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Abstract—Automated game exploration methods benefit from
having human demonstration data, but this kind of data is not
available for each incremental build of a videogame. If we want
to make use of exploration inside of continuous integration (CI)
workflows, we need to leverage stale human data (from a recent
version of the game). In this paper, we show how to train a
goal-conditioned action policy from stale human data used in
the context of RRT-based exploration of a modestly changed
game version. We demonstrate the benefit of this transfer with
experiments in the MiniGrid environment (which has a three-
dimensional agent configuration space).

I. INTRODUCTION

Automated testing is used in continuous integration (CI)
pipelines for many major videogames [1], [2], however these
tests usually do not attempt to map the playable space of
games or report how that space has changed, which might
reveal unexpected impacts of small code changes [3]. To make
this kind of machine playtesting usable within CI processes
(where it will be applied to each incremental software change),
it needs to be made efficient and completely automated.
Our previous work showed how to boost the efficiency of
exploration using human player data [4], but this is exactly the
kind of data that is not available after each software change.
We believe that there is useful information to be extracted
from stale data (e.g. from a human playtest of a recent build
of the game), and that it could be applied to boost machine
playtesting. In particular, we propose to use behavior cloning
on the stale human data to train an action-selection policy.

We consider exploration algorithms based on rapidly-
exploring random trees (RRT) [5], an algorithm from the
robotics literature designed for exploring low-dimensional
continuous state spaces that has since been applied to explor-
ing videogame spaces [6]. RRT makes use of a subsystem for
selecting actions that are intended to make progress towards
a given goal state. Recent previous work used very simple
policies that were oblivious to the intended goal and even
the current state [7]. We propose to use machine learning to
fit a goal-conditioned action policy to expert-relabeled human
demonstration data (using another technique borrowed from
robotics). We offer initial evidence of the usefulness of this
approach in the MiniGrid [8] interaction environment, which
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has a low-dimensional state space with known bounds (similar
to the setting for robotics applications).

II. BACKGROUND
A. RRT for Exploratory Game Playing

The Rapidly-Exploring Random Trees algorithm (RRT) has
roots in robotics, and its original purpose was to guide a
robot in mapping an unknown environment (i.e. unmotivated
search [9]). During search, RRT builds a tree data structure
recording how each newly discovered state was first reached
from a previously reached state. To encourage rapid explo-
ration, the algorithm selects goal points uniformly from the
low-dimensional state space (e.g. five dimensions for a robot
arm with five angular joints) and attempts to reach that goal
from the closest existing node.

Outside of robotics, RRT has been used to explore game
spaces [6]. Doing so requires a way of mapping a game’s
true state space (often very high-dimensional with discrete
elements) into a form more similar to the robotics setting. Zhan
et al. [10] proposed the use of manifold learning techniques to
train a state embedding function in the form of a convolutional
neural network. The RRT algorithm assumes there is a way
to take actions from one state that make progress towards the
selected goal state. In prior work [7], the action selection poli-
cies were not sensitive to the goal and were even insensitive to
the current state. Instead they used a fixed action distribution.
This strategy is also used in non-RRT exploration methods
like Go-Explore [11]. While our present work uses a hand-
crafted state embedding function, we focus our attention on
the use of machine learning for fitting a useful and transferable
goal-conditioned action policy for RRT.

B. Goal Conditioned Policies for Reinforcement Learning

The idea of learning to take actions in a way that depends
on the agent’s current state with explicit consideration for the
agent’s current goal has already been explored in the world of
reinforcement learning (RL). Further, it has been shown how
to distill unguided demonstration data into goal-conditioned
action policies using a strategy called expert relabeling [12].
Without making any assumptions on the overall goal being
pursued in the demonstration data, the relabeling technique
defines a training data set (pairing current and goal states with
an action that makes progress towards the goal) by simply



defining the goal to be some other state seen later in the
trajectory.

In reinforcement learning research aimed at videogames
(e.g. playing StarCraft or Atari games), it is common to
evaluate policies on the very same environments used train
them (in effect, training on the test data). As a result, trained
policies can memorize a single brittle solution rather than
capture robust playing styles [13]. In our project, we require
that policies accelerate exploration of a somewhat different
environment from the one used to source the human demon-
stration training data.

C. Machine Playtesting

The end goal of our work is to produce a method that can
assist in the playtesting of videogames during development.
Ideally, developers would be able to immediately see the
effects of changing gameplay mechanics, such as the behavior
of an enemy or the number of times an ability can be used.
For some games, it might be reasonable to directly enumerate
the entire space of reachable states [14], however this is
unrealistic for more complex games. Current industry practice
has evolved to automate many parts of the quality assurance
pipeline, and has begun to moved beyond executing fixed
scripts (e.g. pressing pre-defined button sequences to traverse
menus [1]) towards robust, search-based testing using agents
trained on human demonstration data [15]. These intelligent
agents are intended to imitate human players playing the game,
providing valuable gameplay traces that can be used to analyze
the state of the game’s mechanics [16], [17].

III. TRAINING A STATE AND GOAL-SENSITIVE POLICY

In the setting for machine playtesting for games, we assume
we have access to human demonstration data for a recent
version of the game. In this data, we record pairs of game
states and the human-selected action at that state. A typical
human demonstration in our experiments involves 200 steps
of gameplay in a turn-based interaction. We transform this into
training data for a goal-conditioned action policy using expert
relabeling. Concretely, for each point in the demonstration
data, we define the goal to be whichever state was reached
1-20 steps further into the demonstration (sampling several
random goal offsets). Considering expert relabeling as a form
of data augmentation, this typically yields a dataset of about
6,000 examples.

For this early-stage work, our goal selection policy is a
simple multi-layer perceptron (MLP) with three hidden layers,
illustrated in Figure 1. The inputs to the network are the con-
catenated state and goal vectors (of three integer dimensions
representing the agent’s world position and orientation). The
output of the network is a distribution over the few discrete
actions available (up, down, left, right, and door-toggle). The
networks typically have about 40,000 trainable parameters.
The training of this model on the data described above using
the Adam optimizer proceeds to convergence unremarkably.
To create goal-oblivious or even state-oblivious ablations of
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Fig. 1: Neural network architecture used to train an action
policy. Masks represent a gate used to hide specific training
data.

this network, we mask (scale by zero) the input respective
input vectors at both training and evaluation time.

IV. EXPLORING WITH RRT

To explore a game space using RRT, we apply the algorithm
described in Algorithm 1. For the MiniGrid environment, we
implement sample_goal (configuration_space) by
sampling a grid location and agent orientation using a uniform
distribution. We implement policy (state, goal) by
asking the neural network for a distribution over actions, which
we then sample. When moving from one version of a game to
the next, the shape of the configuration space and the details
of the initial state may change along with the details of the
simulator. In our experiments simulate (state, action
is always implemented by executing the same MiniGrid en-
vronment rules, just with a different level design. We imagine
that for many incremental changes, the inputs and outputs data
types of the policy function do not change significantly (i.e.
the game does not often add or remove spatial dimensions or
actions).

V. EXPERIMENTS WITH MINIGRID ENVIRONMENT

In this early-stage experiment with learning from stale hu-
man demonstration data, we focus on the MiniGrid interaction
environment [8] (which has been used extensively in recent
reinforcement learning research [18]). Figure 2 shows two
examples of worlds seen in this environment. To model an
incremental change to a game design, we sample two differ-
ent procedurally generated MiniGrid maps and only provide
human demonstration data for the first one. In particular, one
of the authors recorded about 200 steps of navigation between



Algorithm 1: rrt_explore(configuration_space, ini-
tial_state, simulate, policy, max_steps)

tree = new Tree(initial_state)
forall ¢ in range(max_steps) do
goal = sample_goal(configuration_space)
state = tree.find_nearest(goal)
action = policy(state, goal)
result = simulate(state, action)

tree.add_edge(state, action, result)
end

return tree

(a) Map A (b) Map B

Fig. 2: Two different map designs in the MiniGrid environ-
ment. Human demonstration data is made available only for
Map A as if Map B had just been produced as an incremental
game design change and had not yet been seen by human
playtesters. Players move the oriented red triangle through
rooms and doors to reach the green exit tile.

the various rooms of Map A, covering some but not all of the
total reachable area of the map. The goal of our work is to
use the human demonstration data from Map A to improve
the efficiency of machine exploration of Map B. Note that the
human demonstration data cannot be superficially transferred
to the new map because (1) many paths in the first map are
not possible in the new map because they would cross walls
and (2) the demonstration touches very few tiles in the original
map anyway. Our choice of simplified interaction environment
and use of level generation to introduce variation is intended
as a computational caricature [19] of incremental changes to
navigation-oriented videogames.
We consider several versions of our RRT-based exploration
agent:
o RRT-Uniform: Acts using a fixed uniform distribution.
« RRT-Stateless: Masking both the current and goal vec-
tors, this model uses a fixed non-uniform distribution fit
to the human demonstration data.
o RRT-StateOnly: Masking only the goal vector, this
model can adapt its action distribution to the current state.
« RRT-StatesAndGoals: The full goal-conditioned action
policy trained via imitation learning.

These variations were chosen to demonstrate the relative
benefit of using stale human data to biasing the action distri-

bution as well as the benefit of considering the current and
goal states when doing so.

To measure exploration efficiency, we recorded the number
of unique state vectors seen during an exploration run as a
function of the number of environment interaction steps. Each
exploration algorithm is run three times to reduce the effect
of randomness from RRT. Better exploration algorithms will
touch many unique state without spending many steps revisit-
ing old states. This metric metric for MiniGrids is comparable
to the “tiles touched” metric used for more complex games
like Mario and Zelda seen in previous exploration work [4].
We run each variation of RRT for 10,000 interaction steps and
report the results in the following section.

VI. RESULTS

In Figure 3a, the RRT agent trained with goal and current
state data explores more unique tiles than RRT missing one
or both or one of these inputs. As a result of overfitting to the
human demonstration data that does not touch many states, the
RRT-StateOnly model is unable to outperform RRT-Uniform
(a policy that requires no access to human demonstration
data). Although none of the exploration algorithms reached
the maximum number of tiles that could have been explored
within 10,000 steps,! it is clear that RRT boosted with goal
and current state information can find unexplored areas in a
shorter amount of time than the other methods.

When asked to generalize to a fresh map, Figure 3b in-
dicates that both RRT-Stateless and RRT-StateOnly underper-
form the RRT-Uniform benchmark. Only the combined model
RRT-StatesAndGoals, which is trained to mimic the human’s
navigation style rather than their specific navigation path, is
able to beat the benchmark. From this, we conclude that
knowledge extracted from stale human data can be misleading,
an appropriate model architecture and training regime can
extract transferable knowledge that demonstrably improves
exploration efficiency on incrementally changed game designs
for which no human demonstrations are available.

VII. FUTURE WORK

Where previous work trained a state embedding function
from past gameplay data and used a fixed action selection
policy, this work used fixed embedding and trained action se-
lection policy. Under the assumption the game design changes
incrementally over time, we believe both elements could
be fruitfully learned simultaneously, even from collections
of partially-stale data. Doing so might extend the benefit
demonstrated in this paper to more complex games.

Future work should also seek a source of more realistic
incremental software changes to videogames (e.g. commit logs
for open source game projects) to understand the types and
degrees of changes that would likely be seen in continuous
integration (CI) pipelines. This would shed light on the validity
of assumptions about the nature of incremental changes used

lExperimentally, we confirmed that all methods, including RRT-Uniform,
were able to reach the maximum number of unique tiles when given enough
time to search (e.g. 100,000 steps).
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Fig. 3: Efficiency of exploring the training (Map A) and testing
(Map B) maps. When applied to a novel map, only the policy
that was trained to consider both state and goal vectors reliably
improves over the always-available RRT-Uniform benchmark.

in this work and clarify under which conditions transferable
knowledge could be extracted from stale human data.

Finally, future work should consider blending sparse and
stale human demonstration data with the plentiful and timely
data generated by running exploration algorithms. The ability
to bootstrap training of both state embedding functions [7]
and action policies [20] from machine-generated data has
been previous demonstrated, but it remains to see these ideas

merged in the context of continuous integration workflows.

VIII. CONCLUSION

In this paper, we have argued that stale human data is a
useful source of knowledge for machine playtesting systems
that are tasked with playing incrementally-changed game
variations. Making use of data from recent versions of a game
is important for creating design automation tools that are
compatible with continuous integration (CI) workflows. In this
paper, we have shown evidence from a single human-playable
environment that training goal-conditioned action policies on
expert-relabeled stale data is useful.
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