
General Game Heuristic Prediction Based on
Ludeme Descriptions

Matthew Stephenson, Dennis J. N. J. Soemers, Éric Piette, Cameron Browne
Department of Data Science and Knowledge Engineering

Maastricht University
Maastricht, the Netherlands

{matthew.stephenson,dennis.soemers,eric.piette,cameron.browne}@maastrichtuniversity.nl

Abstract—This paper investigates the performance of different
general-game-playing heuristics for games in the Ludii general
game system. Based on these results, we train several regression
learning models to predict the performance of these heuristics
based on each game’s description file. We also provide a con-
densed analysis of the games available in Ludii, and the different
ludemes that define them.

Index Terms—Ludii, Heuristics, Ludemes, General Game Play-
ing, Data Mining, Supervised Learning

I. INTRODUCTION

Ludii is a general game system focused on traditional board
games [1]. It is being developed as part of the Digital Ludeme
Project [2] but also provides opportunities for stand-alone AI
research in the areas of agent development, content generation,
game design, player analysis and education. Games within
Ludii are described using ludemes, which are unique tokens
or keywords that typically correspond to high-level game
concepts. In this paper, we investigate if the performance of
different game-playing heuristics can be estimated based on
this ludemic game description format. If successful, this will
allow us to predict the best heuristic for any new game, without
the need for lengthy performance comparisons.

Many game-playing agents rely on heuristics to determine
the best action to perform at a given time. In Chess, for
example, one heuristic may encourage an agent to gain a
material advantage, while another a positional advantage.
Techniques that aim to predict the best choice from a collection
of heuristics are commonly called hyper-heuristic approaches
[3]. Such approaches have been proposed for different games
and research frameworks, including the general video game AI
(GVGAI) framework [4], [5], the general game playing (GGP)
framework [6], Starcraft [7], Angry Birds [8], Pac-Man [9],
Jawbreaker [10], FreeCell [11], and theoretical games [12].

The remainder of this paper is structured as follows. Section
II describes the games and their ludemic format within Ludii.
Section III describes the game-playing heuristics. Section IV
describes the heuristic prediction methodology, experiments
and results. Section V provides a short discussion of these
results and possibilities for future work.

This research is funded by the European Research Council as part of
the Digital Ludeme Project (ERC Consolidator Grant #771292) led by
Cameron Browne at Maastricht University’s Department of Data Science and
Knowledge Engineering.

II. LUDII GAMES

The Ludii general game system currently includes over
750 fully playable games.1 The types of games within Ludii
includes, but is not limited to:
• Deterministic / Stochastic Games
• Complete / Hidden Information Games
• Single-Player / Multi-Player Games
• Alternating / Simultaneous Move Games

For this paper, we will focus only on games that require two
or more players, have an alternating move format, and are
fully observable (no hidden information). This subset includes
a total of 695 valid games.

A. Ludemes

Games within Ludii are described in terms of distinct
ludemes. The number of ludemes used within each description
can range from a few dozen for simple games (e.g. Tic-
Tac-Toe) to several thousand for larger games (e.g. Taikyoku
Shogi). Each ludeme represents a fundamental aspect of play,
allowing for high-level structured descriptions. For example,
the ludemic description for Tic-Tac-Toe is as follows:
(game "Tic-Tac-Toe"

(players 2)
(equipment {

(board (square 3))
(piece "Disc" P1)
(piece "Cross" P2)

})
(rules

(play (move Add (to (sites Empty))))
(end (if (is Line 3) (result Mover Win)))

)
)

Keywords such as Square, Piece, Line, etc. represent
ludemes. Values defined by Strings, Numbers and Booleans
(e.g. "Disc", 3, and True) are not considered ludemes.

The set of ludemes within the Ludii Language is continu-
ously expanding but currently contains 547 ludemes. Some are
used commonly, e.g. Board and Players are present in almost
every game, while others are far less frequent, e.g. Liberties
and Enclose are mostly found in Go-like games. By recording
which ludemes are present within each game’s description, we
can produce a complete ludeme dataset.

1All values presented in this paper were obtained using Ludii v1.1.17.

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

Fig. 1. Example game clusters based on our ludeme dataset. Points were
reduced to two dimensions using t-SNE.

B. Ludii Game Clusters

To get a better idea of the overall distribution of the games
available in Ludii, we applied t-distributed stochastic neighbor
embedding (t-SNE) [13] to reduce our ludeme dataset to two-
dimensions, see Figure 1. From this, we can see 3 distinct
clusters of games. The orange cluster contains 88 games, the
green cluster contains 85 games, and the red cluster contains
522 games. Using a decision tree classifier, we identified which
ludemes could be used to define this clustering.

The orange cluster contains games which have the Sow
ludeme, a ludeme which is specific to the “Mancala" family of
games. These games have a unique play-style, as they do not
rely on traditional ideas of piece movement, placement and
capturing in the same way that many other games do. Instead,
players take turns “sowing" seeds along a ring of holes, often
with many seeds located on a single space.

The green Cluster contains games which have both the Track
and Dice ludemes. This is a common combination for the
“Race" family of games, which includes popular examples
such as Snakes & Ladders and Backgammon. The Dice ludeme
means that dice are used as part of the game’s rules, and
would indicate that there is some aspect of luck to the game.
The Track ludeme indicates that there are fixed paths on the
board which pieces must follow, often limiting the number
of possible moves that can be made. Both of these ludemes
together would suggest that the game has a limited degree of
interaction, with the outcome of a player’s turn often being
determined more by chance than skill.

The red cluster contains all other games which did not fit
into either of the previous clusters, including games that have
a track but no dice (e.g. Ja-Jeon-Geo-Gonu) and games with
dice but no track (e.g. Dice Chess). It is likely that there other
additional, albeit less clearly separated, clusters within this
large set of games, but this was not investigated as part of this
preliminary analysis.

III. LUDII AI HEURISTICS

Ludii contains several heuristics that may be used in heuris-
tic state evaluation functions for game-playing algorithms
that require them, such as αβ-search [14]. The selection of
heuristics implemented in Ludii is primarily based on the
advisors that were found to be generally applicable and useful
(not just for a specific game) in the earlier Ludi general game
system [15]. The first two columns of Table I list names and
short descriptions of each of them. For every heuristic, we
include a positive and a negative variant, with positive and
negative weights, respectively. For example, Material with a
positive weight prefers game states where a player owns more
pieces (in comparison to the opponents), whereas Material
with a negative weight prefers game states where the player
owns fewer pieces.

A. Heuristic Performance

For each of the 695 games, we aim to get an estimate of
the “usefulness” of each heuristic for that game. This is done
by measuring the average win-rates of αβ-search agents using
each heuristic against combinations of all other heuristics. To
make this study feasible across many games, we restricted
the agents to search depths of 2. Furthermore, we exclude
heuristics from games that they are not applicable in, and
instead estimate what their performance would have been
by the performance of the “Null” heuristic, which always
returns a constant value of 0. For example, the “Score”
heuristic is inapplicable in games that do not use scores,
“RegionProximity” is inapplicable in games that do not have
any defined regions, etc.

More concretely, given an n-player game with a pool of
k applicable heuristics, for every heuristic h, we generate all
combinations of n − 1 heuristics out of the other k − 1 as
opponents. If there are more than 10 such combinations (in
games with many players and many applicable heuristics), we
randomly sample only 10 combinations to retain. We play a
minimum of 10 evaluation games for every such heuristic h
against every combination of opponents, with a minimum of
100 evaluation games per heuristic h (plus more games when h
itself is in the pool of candidate opponents for other heuristics).

The average win-rate of each heuristic across all 695 games
is shown in Table I, for both the positive and negative variants.
The number shown in brackets is the number of times this
heuristic had the exclusive highest win-rate on a game (i.e.
the number of games where it outperformed all other heuris-
tics). Some heuristics (e.g. Material, Mobility, Influence) with
positive weights have relatively high average win-rates, which
suggests these heuristics may be good candidates for “default”
heuristics in new games with zero domain knowledge. Almost
all heuristics – including several with average win-rates around
50% – are still the top performers in some games, which
suggests they are valuable to retain in a portfolio of general
game heuristics. When using negative weights, all heuristics
appear to have a poor level of performance on average, but
most of them are still top performers in some games.

TABLE I
HEURISTICS IMPLEMENTED IN LUDII. THE SECOND-TO-LAST AND LAST COLUMNS SHOW THE WIN-RATES OF THE HEURISTICS AVERAGED OVER ALL

GAMES (AND NUMBER OF GAMES IN WHICH A HEURISTIC IS THE SOLE TOP PERFORMER), FOR CASES WHERE THE HEURISTICS ARE ASSIGNED A
POSITIVE OR NEGATIVE WEIGHT, RESPECTIVELY.

Avg. Win % (# top performances)

Heuristic Description Positive Negative

Material Sum of owned pieces. 62.09% (181) 39.88% (12)
Mobility Number of legal moves. 57.75% (65) 43.58% (13)
Influence Number of legal moves with distinct destination positions. 57.59% (53) 44.70% (6)
CornerProximity Sum of owned pieces, weighted by proximity to nearest corner. 57.27% (44) 40.92% (9)
SidesProximity Sum of owned pieces, weighted by proximity to nearest side. 56.36% (31) 43.86% (14)
LineCompletion Measure of potential to complete line(s) of owned pieces. 54.86% (73) 44.28% (3)
CentreProximity Sum of owned pieces, weighted by proximity to centre. 54.53% (37) 44.59% (13)
RegionProximity Sum of owned pieces, weighted by proximity to a predefined region. 53.07% (21) 47.60% (7)
OwnRegionsCount Sum of (piece) counts in owned regions. 50.35% (19) 47.66% (10)
PlayerRegionsProximity Sum of owned pieces, weighted by proximity to owned region(s). 50.01% (2) 49.50% (2)
PlayerSiteMapCount Sum of (piece) counts in sites mapped to by player ID. 49.99% (18) 47.86% (2)
Score Score variable of game state corresponding to player. 49.83% (17) 47.39% (0)
ComponentValues Sum of values of sites occupied by owned pieces. 48.68% (0) 48.39% (0)
Null Always returns a value of 0. 48.52% (0) -

IV. HEURISTIC PERFORMANCE PREDICTION

To determine if a game’s ludemes can be used to predict
heuristic performance, we experimented with several regres-
sion learning algorithms. The names of these algorithms can be
seen in Table II. We also tested a naive approach, which always
predicts the mean of all label values. For each regression
algorithm, a different model was independently trained for
each heuristic. Each of these algorithm-heuristic models was
trained across all 695 games, using the heuristic’s win-rate as
the labels and the ludemes as the input features.

All results for this section are shown in Table II. All model
training was performed in Python (v3.8.5) using Scikit-learn
(v0.24.1) [16], with all regression learning algorithms trained
using default hyperparameter values. All of the data and code
used in these experiments is open-source and available online.2

A. Accuracy

To determine the accuracy of each trained model, we
performed Leave-One-Out Cross-Validation and recorded the
Mean Average Error (MAE) of each model. Due to space
limitations, we could not show the MAE of each separate
algorithm-heuristic model, but instead show the average MAE
of each regression algorithm across all heuristics. Random-
ForestRegressor performs best overall, with an MAE of 7.48.

B. Expected Win-Rate

To get a better idea of how these models would compare
if used by a portfolio agent, we also calculated the average
expected win-rate of each regression algorithm. The expected
win-rate of a regression algorithm on a given game, is equal
to the true win-rate of its most preferred heuristic (i.e. the
heuristic with the highest predicted win-rate) for that game.
The average expected win-rate is computed by averaging over

2https://github.com/Ludeme/HeuristicPrediction/tree/CoG_2021

all games. RandomForestRegressor once again performs best,
with an average expected win-rate of 71.03%.

C. Regret

For a single game, the regret of a regression algorithm is
defined as the expected reduction in win-rate as a result of
picking its most preferred heuristic over whichever heuristic
truly performs best. An increase in regret is inversely pro-
portional to that of expected win-rate, but shows how close
each regression algorithm is to perfect heuristic prediction.
More formally, the regret R(h) for a regression algorithm
that picks a heuristic h with a win-rate w(h), in a game
in which the best heuristic h∗ = argmaxh′ w(h′) has a
win-rate w(h∗) ≥ h, is given by R(h) = w(h∗) − w(h).
The average regret is computed by averaging over all games.
RandomForestRegressor has an average regret of 7.68.

V. DISCUSSION

Based on the results shown in Table II, the best performing
regression algorithm (RandomForestRegressor) had less than
half as much regret as the naive approach, representing a
significant performance improvement. While not as large, the
reduction in MAE was also substantial. This result confirms
that the ludemes within a game’s description can be used
to predict the performance of our heuristics, and that these
predicted win-rates can be used effectively to select the best
performing heuristic on new games.

There is also a very high correlation between the MAE and
Regret results, with a lower MAE almost always correlating
with a lower Regret. However, the improvement against the
naive approach was much greater for regret than for accuracy
(54% improvement versus 26% improvement). This would
suggest that our prediction models are generally more accu-
rate for games where the heuristics perform very differently,
compared to cases where the performance is similar. In other

TABLE II
HEURISTIC PERFORMANCE PREDICTION RESULTS. MAE VALUES FOR

EACH ALGORITHM ARE AVERAGED ACROSS ALL HEURISTICS.

Regression Algorithm MAE (stdev) Win-Rate Regret

RandomForestRegressor 7.48 (1.28) 71.03% 7.68
GradientBoostingRegressor 7.87 (1.54) 70.83% 7.88
KNeighborsRegressor 8.05 (1.39) 70.46% 8.25
BayesianRidge 8.29 (1.50) 70.26% 8.45
LinearSVR 8.56 (1.31) 69.97% 8.74
MLPRegressor 8.90 (1.40) 70.15% 8.56
ElasticNet 9.13 (1.83) 67.92% 10.79
Lasso 9.26 (1.81) 67.63% 11.08
Ridge 9.50 (1.76) 68.86% 9.85
DecisionTreeRegressor 9.70 (1.61) 67.95% 10.76
Naive 10.07 (2.58) 62.09% 16.62

words, if a game has low variance in terms of heuristic win-
rate, then having a large MAE is typically going to have much
less of an impact on our regret than if the game had high
variance in heuristic win-rate.

A. Future Work

In this section we briefly describe several preliminary ideas
for future work, including both extensions to and applications
of the research proposed in this paper.

1) Game Concepts: Rather than using only the ludemes
within our game descriptions, including additional game fea-
tures or concepts may provide better results. Several higher
level features have been previously proposed for general video
games [4], [5], but these are limited to a few dozen examples
and are typically not applicable to board games. We have
already begun work on creating a corpus of game concepts
that are detectable within Ludii games [17]. Combining these
concepts with our existing ludeme dataset may help to improve
our heuristic prediction accuracy, and could allow us to extend
our results to other general game systems.

2) Combining Heuristics: While the method described here
identifies a single best predicted heuristic per game, better
agent performance can typically achieved by using a weighted
combination of several heuristics. For example, Material and
Mobility tend to combine well for many games to encourage
game states in which a player has a material advantage over
their opponent(s) and more movement options. Unfortunately,
the large number of potential combinations of heuristics, and
the fine tuning of their weights, makes the identification of
optimal weight vectors a difficult task for hundreds of games.

3) Portfolio Agent: One of the primary applications of
hyper-heuristic approaches is the development of a portfolio
agent. These agents have access to a wide range of different
heuristics or agents, and select the best one for a given game.
For our case, the general performance of a basic portfolio agent
which selects a heuristic based on our RandomForestRegres-
sor can be estimated from our expected win-rate. However,
there are several other aspects to portfolio agent development
which can also be considered, such as selecting an alternative
heuristic should the first choice perform poorly.

4) Strategy Recommendation: Each of our heuristics is sim-
ple enough that we can use their predicted win-rates to provide
simple strategies or tutorials for human players to follow. For
example, the game of Go has high predicted win-rates for
the Material (positive) and Score (positive) heuristics. Certain
models, such as decision trees, may also be able to provide
which ludemes are responsible for these predictions. This
information could then be combined into a single complete
message that provides some strategic insight, such as “This
game contains the Remove and AddScore ludemes, you should
focus on gaining a Material and Score advantage".

REFERENCES

[1] É. Piette, D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M.
Winands, and C. Browne, “Ludii – the ludemic general game system,” in
Proceedings of the 24th European Conference on Artificial Intelligence
(ECAI 2020), ser. Frontiers in Artificial Intelligence and Applications,
G. D. Giacomo, A. Catala, B. Dilkina, M. Milano, S. Barro, A. Bugarín,
and J. Lang, Eds., vol. 325. IOS Press, 2020, pp. 411–418.

[2] C. Browne, “Modern techniques for ancient games,” in IEEE Conf.
Comput. Intell. Games, 2018, pp. 490–497.

[3] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: a survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695–1724,
2013.

[4] P. Bontrager, A. Khalifa, A. Mendes, and J. Togelius, “Matching games
and algorithms for general video game playing,” in AIIDE, 2016.

[5] A. Mendes, J. Togelius, and A. Nealen, “Hyper-heuristic general video
game playing,” in 2016 IEEE Conference on Computational Intelligence
and Games (CIG), 2016, pp. 94–101.

[6] M. Świechowski and J. Mańdziuk, “Self-adaptation of playing strate-
gies in general game playing,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 6, no. 4, pp. 367–381, 2014.

[7] D. Churchill and M. Buro, “Portfolio greedy search and simulation
for large-scale combat in starcraft,” in 2013 IEEE Conference on
Computational Inteligence in Games (CIG), 2013, pp. 1–8.

[8] M. Stephenson and J. Renz, “Creating a hyper-agent
for solving angry birds levels,” in AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, ser.
AIIDE’17, October 2017, pp. 234–240. [Online]. Available:
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15828

[9] P. Rodgers, J. Levine, and D. Anderson, “Ensemble decision making
in real-time games,” in 2018 IEEE Conference on Computational
Intelligence and Games (CIG), 2018, pp. 1–8.

[10] S. Salcedo-Sanz, J. M. Matías-Román, S. Jiménez-Fernández, J. A.
Portilla-Figueras, and L. Cuadra, “An evolutionary-based hyper-heuristic
approach for the jawbreaker puzzle,” Applied Intelligence, vol. 40, pp.
404–414, 2013.

[11] A. Elyasaf, A. Hauptman, and M. Sipper, “Evolutionary design of
freecell solvers,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 4, no. 4, pp. 270–281, 2012.

[12] J. Li and G. Kendall, “A hyperheuristic methodology to generate
adaptive strategies for games,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 9, no. 1, pp. 1–10, 2017.

[13] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.
[Online]. Available: http://jmlr.org/papers/v9/vandermaaten08a.html

[14] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[15] C. B. Browne, “Automatic Generation and Evaluation of Recombination
Games,” PhD thesis, Faculty of Information Technology, Queensland
University of Technology, Queensland, Australia, 2009.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[17] É. Piette, M. Stephenson, D. J. N. J. Soemers, and C. Browne, “General
board game concepts,” CoRR, 2021.

