

They are the core of our algorithm that, given a puzzle
graph PGi, create PGi+1 by adding a new puzzle to the
original graph. As a result, the agent increases the number
of actions available to players (since an additional puzzle
means more opportunity for players’ interaction) and it will
modify the number of variables required to describe the current
puzzle configuration in each state of the graph (since there is
one more puzzle to keep track of). In the previous example
(Figure 2), starting from the original puzzle graph (Figure 2a),
an agent blocked the connection between r0 and r1 that could
be activated by the collectible item A, this added a new action
aA that the players needed to perform to reach r1; at the same
time, the set of areas that players could reach from the starting
area was reduce to r0, r2; finally, the size of the configuration
vector of each puzzle state was increased by one variable
(pA) that was needed to keep track of the status of the new
puzzle (Figure 2b). Agents can apply various strategies to add
a puzzle to the current graph. They can be deterministic or
stochastic; they can add a puzzle in any random position of
the map or apply a strategy (e.g. they can first check the areas
near the goal or those near the start position).

C. The Main Loop

Algorithm 1 shows the pseudo-code of our algorithm main
loop. It takes an initial map graph MG and a list of available
puzzle agents MG. Initially, line 1, it creates a puzzle graph
PG from MG, with two states ps∗ and psg and one action
ag; the state configuration consists of just one variable 〈pg〉;
R∗ contains all the areas reachable from the start position.
It inits to zero the counter, failures, for the infeasible puzzle
graphs generated (line 2). Then, it repeats the following loop
until an end condition is met (lines 3-12): it selects a puzzle
agent from the available ones and (line 4) applies the agent
to add a puzzle to PG to generate a new candidate puzzle
graph PGnew (line 5); this will have new states, new actions,
and a richer state configuration vector. If the new graph has
at least one feasible solution (line 6), it becomes the current
puzzle graph and its complexity is computed (line 8); if PGnew

has no feasible solution, then the failure counter is updated;
finally, it checks whether the process should stop (line 11).
Agents can be selected using various policies; they could be
selected completely at random or using some constraints about
the number of puzzles of each type (for example, by requiring
a certain number of puzzles of each type); they could even be
selected deterministically by imposing a sequence of puzzle
types to generate. Agents can select the position of puzzles
completely at random or a specific strategy (for example, by
requiring that the new puzzle is added as near as possible
to the goal area). We currently compute the feasibility and

complexity of a puzzle graph using Dijkstra’s algorithm 7.
A puzzle graph is feasible if there is a path from the starting
puzzle state ps∗ to a state in which the configuration vector has
pg set to one (which signals that the goal area can be reached);
its complexity is computed as the length of the shortest path
between the same two nodes. More importantly, our algorithm
also guarantees that the goal state pg can be reached from
any other state, thus players will always be able to reach the
goal no matter what sequence of actions they perform. This is
an important feature to avoid players frustration and increase
engagement.

There are a number of conditions that can be used to end
the process: it can be stopped if the number of failures exceeds
a certain threshold (this usually happens when the map is too
simple with respect to the number of puzzles we wish to add),
when the number of puzzles added and their type satisfy our
objective (for instance, when we set a fixed number of puzzles
for each type), or when we reached a target complexity level
(the minimum number of actions on the puzzles in above a
certain threshold).

Algorithm 1: Main loop.
Data: Map graph MG; a set of Puzzle Agents PA
Result: Puzzle graph PG

1 PG ← CreatePG(MG)
2 failures ← 0
3 repeat
4 agent ← SelectAgent(PG, PA)
5 PGnew ← agent.AddPuzzle(PG)
6 if (PGnew is not null) and SolutionExists(PGnew)

then
7 PG ← PGnew

8 complexity ← SolutionComplexity(PG)

9 else
10 failures ← failures + 1

11 finished ← ShouldStop(PG, failures, complexity)
12 until finished;
13 return PG

D. Example of Puzzle Agent Implementation

Algorithm 2 shows the pseudo-code for the puzzle agent
for collective items. Initially, line 1, it selects a state ps from
the current puzzle graph PG using a given strategy (e.g.,
completely at random or starting as near to the goal or start as
possible). Then, it looks for a bottleneck in the map graph of
ps (line 2); this can is implemented with a simple heuristic but
it could also be selected using the Girvan-Newman8 method
and edge betweenness. Next, it looks for one of the most
isolated area with respect to the bottleneck position (line 5);
also in this case, we implemented a simple heuristics but
more advanced graph algorithms might be employed. In both

7https://en.wikipedia.org/wiki/Dijkstra’s algorithm
8https://en.wikipedia.org/wiki/Girvan\OT1\textendashNewman algorithm
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cases, if a bottleneck or an isolated area cannot be found the
function returns null signaling that it failed. Finally, given the
bottleneck connection 〈ri, rj〉 that will be blocked with an
item in rt, the puzzle graph is updated by (i) adding a new
puzzle state, a new action, and required additional edges to
the current PG, (ii) computing the map graph for the added
state, and (iii) adding a variable that keeps track of the status
of the new puzzle in the configuration vector of puzzle states.
Finally, the updated puzzle graph is returned.

Algorithm 2: Puzzle agent for collectible items.
Data: Puzzle Graph PG
Result: Puzzle Graph PG

1 ps ← SelectPuzzleState(PG)
2 〈ri, rj〉 ← GetBottleneck(ps.MG)
3 if 〈ri, rj〉 is null) then
4 return null
5 rt ← GetIsolatedArea(ps.MG)
6 if rt is null) then
7 return null
8 PGnew ← UpdatePuzzleGraph(PG, rt, 〈ri, rj〉)
9 return PGnew

The agents specialized in switch placement follow a similar
approach, but they do not identify bottlenecks. Instead, they
isolate two different parts of the map to make them accessible
in a mutually exclusive way. Ideally, switch agents try to select
areas that contain actions that are necessary to proceed in the
game. Since switch and collective actions are entirely abstract,
several agents can work together to create complex emergent
puzzles.

V. EXPERIMENTAL EVALUATION

We performed a series of experiments to evaluate our
algorithm in terms of computation time and complexity of the
generated maps. We applied a binary space partition algorithm
[17] to generate grid maps of different complexity similar to
the ones used in the examples previously discussed [2], [17].
The map generator was run 10000 times, with 7×7 grids up to
22×22 grids, with a minimum room size of 2×2, generating
maps with 4 up to 45 rooms (i.e., graphs with 4-45 nodes).
We focused on collectible and switch mechanics and applied
our algorithm to each map to add as many puzzles as possible.
Starting with an empty map, the algorithm added a puzzles to
the map using a puzzle agent, which was randomly selected,
until the agents failed more than ten times (see Algorithm 1).

Table I reports the statistics computed over ten runs using
mean and median. Column Grid reports the size of the grid
that was used to generate the map when using rectangular
shapes (like 10×15), half the runs (5000) were performed
using the reported shape, half (the other 5000) were performed
swapping the width and height parameters (e.g., 15×10).
Column Rooms reports the average number of rooms generated
for the corresponding grid and the median value; note that,
for small grids all the runs of the runs created the same

Grid Size # Rooms Complexity Time
µ (median) µ (median) µ (median)

7× 7 4.0 (4) 2.2 (2) 0.001 (0.001)
7× 12 6.0 (6) 3.1 (3) 0.002 (0.002)
12× 12 9.0 (9) 4.7 (5) 0.015 (0.009)
17× 12 13.2 (13) 7.0 (7) 0.114 (0.059)
17× 17 19.1 (19) 8.8 (9) 0.366 (0.199)
17× 22 25.0 (25) 9.9 (10) 0.710 (0.365)
22× 22 32.1 (32) 10.7 (11) 1.272 (0.618)

TABLE I: Columns report the grid size used to generate the maze and the average number
of rooms, puzzle complexity, and CPU time to generate one maze. Statistics are averages
over 10000 runs.

number of rooms (first three rows of Table I); the largest map
created consisted of 45 rooms. Column Complexity reports the
number of actions that players must perform to reach the goal
computed as the minimum number of transitions needed to
reach the puzzle state goal psg from the starting node ps∗.
For collectible items, we used the same approach used in the
previous examples (Section III) and modeled with just one
transaction in the puzzle graph two main events, the players
entering the area and collecting the item. Thus, the reported
complexity represents the minimum number of puzzle actions
that players need to perform. Column Time reports the CPU
time in number of seconds required to generate one single
map on a iMac 27 3.8 GHz i7. As can be noted, the algorithm
takes around one second to generate a map with around 30
rooms that players can traverse using around 11 transitions on
the puzzle graph.

VI. CONCLUSIONS

We presented an algorithm that, starting from a graph
representation of a map, runs specialized agents for adding
several types of puzzles. The algorithm generates maps that
have at least one acceptable solution. Most importantly, they
are robust to players’ actions in that there is no sequence of
actions that might leave players stuck in an unsolvable situa-
tion. We evaluated the algorithm experimentally by applying
it to generate 10000 maps of varying sizes and measured
the average CPU time taken to generate one map and the
complexity of the generated puzzles. Our results show that the
algorithm can create quite complex maps in a small amount of
time; in fact, it requires less than a second to generate maps
with an average of 32 rooms that requires 11 actions on the
puzzles to make the goal accessible to players.

The algorithm is also very modular since more puzzles
can be added by implementing more specialized agents.
In contrast, other approaches (e.g., [13]) might require
more structural modifications (e.g., probably a different
crossover/mutation operators and fitness function). Future
works include the evaluation using (i) other map generation
algorithms, like the ones inspired by Zelda [13], [15], or
based on cellular automata [8]; (ii) more agent types. We plan
to improve the evaluation of map complexity by introducing
solvers that can model players’ behavior, like the inventory-
driven solver introduced in [11]. We also plan to extend the
algorithm by adding a preprocessing phase to identify con-
nected components in the initial map graph and then applying



a separate instance of the algorithm to each component. This
will reduce the computational complexity while improving the
overall level design by more modular. Finally, we plan to
have a user study to compare the map complexity’s evaluation
using the puzzle graph and solvers against the complexity as
perceived by players.

In the end, we wish to point out that, although we presented
our approach using relatively simple agents in maze-like maps,
we can extend the approach to model much different and more
complex scenarios. Our algorithm allows several agents to
work on a shared task at potentially very different levels. For
example, an action can represent a simple gameplay interaction
(like picking up a key) or an entire sub-puzzle area generated
by another set of agents. Thus, partitioning the creation of
complex maps into different phases would benefit both the
computation time and the player experience. Moreover, each
puzzle element can contain additional procedural generation
aspects. For example, even collecting a simple key can become
much more enjoyable if placed at the end of a series of
jumps because placed in a room with procedurally generated
platforms.
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